File: simple_network.py

package info (click to toggle)
pynn 0.10.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,156 kB
  • sloc: python: 25,612; cpp: 320; makefile: 117; sh: 80
file content (136 lines) | stat: -rw-r--r-- 4,426 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# coding: utf-8
"""
A simple network model for benchmarking purposes.


Usage: python simple_network.py [-h] parameter_file data_store

positional arguments:
  parameter_file  Parameter file (for format see
                  http://parameters.readthedocs.org/)
  data_store      filename for output data file

optional arguments:
  -h, --help      show this help message and exit
"""

from importlib import import_module
from parameters import ParameterSet
from pyNN.utility import Timer


def main_pyNN(parameters):
    timer = Timer()
    sim = import_module(parameters.simulator)
    timer.mark("import")

    sim.setup(threads=parameters.threads)
    timer.mark("setup")

    populations = {}
    for name, P in parameters.populations.parameters():
        populations[name] = sim.Population(P.n, getattr(sim, P.celltype)(**P.params), label=name)
    timer.mark("build")

    if parameters.projections:
        projections = {}
        for name, P in parameters.projections.parameters():
            connector = getattr(sim, P.connector.type)(**P.connector.params)
            synapse_type = getattr(sim, P.synapse_type.type)(**P.synapse_type.params)
            projections[name] = sim.Projection(populations[P.pre],
                                               populations[P.post],
                                               connector,
                                               synapse_type,
                                               receptor_type=P.receptor_type,
                                               label=name)
        timer.mark("connect")

    if parameters.recording:
        for pop_name, to_record in parameters.recording.parameters():
            for var_name, n_record in to_record.items():
                populations[pop_name].sample(n_record).record(var_name)
        timer.mark("record")

    sim.run(parameters.sim_time)
    timer.mark("run")

    spike_counts = {}
    if parameters.recording:
        for pop_name in parameters.recording.names():
            block = populations[pop_name].get_data()  # perhaps include some summary statistics in the data returned?
            spike_counts["spikes_%s" % pop_name] = populations[pop_name].mean_spike_count()
        timer.mark("get_data")

    mpi_rank = sim.rank()
    num_processes = sim.num_processes()
    sim.end()
    
    data = dict(timer.marks)
    data.update(num_processes=num_processes)
    data.update(spike_counts)
    return mpi_rank, data


def main_pynest(parameters):
    P = parameters
    assert P.sim_name == "pynest"
    timer = Timer()
    import nest
    timer.mark("import")

    nest.SetKernelStatus({"resolution": 0.1})
    timer.mark("setup")

    p = nest.Create("iaf_psc_alpha", n=P.n, params={"I_e": 1000.0})
    timer.mark("build")

    # todo: add recording and data retrieval
    nest.Simulate(P.sim_time)
    timer.mark("run")

    mpi_rank = nest.Rank()
    num_processes = nest.NumProcesses()
    
    data = P.as_dict()
    data.update(num_processes=num_processes,
                timings=timer.marks)
    return mpi_rank, data


if __name__ == "__main__":
    from datetime import datetime
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("parameter_file", help="Parameter file (for format see http://parameters.readthedocs.org/)")
    parser.add_argument("data_store", help="filename for output data file")
    args = parser.parse_args()
    
    parameters = ParameterSet(args.parameter_file)
    
    #print(parameters.pretty())
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    if parameters.simulator == "pynest":
        main = main_pynest
    else:
        main = main_pyNN
    mpi_rank, data = main(parameters)
    
    if mpi_rank == 0:
        #import shelve
        #shelf = shelve.open(args.data_store)
        #shelf[timestamp] = data
        #shelf.close()
        import os, csv
        parameters_flat = parameters.flatten()
        fieldnames = ["timestamp"] + parameters_flat.keys() + data.keys()
        data.update(timestamp=timestamp)
        data.update(parameters_flat)
        write_header = True
        if os.path.exists(args.data_store):
            write_header = False
        with open(args.data_store, "a+b") as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames, quoting=csv.QUOTE_NONNUMERIC)
            if write_header:
                writer.writeheader()
            writer.writerow(data)