File: PyNormaliz.py

package info (click to toggle)
pynormaliz 2.23%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 424 kB
  • sloc: cpp: 2,402; python: 725; makefile: 11; sh: 5
file content (454 lines) | stat: -rw-r--r-- 14,018 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# encoding=utf8

import sys

import PyNormaliz_cpp
from PyNormaliz_cpp import *

def fill_blanks(x,s):
    t = len(x)
    if t >= s:
        return x
    out = ""
    for i in range(s-t):
        out = " " + out
    out = out + x
    return out

def print_perms_and_orbits(data, name):
    print("permutations of ", name)
    for i in range(len(data[0])):
        print(i, ": ", data[0][i])
    print("orbits of ", name)
    for i in range(len(data[1])):
        print(i, ": ", data[1][i])
    return


def print_automs(Automs):
    print("order ", Automs[0])
    if Automs[1]:
        if Automs[2]:
            print("automorphisms are integral")
        else:
            print("automorphisms are not integral")
    else:
        print("integrality of automorphisms unknown")

    gen_name ="extreme rays of (recession) cone"
    if len(Automs) == 7:
        gen_name = "input vectors";
    lf_name = "support hyperplanes"
    if len(Automs) == 7:
        lf_name = "coordinates"

    if len(Automs[3][0]) >0:
        print_perms_and_orbits(Automs[3],gen_name)
    if len(Automs[4][0]) >0:
        print_perms_and_orbits(Automs[4],"vertices of polyhedron")
    if len(Automs[5][0]) >0:
        print_perms_and_orbits(Automs[5],lf_name)

    if len(Automs) == 7:
        print("input vectors")
        print_matrix(Automs[6])
    return

def print_Stanley_dec(dec):
    print("generators")
    print_matrix(dec[1])
    print("simlices and offsets")
    for i in range(len(dec[0])):
        print(dec[0][i][0])
        print()
        print_matrix(dec[0][i][1])
        print("-----------")
    return

def print_matrix(M):
    if  not isinstance(M,list):
        print("print_matrix applied to non-matrix")
        return
    if len(M) == 0:
        return
    if not isinstance(M[0],list):
        print("pretty_print applied to non-matrix")
        return
    L0 = len(M[0])
    CL = []
    for k in range(len(M[0])):
        CL = CL + [0]
    for i in range(len(M)):
        current = M[i]
        if  not isinstance(current,list) or len(current) != L0:
            print("pretty_print applied to non-matrix")
            return
        for j in range(len(current)):
            x = current[j]
            x = str(x)
            l = len(x)
            if l > CL[j]:
                CL[j] = l
    for i in range(len(M)):
        current = M[i]
        current_line =""
        for j in range(len(current)):
            s= 0
            if j > 0:
                s= 1
            x = current[j]
            x = str(x)
            x = fill_blanks(x,s+CL[j])
            current_line = current_line + x
        print(current_line)
    return


def our_rat_handler(list):
    if list[0] == 0:
        return 0
    if list[1] == 1:
        return list[0]
    return str(list[0])+"/"+str(list[1])


def our_renf_handler(list):
    out = ""
    non_zero = False
    for i in range(len(list)):
        j = len(list) - 1 -i
        current = str(list[j])
        if current[0] == '0':
            if non_zero or j !=0:
                continue
            else:
                out="0"
                return out
        non_zero = True
        sign ="+"
        if current[0] == '-' or out == "":
            sign = ""
        if j>0 and current == "-1":
                sign ="-"
        if j == 0:
            power = ""
        if j == 1:
            power = name_of_indeterminate
        if j > 1:
            power = name_of_indeterminate + "^"+str(j)
        coeff = current
        star = "*"
        if coeff == "1" or coeff == "-1" or  j==0:
            star = ""
        if (coeff == "1" or coeff == "-1") and  j>0:
            coeff = ""
        out = out + sign + coeff + star +power
    return out

def our_float_handler(x):
    return "{:.4f}".format(x)

def PrettyPolynomialTuple(numCoefficients, denCoefficients):
    """
    Strings for numerator and denominator of the a Hilbert series.

    Parameters
    ----------
    numCoefficients : list
        The coefficients for the numerator.
    denCofficients : list
        The coefficients for the denominator where the value represents the
        exponent of 't' and the frequency indicates the outer coefficient.

    Returns
    -------
    PrettyPolynomialTuple: tuple of strings

    Examples
    --------

    >>> numCoefficients = [3, 7, 4, -4, -6, 5]
    >>> denCoefficients = [1, 1, 2, 2, 2, 4]
    >>> PrettyPolynomialTuple(numCoefficients,denCoefficients)

    ('(3 + 7t + 4t² - 4t³ - 6t⁴ + 5t⁵)', '(1 - t)² (1 - t²)³ (1 - t⁴)')

    """
    def to_sup(s):
        if str(s) == '1':
            return ''
        if sys.version == 3:
            sups = {u'0': u'\u2070',
                    u'1': u'\xb9',
                    u'2': u'\xb2',
                    u'3': u'\xb3',
                    u'4': u'\u2074',
                    u'5': u'\u2075',
                    u'6': u'\u2076',
                    u'7': u'\u2077',
                    u'8': u'\u2078',
                    u'9': u'\u2079'}
            # lose the list comprehension
            return ''.join(sups.get(str(char), str(char)) for char in str(s))

        return "^"+str(s)

    def getNumerator(coefficients):

        numerator = ''

        def isPositive(x):
            return x > 0

        firstNonZero = next(
            (i for i, x in enumerate(coefficients) if x != 0), 0)
        for exp, coefficient in enumerate(coefficients):
            if coefficient == 0:
                continue
            coeff_str = str(abs(coefficient))
            if exp != 0:
                if coeff_str == "1":
                    coeff_str = " "
            # Exponent is 0 so keep only the coefficient
            if exp == 0:
                numerator += '({}{!s}'.format('-' if not isPositive(coefficient)
                                                else '',coeff_str)
            # Only include sign if `coefficient` is negative
            elif exp is firstNonZero:
                numerator += '{}{!s}t{}'.format('-' if not isPositive(
                    coefficient) else '', coeff_str, to_sup(exp))
            else:
                numerator += ' {}{!s}t{}'.format('+ ' if isPositive(
                    coefficient) else '- ',coeff_str, to_sup(exp))
        numerator += ')'
        return numerator

    def getDenominator(coefficients):
        exponents = [(inner, coefficients.count(inner))
                        for inner in set(coefficients)]
        denominator = ' '.join('(1 - t{}){}'. format(to_sup(x[0]) if x[0] != 1 else '', to_sup(x[1]) if x[1] != 1 else '') for x in exponents)
        return denominator

    num = getNumerator(numCoefficients)
    den = getDenominator(denCoefficients)
    prettyPolynomial = (num, den)
    return prettyPolynomial

def PrintPrettyHilbertSeries(numCoefficients, denCoefficients):
    """
    Make a pretty Hilbert series string

    Parameters
    ----------
    numCoefficients : list of ints
        The coefficients for the numerator.
    denCofficients : list of ints
        The coefficients for the denominator where the value represents
        the exponent of 't' and the frequency indicates the outer
        coefficient.

    Returns
    -------
    PrintPrettyHilbertSeries : string

    Examples
    --------

    >>> numCoefficients = [3, 7, 4, -4, -6, 5]
    >>> deCoefficients = [1, 1, 2, 2, 2, 4]
    >>> PrintPrettyHilbertSeries(numCoefficients,deCoefficients)

    (3 + 7t + 4t² - 4t³ - 6t⁴ + 5t⁵)
    --------------------------------
        (1 - t)² (1 - t²)³ (1 - t⁴)

    """
    num, den = PrettyPolynomialTuple(numCoefficients, denCoefficients)
    prettyPolynomial = '{:^}\n{:-^{width}}\n{:^{width}}'.format(
        num, '', den, width=max(len(den),len(num)))
    return prettyPolynomial

def print_series(series):
    shift=series[2]
    Shift = []
    if shift >= 0:
        Shift=[ 0 for x in range(1,shift) ]
    numerator=Shift+series[0]
    denominator=series[1]
    print(PrintPrettyHilbertSeries(numerator,denominator))
    if shift < 0:
        print("shift ", shift)
    if len(series) > 3 and series[3] !=1:
        print("dvide numerator by ",series[3])
    return

def print_quasipol(poly):
    pp = []
    for i in range(len(poly)-1):
        pp = pp + [poly[i]]
    print_matrix(pp)
    if poly[len(poly)-1] != 1:
           print ("divide all coefficients by ", poly[len(poly)-1])
    return


name_of_indeterminate = ""

class Cone:

    def __init__(self,**kwargs):
        global name_of_indeterminate
        pop_list = []
        for entry in kwargs.items():
            current_input=entry[1];
            key = entry[0]
            if type(current_input) == bool and current_input == True:
                kwargs[key] = current_input = [[]]
            elif type(current_input) == bool and current_input == False:
                poplist = pop_list + [key]
        for k in pop_list:
            kwargs.pop(k)
        self.cone = PyNormaliz_cpp.NmzCone(**kwargs)
        name_of_indeterminate = PyNormaliz_cpp.NmzFieldGenName(self.cone)

    def ModifyCone(self, *args):
        PyNormaliz_cpp.NmzModifyCone(self.cone, *args)

    def __process_keyword_args(self, keywords):
        input_list = []
        for i in keywords:
            if keywords[i] == True:
                input_list.append(i)
        return input_list

    def print_properties(self):
        props = PyNormaliz_cpp.NmzListConeProperties()
        goals = props[0]
        for x in goals:
            if x == "Generators":
                continue
            if (PyNormaliz_cpp.NmzIsComputed(self.cone, x)):
                print(x + ":")
                print(PyNormaliz_cpp.NmzResult(self.cone, x))

    def __str__(self):
        return "<Normaliz Cone>"

    def __repr__(self):
        return "<Normaliz Cone>"

    def GetFieldGenName(self):
        return PyNormaliz_cpp.NmzFieldGenName(self.cone)

    def Compute(self, *args):
        return PyNormaliz_cpp.NmzCompute(self.cone, args)

    def IsComputed(self, *args):
        if len(args) != 1:
            raise ValueError("IsComputed must have exactly one argument")
        return PyNormaliz_cpp.NmzIsComputed(self.cone, args[0])

    def SetVerbose(self, verbose=True):
        return NmzSetVerbose(self.cone, verbose)

    def SetBoolParam(self, bool_param, bool_value = True):
        return NmzSetBoolParam(self.cone,bool_param, bool_value)

    # This one is not like the others!
    def IntegerHull(self):
        input_list=["IntegerHull"]
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        new_inner_cone = PyNormaliz_cpp.NmzResult(self.cone, "IntegerHull")
        return_cone = Cone.__new__(Cone)
        return_cone.cone = new_inner_cone
        return return_cone

    def ProjectCone(self):
        input_list=["ProjectCone"]
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        new_inner_cone = PyNormaliz_cpp.NmzResult(self.cone, "ProjectCone")
        return_cone = Cone.__new__(Cone)
        return_cone.cone = new_inner_cone
        return return_cone

    def SymmetrizedCone(self, **kwargs):
        new_inner_cone = PyNormaliz_cpp.NmzSymmetrizedCone(self.cone)
        if new_inner_cone == None:
            return None
        return_cone = Cone.__new__(Cone)
        return_cone.cone = new_inner_cone
        return return_cone

    def Polynomial(self):
        return PyNormaliz_cpp.NmzGetPolynomial(self.cone)

    def SetNrCoeffQuasiPol(self, bound=-1):
        return PyNormaliz_cpp.NmzSetNrCoeffQuasiPol(self.cone, bound)

    def SetFaceCodimBound(self, bound=-1):
        return PyNormaliz_cpp.NmzSetFaceCodimBound(self.cone, bound)

    def SetModularGrading(self, mod_gr=-1):
        return PyNormaliz_cpp.NmzSetModularGrading(self.cone, mod_gr)

    def SetChosenFusionRing(self, chosen_ring=-1):
        return PyNormaliz_cpp.NmzSetChosenFusionRing(self.cone, chosen_ring)

    def SetGBDegreeBound(self, bound=-1):
        return PyNormaliz_cpp.NmzSetGBDegreeBound(self.cone, bound)

    def SetGBMinDegree(self, bound=-1):
        return PyNormaliz_cpp.NmzSetGBMinDegree(self.cone, bound)

    def SetDecimalDigits(self, digits=100):
        return PyNormaliz_cpp.NmzSetDecimalDigits(self.cone, digits)

    def SetPolynomial(self, poly =""):
        return PyNormaliz_cpp.NmzSetPolynomial(self.cone, poly)

    def SetPolynomialEquations(self, polys =[]):
        return PyNormaliz_cpp.NmzSetPolynomialEquations(self.cone, polys)

    def SetPolynomialInequalities(self, polys =[]):
        return PyNormaliz_cpp.NmzSetPolynomialInequalities(self.cone, polys)

    def SetGrading(self, grading):
        return PyNormaliz_cpp.NmzSetGrading(self.cone, grading)

    def HilbertSeriesExpansion(self,degree):
        return NmzGetHilbertSeriesExpansion(self.cone,degree)

    def EhrhartSeriesExpansion(self,degree):
        return NmzGetEhrhartSeriesExpansion(self.cone,degree)

    def WeightedEhrhartSeriesExpansion(self,degree):
        return NmzGetWeightedEhrhartSeriesExpansion(self.cone,degree)

    def WriteOutputFile(self, project):
        return NmzWriteOutputFile(self.cone, project)

    def WritePrecompData(self, project):
        return NmzWritePrecompData(self.cone, project)

    def NumberFieldData(self):
        return NmzGetRenfInfo(self.cone)

    def _generic_getter(self, name, **kwargs):
        input_list = self.__process_keyword_args(kwargs)
        input_list.append(name)
        PyNormaliz_cpp.NmzCompute(self.cone, input_list)
        return PyNormaliz_cpp.NmzResult(self.cone, name,RationalHandler = our_rat_handler, \
               NumberfieldElementHandler=our_renf_handler, FloatHandler = our_float_handler)

# Generate getters for a bunch of Normaliz properties
def add_dyn_getter(name):
    if hasattr(Cone, name):
        return
    def inner(self, **kwargs):
        return self._generic_getter(name, **kwargs)
    inner.__doc__ = "docstring for %s" % name
    inner.__name__ = name
    setattr(Cone, name, inner)

for name in PyNormaliz_cpp.NmzListConeProperties()[0]:
    add_dyn_getter(name)