1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
# encoding=utf8
import sys
import PyNormaliz_cpp
from PyNormaliz_cpp import *
def fill_blanks(x,s):
t = len(x)
if t >= s:
return x
out = ""
for i in range(s-t):
out = " " + out
out = out + x
return out
def print_perms_and_orbits(data, name):
print("permutations of ", name)
for i in range(len(data[0])):
print(i, ": ", data[0][i])
print("orbits of ", name)
for i in range(len(data[1])):
print(i, ": ", data[1][i])
return
def print_automs(Automs):
print("order ", Automs[0])
if Automs[1]:
if Automs[2]:
print("automorphisms are integral")
else:
print("automorphisms are not integral")
else:
print("integrality of automorphisms unknown")
gen_name ="extreme rays of (recession) cone"
if len(Automs) == 7:
gen_name = "input vectors";
lf_name = "support hyperplanes"
if len(Automs) == 7:
lf_name = "coordinates"
if len(Automs[3][0]) >0:
print_perms_and_orbits(Automs[3],gen_name)
if len(Automs[4][0]) >0:
print_perms_and_orbits(Automs[4],"vertices of polyhedron")
if len(Automs[5][0]) >0:
print_perms_and_orbits(Automs[5],lf_name)
if len(Automs) == 7:
print("input vectors")
print_matrix(Automs[6])
return
def print_Stanley_dec(dec):
print("generators")
print_matrix(dec[1])
print("simlices and offsets")
for i in range(len(dec[0])):
print(dec[0][i][0])
print()
print_matrix(dec[0][i][1])
print("-----------")
return
def print_matrix(M):
if not isinstance(M,list):
print("print_matrix applied to non-matrix")
return
if len(M) == 0:
return
if not isinstance(M[0],list):
print("pretty_print applied to non-matrix")
return
L0 = len(M[0])
CL = []
for k in range(len(M[0])):
CL = CL + [0]
for i in range(len(M)):
current = M[i]
if not isinstance(current,list) or len(current) != L0:
print("pretty_print applied to non-matrix")
return
for j in range(len(current)):
x = current[j]
x = str(x)
l = len(x)
if l > CL[j]:
CL[j] = l
for i in range(len(M)):
current = M[i]
current_line =""
for j in range(len(current)):
s= 0
if j > 0:
s= 1
x = current[j]
x = str(x)
x = fill_blanks(x,s+CL[j])
current_line = current_line + x
print(current_line)
return
def our_rat_handler(list):
if list[0] == 0:
return 0
if list[1] == 1:
return list[0]
return str(list[0])+"/"+str(list[1])
def our_renf_handler(list):
out = ""
non_zero = False
for i in range(len(list)):
j = len(list) - 1 -i
current = str(list[j])
if current[0] == '0':
if non_zero or j !=0:
continue
else:
out="0"
return out
non_zero = True
sign ="+"
if current[0] == '-' or out == "":
sign = ""
if j>0 and current == "-1":
sign ="-"
if j == 0:
power = ""
if j == 1:
power = name_of_indeterminate
if j > 1:
power = name_of_indeterminate + "^"+str(j)
coeff = current
star = "*"
if coeff == "1" or coeff == "-1" or j==0:
star = ""
if (coeff == "1" or coeff == "-1") and j>0:
coeff = ""
out = out + sign + coeff + star +power
return out
def our_float_handler(x):
return "{:.4f}".format(x)
def PrettyPolynomialTuple(numCoefficients, denCoefficients):
"""
Strings for numerator and denominator of the a Hilbert series.
Parameters
----------
numCoefficients : list
The coefficients for the numerator.
denCofficients : list
The coefficients for the denominator where the value represents the
exponent of 't' and the frequency indicates the outer coefficient.
Returns
-------
PrettyPolynomialTuple: tuple of strings
Examples
--------
>>> numCoefficients = [3, 7, 4, -4, -6, 5]
>>> denCoefficients = [1, 1, 2, 2, 2, 4]
>>> PrettyPolynomialTuple(numCoefficients,denCoefficients)
('(3 + 7t + 4t² - 4t³ - 6t⁴ + 5t⁵)', '(1 - t)² (1 - t²)³ (1 - t⁴)')
"""
def to_sup(s):
if str(s) == '1':
return ''
if sys.version == 3:
sups = {u'0': u'\u2070',
u'1': u'\xb9',
u'2': u'\xb2',
u'3': u'\xb3',
u'4': u'\u2074',
u'5': u'\u2075',
u'6': u'\u2076',
u'7': u'\u2077',
u'8': u'\u2078',
u'9': u'\u2079'}
# lose the list comprehension
return ''.join(sups.get(str(char), str(char)) for char in str(s))
return "^"+str(s)
def getNumerator(coefficients):
numerator = ''
def isPositive(x):
return x > 0
firstNonZero = next(
(i for i, x in enumerate(coefficients) if x != 0), 0)
for exp, coefficient in enumerate(coefficients):
if coefficient == 0:
continue
coeff_str = str(abs(coefficient))
if exp != 0:
if coeff_str == "1":
coeff_str = " "
# Exponent is 0 so keep only the coefficient
if exp == 0:
numerator += '({}{!s}'.format('-' if not isPositive(coefficient)
else '',coeff_str)
# Only include sign if `coefficient` is negative
elif exp is firstNonZero:
numerator += '{}{!s}t{}'.format('-' if not isPositive(
coefficient) else '', coeff_str, to_sup(exp))
else:
numerator += ' {}{!s}t{}'.format('+ ' if isPositive(
coefficient) else '- ',coeff_str, to_sup(exp))
numerator += ')'
return numerator
def getDenominator(coefficients):
exponents = [(inner, coefficients.count(inner))
for inner in set(coefficients)]
denominator = ' '.join('(1 - t{}){}'. format(to_sup(x[0]) if x[0] != 1 else '', to_sup(x[1]) if x[1] != 1 else '') for x in exponents)
return denominator
num = getNumerator(numCoefficients)
den = getDenominator(denCoefficients)
prettyPolynomial = (num, den)
return prettyPolynomial
def PrintPrettyHilbertSeries(numCoefficients, denCoefficients):
"""
Make a pretty Hilbert series string
Parameters
----------
numCoefficients : list of ints
The coefficients for the numerator.
denCofficients : list of ints
The coefficients for the denominator where the value represents
the exponent of 't' and the frequency indicates the outer
coefficient.
Returns
-------
PrintPrettyHilbertSeries : string
Examples
--------
>>> numCoefficients = [3, 7, 4, -4, -6, 5]
>>> deCoefficients = [1, 1, 2, 2, 2, 4]
>>> PrintPrettyHilbertSeries(numCoefficients,deCoefficients)
(3 + 7t + 4t² - 4t³ - 6t⁴ + 5t⁵)
--------------------------------
(1 - t)² (1 - t²)³ (1 - t⁴)
"""
num, den = PrettyPolynomialTuple(numCoefficients, denCoefficients)
prettyPolynomial = '{:^}\n{:-^{width}}\n{:^{width}}'.format(
num, '', den, width=max(len(den),len(num)))
return prettyPolynomial
def print_series(series):
shift=series[2]
Shift = []
if shift >= 0:
Shift=[ 0 for x in range(1,shift) ]
numerator=Shift+series[0]
denominator=series[1]
print(PrintPrettyHilbertSeries(numerator,denominator))
if shift < 0:
print("shift ", shift)
if len(series) > 3 and series[3] !=1:
print("dvide numerator by ",series[3])
return
def print_quasipol(poly):
pp = []
for i in range(len(poly)-1):
pp = pp + [poly[i]]
print_matrix(pp)
if poly[len(poly)-1] != 1:
print ("divide all coefficients by ", poly[len(poly)-1])
return
name_of_indeterminate = ""
class Cone:
def __init__(self,**kwargs):
global name_of_indeterminate
pop_list = []
for entry in kwargs.items():
current_input=entry[1];
key = entry[0]
if type(current_input) == bool and current_input == True:
kwargs[key] = current_input = [[]]
elif type(current_input) == bool and current_input == False:
poplist = pop_list + [key]
for k in pop_list:
kwargs.pop(k)
self.cone = PyNormaliz_cpp.NmzCone(**kwargs)
name_of_indeterminate = PyNormaliz_cpp.NmzFieldGenName(self.cone)
def ModifyCone(self, *args):
PyNormaliz_cpp.NmzModifyCone(self.cone, *args)
def __process_keyword_args(self, keywords):
input_list = []
for i in keywords:
if keywords[i] == True:
input_list.append(i)
return input_list
def print_properties(self):
props = PyNormaliz_cpp.NmzListConeProperties()
goals = props[0]
for x in goals:
if x == "Generators":
continue
if (PyNormaliz_cpp.NmzIsComputed(self.cone, x)):
print(x + ":")
print(PyNormaliz_cpp.NmzResult(self.cone, x))
def __str__(self):
return "<Normaliz Cone>"
def __repr__(self):
return "<Normaliz Cone>"
def GetFieldGenName(self):
return PyNormaliz_cpp.NmzFieldGenName(self.cone)
def Compute(self, *args):
return PyNormaliz_cpp.NmzCompute(self.cone, args)
def IsComputed(self, *args):
if len(args) != 1:
raise ValueError("IsComputed must have exactly one argument")
return PyNormaliz_cpp.NmzIsComputed(self.cone, args[0])
def SetVerbose(self, verbose=True):
return NmzSetVerbose(self.cone, verbose)
def SetBoolParam(self, bool_param, bool_value = True):
return NmzSetBoolParam(self.cone,bool_param, bool_value)
# This one is not like the others!
def IntegerHull(self):
input_list=["IntegerHull"]
PyNormaliz_cpp.NmzCompute(self.cone, input_list)
new_inner_cone = PyNormaliz_cpp.NmzResult(self.cone, "IntegerHull")
return_cone = Cone.__new__(Cone)
return_cone.cone = new_inner_cone
return return_cone
def ProjectCone(self):
input_list=["ProjectCone"]
PyNormaliz_cpp.NmzCompute(self.cone, input_list)
new_inner_cone = PyNormaliz_cpp.NmzResult(self.cone, "ProjectCone")
return_cone = Cone.__new__(Cone)
return_cone.cone = new_inner_cone
return return_cone
def SymmetrizedCone(self, **kwargs):
new_inner_cone = PyNormaliz_cpp.NmzSymmetrizedCone(self.cone)
if new_inner_cone == None:
return None
return_cone = Cone.__new__(Cone)
return_cone.cone = new_inner_cone
return return_cone
def Polynomial(self):
return PyNormaliz_cpp.NmzGetPolynomial(self.cone)
def SetNrCoeffQuasiPol(self, bound=-1):
return PyNormaliz_cpp.NmzSetNrCoeffQuasiPol(self.cone, bound)
def SetFaceCodimBound(self, bound=-1):
return PyNormaliz_cpp.NmzSetFaceCodimBound(self.cone, bound)
def SetModularGrading(self, mod_gr=-1):
return PyNormaliz_cpp.NmzSetModularGrading(self.cone, mod_gr)
def SetChosenFusionRing(self, chosen_ring=-1):
return PyNormaliz_cpp.NmzSetChosenFusionRing(self.cone, chosen_ring)
def SetGBDegreeBound(self, bound=-1):
return PyNormaliz_cpp.NmzSetGBDegreeBound(self.cone, bound)
def SetGBMinDegree(self, bound=-1):
return PyNormaliz_cpp.NmzSetGBMinDegree(self.cone, bound)
def SetDecimalDigits(self, digits=100):
return PyNormaliz_cpp.NmzSetDecimalDigits(self.cone, digits)
def SetPolynomial(self, poly =""):
return PyNormaliz_cpp.NmzSetPolynomial(self.cone, poly)
def SetPolynomialEquations(self, polys =[]):
return PyNormaliz_cpp.NmzSetPolynomialEquations(self.cone, polys)
def SetPolynomialInequalities(self, polys =[]):
return PyNormaliz_cpp.NmzSetPolynomialInequalities(self.cone, polys)
def SetGrading(self, grading):
return PyNormaliz_cpp.NmzSetGrading(self.cone, grading)
def HilbertSeriesExpansion(self,degree):
return NmzGetHilbertSeriesExpansion(self.cone,degree)
def EhrhartSeriesExpansion(self,degree):
return NmzGetEhrhartSeriesExpansion(self.cone,degree)
def WeightedEhrhartSeriesExpansion(self,degree):
return NmzGetWeightedEhrhartSeriesExpansion(self.cone,degree)
def WriteOutputFile(self, project):
return NmzWriteOutputFile(self.cone, project)
def WritePrecompData(self, project):
return NmzWritePrecompData(self.cone, project)
def NumberFieldData(self):
return NmzGetRenfInfo(self.cone)
def _generic_getter(self, name, **kwargs):
input_list = self.__process_keyword_args(kwargs)
input_list.append(name)
PyNormaliz_cpp.NmzCompute(self.cone, input_list)
return PyNormaliz_cpp.NmzResult(self.cone, name,RationalHandler = our_rat_handler, \
NumberfieldElementHandler=our_renf_handler, FloatHandler = our_float_handler)
# Generate getters for a bunch of Normaliz properties
def add_dyn_getter(name):
if hasattr(Cone, name):
return
def inner(self, **kwargs):
return self._generic_getter(name, **kwargs)
inner.__doc__ = "docstring for %s" % name
inner.__name__ = name
setattr(Cone, name, inner)
for name in PyNormaliz_cpp.NmzListConeProperties()[0]:
add_dyn_getter(name)
|