File: coding.rst

package info (click to toggle)
pynpoint 0.11.0-7
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,412 kB
  • sloc: python: 13,645; makefile: 79
file content (210 lines) | stat: -rw-r--r-- 8,301 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
.. _coding:

Coding a new module
===================

.. _constructor:

There are three different types of pipeline modules: :class:`~pynpoint.core.processing.ReadingModule`, :class:`~pynpoint.core.processing.WritingModule`, and :class:`~pynpoint.core.processing.ProcessingModule`. The concept is similar for these three modules so here we will explain only how to code a processing module.

Class constructor
-----------------

First, we need to import the interface (i.e. abstract class) :class:`~pynpoint.core.processing.ProcessingModule`: :

.. code-block:: python

    from pynpoint.core.processing import ProcessingModule

All pipeline modules are classes which contain the parameters of the pipeline step, input ports and/or output ports. So let’s create a simple ``ExampleModule`` class using the ProcessingModule interface (inheritance):

.. code-block:: python

    class ExampleModule(ProcessingModule):

When an IDE like *PyCharm* is used, a warning will appear that all abstract methods must be implemented in the ``ExampleModule`` class. The abstract class :class:`~pynpoint.core.processing.ProcessingModule` has some abstract methods which have to be implemented by its children classes (e.g., ``__init__`` and ``run``). We start by implementing the ``__init__`` method (i.e., the constructor of our module):

.. code-block:: python

    def __init__(self,
                 name_in='example',
                 in_tag_1='in_tag_1',
                 in_tag_2='in_tag_2',
                 out_tag_1='out_tag_1',
                 out_tag_2='out_tag_2',
                 parameter_1=0,
                 parameter_2='value'):

Each ``__init__`` method of :class:`~pynpoint.core.processing.PypelineModule` requires a ``name_in`` argument which is used by the pipeline to run individual modules by name. Furthermore, the input and output tags have to be defined which are used to access data from the central database. The constructor starts with a call of the :class:`~pynpoint.core.processing.ProcessingModule` interface:

.. code-block:: python
   
    super().__init__(name_in)

Next, the input and output ports behind the database tags need to be defined:

.. code-block:: python

        self.m_in_port_1 = self.add_input_port(in_tag_1)
        self.m_in_port_2 = self.add_input_port(in_tag_2)

        self.m_out_port_1 = self.add_output_port(out_tag_1)
        self.m_out_port_2 = self.add_output_port(out_tag_2)

Reading to and writing from the central database should always be done with the ``add_input_port`` and ``add_output_port`` functionalities and not by manually creating an instance of :class:`~pynpoint.core.dataio.InputPort` or :class:`~pynpoint.core.dataio.OutputPort`.

Finally, the module parameters should be saved as attributes of the ``ExampleModule`` instance:

.. code-block:: python

        self.m_parameter_1 = parameter_1
        self.m_parameter_2 = parameter_2

That's it! The constructor of the ``ExampleModule`` is ready.

.. _run_method:

Run method
----------

We can now add the functionalities of the module in the ``run`` method which will be called by the pipeline:

.. code-block:: python

    def run(self):

The input ports of the module are used to load data from the central database into the memory with slicing or with the ``get_all`` method:

.. code-block:: python

        data1 = self.m_in_port_1.get_all()
        data2 = self.m_in_port_2[0:4]

We want to avoid using the ``get_all`` method because data sets obtained in the $L'$ and $M'$ bands typically consists of thousands of images so loading all images at once in the computer memory might not be possible. Instead, it is recommended to use the ``MEMORY`` attribute that is specified in the configuration file (see :ref:`configuration`)

Attributes of a dataset can be read as follows:

.. code-block:: python

        parang = self.m_in_port_1.get_attribute('PARANG')
        pixscale = self.m_in_port_2.get_attribute('PIXSCALE')

And attributes of the central configuration are accessed through the :class:`~pynpoint.core.dataio.ConfigPort`:

.. code-block:: python

        memory = self._m_config_port.get_attribute('MEMORY')
        cpu = self._m_config_port.get_attribute('CPU')

More information on importing of data can be found in the API documentation of :class:`~pynpoint.core.dataio.InputPort`. 

Next, the processing steps are implemented:

.. code-block:: python

        result1 = 10.*self.m_parameter_1
        result2 = 20.*self.m_parameter_1
        result3 = [1, 2, 3]

        attribute = self.m_parameter_2
        
The output ports are used to write the results to the central database:

.. code-block:: python

        self.m_out_port_1.set_all(result1)
        self.m_out_port_1.append(result2)

        self.m_out_port_2[0:2] = result2
        self.m_out_port_2.add_attribute(name='new_attribute', value=attribute)

More information on storing of data can be found in the API documentation of :class:`~pynpoint.core.dataio.OutputPort`.

The data attributes of the input port need to be copied and history information should be added. These steps should be repeated for all the output ports:

.. code-block:: python

        self.m_out_port_1.copy_attributes(self.m_in_port_1)
        self.m_out_port_1.add_history('ExampleModule', 'history text')

        self.m_out_port_2.copy_attributes(self.m_in_port_1)
        self.m_out_port_2.add_history('ExampleModule', 'history text')

Finally, the central database and all the open ports are closed:

.. code-block:: python

        self.m_out_port_1.close_port()

.. important::

   It is enough to close only one port because all other ports will be closed automatically.

.. _apply_function:

Apply function to images
------------------------

A processing module often applies a specific method to each image of an input port. Therefore, the :func:`~pynpoint.core.processing.ProcessingModule.apply_function_to_images` function has been implemented to apply a function to all images of an input port. This function uses the ``CPU`` and ``MEMORY`` parameters from the configuration file to automatically process subsets of images in parallel. An example of the implementation can be found in the code of the bad pixel cleaning with a sigma filter: :class:`~pynpoint.processing.badpixel.BadPixelSigmaFilterModule`.

.. _example_module:

Example module
--------------

The full code for the ``ExampleModule`` from above is:

.. code-block:: python

    from pynpoint.core.processing import ProcessingModule

    class ExampleModule(ProcessingModule):

        def __init__(self,
                     name_in='example',
                     in_tag_1='in_tag_1',
                     in_tag_2='in_tag_2',
                     out_tag_1='out_tag_1',
                     out_tag_2='out_tag_2”,
                     parameter_1=0,
                     parameter_2='value'):

            super(ExampleModule, self).__init__(name_in)

            self.m_in_port_1 = self.add_input_port(in_tag_1)
            self.m_in_port_2 = self.add_input_port(in_tag_2)

            self.m_out_port_1 = self.add_output_port(out_tag_1)
            self.m_out_port_2 = self.add_output_port(out_tag_2)

            self.m_parameter_1 = parameter_1
            self.m_parameter_2 = parameter_2

        def run(self):

            data1 = self.m_in_port_1.get_all()
            data2 = self.m_in_port_2[0:4]

            parang = self.m_in_port_1.get_attribute('PARANG')
            pixscale = self.m_in_port_2.get_attribute('PIXSCALE')

            memory = self._m_config_port.get_attribute('MEMORY')
            cpu = self._m_config_port.get_attribute('CPU')

            result1 = 10.*self.m_parameter_1
            result2 = 20.*self.m_parameter_1
            result3 = [1, 2, 3]

            self.m_out_port_1.set_all(result1)
            self.m_out_port_1.append(result2)

            self.m_out_port_2[0:2] = result2
            self.m_out_port_2.add_attribute(name='new_attribute', value=attribute)

            self.m_out_port_1.copy_attributes(self.m_in_port_1)
            self.m_out_port_1.add_history('ExampleModule', 'history text')

            self.m_out_port_2.copy_attributes(self.m_in_port_1)
            self.m_out_port_2.add_history('ExampleModule', 'history text')

            self.m_out_port_1.close_port()