1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
import os
import h5py
import pytest
import numpy as np
from pynpoint.core.pypeline import Pypeline
from pynpoint.readwrite.fitsreading import FitsReadingModule
from pynpoint.processing.background import LineSubtractionModule
from pynpoint.processing.badpixel import BadPixelSigmaFilterModule
from pynpoint.processing.extract import StarExtractionModule
from pynpoint.processing.timedenoising import TimeNormalizationModule
from pynpoint.util.tests import create_config, create_star_data, remove_test_data
class TestProcessing:
def setup_class(self) -> None:
self.limit = 1e-10
self.test_dir = os.path.dirname(__file__) + '/'
np.random.seed(1)
images = np.random.normal(loc=0, scale=2e-4, size=(5, 11, 11))
large_data = np.random.normal(loc=0, scale=2e-4, size=(10000, 5, 5))
with h5py.File(self.test_dir+'PynPoint_database.hdf5', 'w') as hdf_file:
hdf_file.create_dataset('images', data=images)
hdf_file.create_dataset('large_data', data=large_data)
create_star_data(path=self.test_dir+'images')
create_config(self.test_dir+'PynPoint_config.ini')
self.pipeline = Pypeline(self.test_dir, self.test_dir, self.test_dir)
self.pipeline.set_attribute('images', 'PIXSCALE', 0.1, static=True)
self.pipeline.set_attribute('large_data', 'PIXSCALE', 0.1, static=True)
def teardown_class(self) -> None:
remove_test_data(self.test_dir, folders=['images'])
def test_output_port_name(self) -> None:
module = FitsReadingModule(name_in='read',
image_tag='images',
input_dir=self.test_dir+'images')
module.add_output_port('test')
with pytest.warns(UserWarning) as warning:
module.add_output_port('test')
assert len(warning) == 1
assert warning[0].message.args[0] == 'Tag \'test\' of ReadingModule \'read\' is already ' \
'used.'
module = BadPixelSigmaFilterModule(name_in='badpixel',
image_in_tag='images',
image_out_tag='im_out')
module.add_output_port('test')
with pytest.warns(UserWarning) as warning:
module.add_output_port('test')
assert len(warning) == 1
assert warning[0].message.args[0] == 'Tag \'test\' of ProcessingModule \'badpixel\' is ' \
'already used.'
def test_output_port_set_connection(self) -> None:
self.pipeline.m_data_storage.open_connection()
module = BadPixelSigmaFilterModule(name_in='badpixel2',
image_in_tag='images',
image_out_tag='im_out')
self.pipeline.add_module(module)
port = module.add_output_port('test1')
self.pipeline.m_data_storage.close_connection()
def test_apply_function(self) -> None:
self.pipeline.set_attribute('config', 'MEMORY', 20, static=True)
self.pipeline.set_attribute('config', 'CPU', 4, static=True)
module = LineSubtractionModule(name_in='subtract',
image_in_tag='images',
image_out_tag='im_subtract',
combine='mean',
mask=None)
self.pipeline.add_module(module)
self.pipeline.run_module('subtract')
data = self.pipeline.get_data('images')
assert np.mean(data) == pytest.approx(1.1824138000882435e-05, rel=self.limit, abs=0.)
assert data.shape == (5, 11, 11)
data = self.pipeline.get_data('im_subtract')
assert np.mean(data) == pytest.approx(-1.2544487946113274e-21, rel=self.limit, abs=0.)
assert data.shape == (5, 11, 11)
def test_apply_function_args_none(self) -> None:
module = TimeNormalizationModule(name_in='norm',
image_in_tag='images',
image_out_tag='im_norm')
self.pipeline.add_module(module)
self.pipeline.run_module('norm')
data = self.pipeline.get_data('im_norm')
assert np.mean(data) == pytest.approx(2.4012571778516812e-06, rel=self.limit, abs=0.)
assert data.shape == (5, 11, 11)
def test_apply_function_args_none_memory_none(self) -> None:
self.pipeline.set_attribute('config', 'MEMORY', 0, static=True)
module = TimeNormalizationModule(name_in='norm_none',
image_in_tag='images',
image_out_tag='im_norm')
self.pipeline.add_module(module)
self.pipeline.run_module('norm_none')
data = self.pipeline.get_data('im_norm')
assert np.mean(data) == pytest.approx(2.4012571778516812e-06, rel=self.limit, abs=0.)
assert data.shape == (5, 11, 11)
def test_apply_function_same_port(self) -> None:
module = LineSubtractionModule(name_in='subtract_same',
image_in_tag='im_subtract',
image_out_tag='im_subtract',
combine='mean',
mask=None)
self.pipeline.add_module(module)
self.pipeline.run_module('subtract_same')
data = self.pipeline.get_data('im_subtract')
assert np.mean(data) == pytest.approx(-1.4336557652700885e-21, rel=self.limit, abs=0.)
assert data.shape == (5, 11, 11)
def test_apply_function_args_none_memory_none_same_port(self) -> None:
self.pipeline.set_attribute('config', 'MEMORY', 0, static=True)
data = self.pipeline.get_data('images')
assert np.mean(data) == pytest.approx(1.1824138000882435e-05, rel=self.limit, abs=0.)
assert data.shape == (5, 11, 11)
module = TimeNormalizationModule(name_in='norm_none_same',
image_in_tag='images',
image_out_tag='images')
self.pipeline.add_module(module)
self.pipeline.run_module('norm_none_same')
data = self.pipeline.get_data('images')
assert np.mean(data) == pytest.approx(2.4012571778516812e-06, rel=self.limit, abs=0.)
assert data.shape == (5, 11, 11)
# def test_apply_function_to_images_memory_none(self) -> None:
#
# module = StarExtractionModule(name_in='extract',
# image_in_tag='im_subtract',
# image_out_tag='extract',
# index_out_tag=None,
# image_size=0.5,
# fwhm_star=0.1,
# position=(None, None, 0.1))
#
# self.pipeline.add_module(module)
# self.pipeline.run_module('extract')
#
# data = self.pipeline.get_data('extract')
# assert np.mean(data) == pytest.approx(1.8259937251367536e-05, rel=self.limit, abs=0.)
# assert data.shape == (5, 5, 5)
# def test_multiproc_large_data(self) -> None:
#
# self.pipeline.set_attribute('config', 'MEMORY', 1000, static=True)
# self.pipeline.set_attribute('config', 'CPU', 1, static=True)
#
# module = LineSubtractionModule(name_in='subtract_single',
# image_in_tag='large_data',
# image_out_tag='im_sub_single',
# combine='mean',
# mask=None)
#
# self.pipeline.add_module(module)
# self.pipeline.run_module('subtract_single')
#
# self.pipeline.set_attribute('config', 'CPU', 4, static=True)
#
# module = LineSubtractionModule(name_in='subtract_multi',
# image_in_tag='large_data',
# image_out_tag='im_sub_multi',
# combine='mean',
# mask=None)
#
# self.pipeline.add_module(module)
# self.pipeline.run_module('subtract_multi')
#
# data_single = self.pipeline.get_data('im_sub_single')
# data_multi = self.pipeline.get_data('im_sub_multi')
# assert data_single == pytest.approx(data_multi, rel=self.limit, abs=0.)
# assert data_single.shape == data_multi.shape
|