1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
import os
import h5py
import pytest
import numpy as np
from pynpoint.core.pypeline import Pypeline
from pynpoint.readwrite.fitsreading import FitsReadingModule
from pynpoint.processing.extract import StarExtractionModule, ExtractBinaryModule
from pynpoint.util.tests import create_config, create_star_data, create_fake_data, remove_test_data
class TestExtract:
def setup_class(self) -> None:
self.limit = 1e-10
self.test_dir = os.path.dirname(__file__) + '/'
create_star_data(self.test_dir+'star')
create_fake_data(self.test_dir+'binary')
create_config(self.test_dir+'PynPoint_config.ini')
self.pipeline = Pypeline(self.test_dir, self.test_dir, self.test_dir)
def teardown_class(self) -> None:
remove_test_data(path=self.test_dir, folders=['star', 'binary'])
def test_read_data(self) -> None:
module = FitsReadingModule(name_in='read1',
image_tag='star',
input_dir=self.test_dir+'star',
overwrite=True,
check=True)
self.pipeline.add_module(module)
self.pipeline.run_module('read1')
data = self.pipeline.get_data('star')
assert np.sum(data) == pytest.approx(105.54278879805277, rel=self.limit, abs=0.)
assert data.shape == (10, 11, 11)
module = FitsReadingModule(name_in='read2',
image_tag='binary',
input_dir=self.test_dir+'binary',
overwrite=True,
check=True)
self.pipeline.add_module(module)
self.pipeline.run_module('read2')
data = self.pipeline.get_data('binary')
assert np.sum(data) == pytest.approx(11.012854046962481, rel=self.limit, abs=0.)
assert data.shape == (10, 21, 21)
self.pipeline.set_attribute('binary', 'PARANG', -1.*np.linspace(0., 180., 10), static=False)
def test_extract_position_none(self) -> None:
module = StarExtractionModule(name_in='extract1',
image_in_tag='star',
image_out_tag='extract1',
index_out_tag='index',
image_size=0.2,
fwhm_star=0.1,
position=None)
self.pipeline.add_module(module)
with pytest.warns(UserWarning) as warning:
self.pipeline.run_module('extract1')
assert len(warning) == 3
assert warning[0].message.args[0] == 'Can not store the attribute \'INSTRUMENT\' because ' \
'the dataset \'index\' does not exist.'
assert warning[1].message.args[0] == 'Can not store the attribute \'PIXSCALE\' because ' \
'the dataset \'index\' does not exist.'
assert warning[2].message.args[0] == 'Can not store the attribute \'History: ' \
'StarExtractionModule\' because the dataset ' \
'\'index\' does not exist.'
data = self.pipeline.get_data('extract1')
assert np.sum(data) == pytest.approx(104.93318507061295, rel=self.limit, abs=0.)
assert data.shape == (10, 9, 9)
def test_extract_center_none(self) -> None:
module = StarExtractionModule(name_in='extract2',
image_in_tag='star',
image_out_tag='extract2',
index_out_tag='index',
image_size=0.2,
fwhm_star=0.1,
position=(None, None, 0.2))
self.pipeline.add_module(module)
with pytest.warns(UserWarning) as warning:
self.pipeline.run_module('extract2')
assert len(warning) == 3
assert warning[0].message.args[0] == 'Can not store the attribute \'INSTRUMENT\' because ' \
'the dataset \'index\' does not exist.'
assert warning[1].message.args[0] == 'Can not store the attribute \'PIXSCALE\' because ' \
'the dataset \'index\' does not exist.'
assert warning[2].message.args[0] == 'Can not store the attribute \'History: ' \
'StarExtractionModule\' because the dataset ' \
'\'index\' does not exist.'
data = self.pipeline.get_data('extract2')
assert np.sum(data) == pytest.approx(104.93318507061295, rel=self.limit, abs=0.)
assert data.shape == (10, 9, 9)
def test_extract_position(self) -> None:
module = StarExtractionModule(name_in='extract7',
image_in_tag='star',
image_out_tag='extract7',
index_out_tag=None,
image_size=0.2,
fwhm_star=0.1,
position=(5, 5, 0.2))
self.pipeline.add_module(module)
self.pipeline.run_module('extract7')
data = self.pipeline.get_data('extract7')
assert np.sum(data) == pytest.approx(104.93318507061295, rel=self.limit, abs=0.)
assert data.shape == (10, 9, 9)
def test_extract_too_large(self) -> None:
module = StarExtractionModule(name_in='extract3',
image_in_tag='star',
image_out_tag='extract3',
index_out_tag=None,
image_size=0.2,
fwhm_star=0.1,
position=(2, 2, 0.05))
self.pipeline.add_module(module)
with pytest.warns(UserWarning) as warning:
self.pipeline.run_module('extract3')
assert len(warning) == 10
assert warning[0].message.args[0] == f'Chosen image size is too large to crop the image ' \
f'around the brightest pixel (image index = 0, ' \
f'pixel [x, y] = [2, 2]). Using the center of ' \
f'the image instead.'
data = self.pipeline.get_data('extract3')
assert np.sum(data) == pytest.approx(104.93318507061295, rel=self.limit, abs=0.)
assert data.shape == (10, 9, 9)
def test_star_extract_cpu(self) -> None:
with h5py.File(self.test_dir+'PynPoint_database.hdf5', 'a') as hdf_file:
hdf_file['config'].attrs['CPU'] = 4
module = StarExtractionModule(name_in='extract4',
image_in_tag='star',
image_out_tag='extract4',
index_out_tag='index',
image_size=0.2,
fwhm_star=0.1,
position=(2, 2, 0.05))
self.pipeline.add_module(module)
with pytest.warns(UserWarning) as warning:
self.pipeline.run_module('extract4')
assert len(warning) == 2
assert warning[0].message.args[0] == 'The \'index_out_port\' can only be used if ' \
'CPU = 1. No data will be stored to this output port.'
assert warning[1].message.args[0] == 'Chosen image size is too large to crop the image ' \
'around the brightest pixel (image index = 0, ' \
'pixel [x, y] = [2, 2]). Using the center of the ' \
'image instead.'
def test_extract_binary(self) -> None:
with h5py.File(self.test_dir+'PynPoint_database.hdf5', 'a') as hdf_file:
hdf_file['config'].attrs['CPU'] = 1
module = ExtractBinaryModule(pos_center=(10., 10.),
pos_binary=(10., 16.),
name_in='extract5',
image_in_tag='binary',
image_out_tag='extract5',
image_size=0.15,
search_size=0.07,
filter_size=None)
self.pipeline.add_module(module)
self.pipeline.run_module('extract5')
data = self.pipeline.get_data('extract5')
assert np.sum(data) == pytest.approx(1.3419098759577548, rel=self.limit, abs=0.)
assert data.shape == (10, 7, 7)
def test_extract_binary_filter(self) -> None:
module = ExtractBinaryModule(pos_center=(10., 10.),
pos_binary=(10., 16.),
name_in='extract6',
image_in_tag='binary',
image_out_tag='extract6',
image_size=0.15,
search_size=0.07,
filter_size=0.05)
self.pipeline.add_module(module)
self.pipeline.run_module('extract6')
data = self.pipeline.get_data('extract6')
assert np.sum(data) == pytest.approx(1.3789593661036972, rel=self.limit, abs=0.)
assert data.shape == (10, 7, 7)
|