1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
import os
from urllib.request import urlretrieve
import h5py
import pytest
import numpy as np
from pynpoint.core.pypeline import Pypeline
from pynpoint.readwrite.fitsreading import FitsReadingModule
from pynpoint.processing.limits import ContrastCurveModule, MassLimitsModule
from pynpoint.processing.psfpreparation import AngleInterpolationModule
from pynpoint.util.tests import create_config, create_star_data, remove_test_data
class TestLimits:
def setup_class(self) -> None:
self.limit = 1e-10
self.test_dir = os.path.dirname(__file__) + '/'
create_star_data(self.test_dir+'self.limits', npix=21, pos_star=10.)
create_config(self.test_dir+'PynPoint_config.ini')
self.pipeline = Pypeline(self.test_dir, self.test_dir, self.test_dir)
def teardown_class(self) -> None:
remove_test_data(path=self.test_dir,
folders=['self.limits'],
files=['model.AMES-Cond-2000.M-0.0.NaCo.Vega'])
def test_read_data(self) -> None:
module = FitsReadingModule(name_in='read',
image_tag='read',
input_dir=self.test_dir+'self.limits')
self.pipeline.add_module(module)
self.pipeline.run_module('read')
data = self.pipeline.get_data('read')
assert np.sum(data) == pytest.approx(108.43655133957289, rel=self.limit, abs=0.)
assert data.shape == (10, 21, 21)
def test_angle_interpolation(self) -> None:
module = AngleInterpolationModule(name_in='angle',
data_tag='read')
self.pipeline.add_module(module)
self.pipeline.run_module('angle')
attr = self.pipeline.get_attribute('read', 'PARANG', static=False)
assert np.sum(attr) == pytest.approx(900., rel=self.limit, abs=0.)
assert attr.shape == (10, )
def test_contrast_curve(self) -> None:
proc = ['single', 'multi']
for item in proc:
if item == 'multi':
with h5py.File(self.test_dir+'PynPoint_database.hdf5', 'a') as hdf_file:
hdf_file['config'].attrs['CPU'] = 4
module = ContrastCurveModule(name_in='contrast_'+item,
image_in_tag='read',
psf_in_tag='read',
contrast_out_tag='limits_'+item,
separation=(0.2, 0.3, 0.2),
angle=(0., 360., 180.),
threshold=('sigma', 5.),
psf_scaling=1.,
aperture=0.05,
pca_number=2,
cent_size=None,
edge_size=1.,
extra_rot=0.)
self.pipeline.add_module(module)
self.pipeline.run_module('contrast_'+item)
data = self.pipeline.get_data('limits_'+item)
assert data[0, 0] == pytest.approx(0.2, rel=self.limit, abs=0.)
assert data[0, 1] == pytest.approx(2.580878183791224, rel=self.limit, abs=0.)
assert data[0, 2] == pytest.approx(0.0007097688120261913, rel=self.limit, abs=0.)
assert data[0, 3] == pytest.approx(0.00020126490906225968, rel=self.limit, abs=0.)
assert data.shape == (1, 4)
def test_contrast_curve_fpf(self) -> None:
with h5py.File(self.test_dir+'PynPoint_database.hdf5', 'a') as hdf_file:
hdf_file['config'].attrs['CPU'] = 1
module = ContrastCurveModule(name_in='contrast_fpf',
image_in_tag='read',
psf_in_tag='read',
contrast_out_tag='limits_fpf',
separation=(0.2, 0.3, 0.2),
angle=(0., 360., 180.),
threshold=('fpf', 1e-6),
psf_scaling=1.,
aperture=0.05,
pca_number=2,
cent_size=None,
edge_size=1.,
extra_rot=0.)
self.pipeline.add_module(module)
self.pipeline.run_module('contrast_fpf')
data = self.pipeline.get_data('limits_fpf')
assert data[0, 0] == pytest.approx(0.2, rel=self.limit, abs=0.)
assert data[0, 1] == pytest.approx(1.9339430843041776, rel=self.limit, abs=0.)
assert data[0, 2] == pytest.approx(0.000709768812026221, rel=self.limit, abs=0.)
assert data[0, 3] == pytest.approx(1e-06, rel=self.limit, abs=0.)
assert data.shape == (1, 4)
def test_mass_limits(self) -> None:
separation = np.linspace(0.1, 1.0, 10)
contrast = -2.5*np.log10(1e-4/separation)
variance = 0.1*contrast
limits = np.zeros((10, 4))
limits[:, 0] = separation
limits[:, 1] = contrast
limits[:, 2] = variance
with h5py.File(self.test_dir+'PynPoint_database.hdf5', 'a') as hdf_file:
hdf_file['contrast_limits'] = limits
url = 'https://home.strw.leidenuniv.nl/~stolker/pynpoint/' \
'model.AMES-Cond-2000.M-0.0.NaCo.Vega'
filename = self.test_dir + 'model.AMES-Cond-2000.M-0.0.NaCo.Vega'
urlretrieve(url, filename)
module = MassLimitsModule(model_file=filename,
star_prop={'magnitude': 10., 'distance': 100., 'age': 20.},
name_in='mass',
contrast_in_tag='contrast_limits',
mass_out_tag='mass_limits',
instr_filter='L\'')
self.pipeline.add_module(module)
self.pipeline.run_module('mass')
data = self.pipeline.get_data('mass_limits')
assert np.mean(data[:, 0]) == pytest.approx(0.55, rel=self.limit, abs=0.)
assert np.mean(data[:, 1]) == pytest.approx(0.001891690765603738, rel=self.limit, abs=0.)
assert np.mean(data[:, 2]) == pytest.approx(0.000964309686441908, rel=self.limit, abs=0.)
assert np.mean(data[:, 3]) == pytest.approx(-0.000696402843279597, rel=self.limit, abs=0.)
assert data.shape == (10, 4)
|