File: plot_icephys.py

package info (click to toggle)
pynwb 2.8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 44,312 kB
  • sloc: python: 17,501; makefile: 597; sh: 11
file content (820 lines) | stat: -rw-r--r-- 35,811 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
# -*- coding: utf-8 -*-
"""
.. _icephys_tutorial_new:

Intracellular Electrophysiology
===============================

The following tutorial describes storage of intracellular electrophysiology data in NWB.
NWB supports storage of the time series describing the stimulus and response, information
about the electrode and device used, as well as metadata about the organization of the
experiment.

.. note:: For a video tutorial on intracellular electrophysiology in NWB see also the
       :incf_lesson:`Intracellular electrophysiology basics in NWB <intracellular-electrophysiology-basics-nwb>` and
       :incf_lesson:`Intracellular ephys metadata <intracellular-electrophysiology-structured-metadata-nwb>`
       tutorials as part of the :incf_collection:`NWB Course <neurodata-without-borders-neurophysiology-nwbn>`
       at the INCF Training Space.

.. figure:: ../../figures/plot_icephys_table_hierarchy.png
    :figwidth: 100%
    :alt: Intracellular electrophysiology metadata table hierarchy

    Illustration of the hierarchy of metadata tables used to describe the organization of
    intracellular electrophysiology experiments.

Recordings of intracellular electrophysiology stimuli and responses are represented
with subclasses of :py:class:`~pynwb.icephys.PatchClampSeries` using the
:py:class:`~pynwb.icephys.IntracellularElectrode` and :py:class:`~pynwb.device.Device`
type to describe the electrode and device used.

To describe the organization of intracellular experiments, the metadata is organized
hierarchically in a sequence of tables. All of the tables are so-called DynamicTables
enabling users to add columns for custom metadata.

- :py:class:`~pynwb.icephys.IntracellularRecordingsTable` relates electrode, stimulus
  and response pairs and describes metadata specific to individual recordings.
- :py:class:`~pynwb.icephys.SimultaneousRecordingsTable` groups intracellular
  recordings from the :py:class:`~pynwb.icephys.IntracellularRecordingsTable`
  together that were recorded simultaneously from different electrodes and/or cells
  and describes metadata that is constant across the simultaneous recordings.
  In practice a simultaneous recording is often  also referred to as a sweep.
- :py:class:`~pynwb.icephys.SequentialRecordingsTable` groups simultaneously
  recorded intracellular recordings from the
  :py:class:`~pynwb.icephys.SimultaneousRecordingsTable` together and describes
  metadata that is constant across the simultaneous recordings. In practice a
  sequential recording is often also referred to as a sweep sequence. A common
  use of sequential recordings is to group together simultaneous recordings
  where a sequence of stimuli of the same type with varying parameters
  have been presented in a sequence (e.g., a sequence of square waveforms with
  varying amplitude).
- :py:class:`~pynwb.icephys.RepetitionsTable` groups sequential recordings from
  the :py:class:`~pynwb.icephys.SequentialRecordingsTable`. In practice a
  repetition is often also referred to a run. A typical use of the
  :py:class:`~pynwb.icephys.RepetitionsTable` is to group sets of different stimuli
  that are applied in sequence that may be repeated.
- :py:class:`~pynwb.icephys.ExperimentalConditionsTable` groups repetitions of
  intracellular recording from the :py:class:`~pynwb.icephys.RepetitionsTable`
  together that belong to the same experimental conditions.

Storing data in hierarchical tables has the advantage that it allows us to avoid duplication of
metadata. E.g., for a single experiment we only need to describe the metadata that is constant
across an experimental condition as a single row in the :py:class:`~pynwb.icephys.ExperimentalConditionsTable`
without having to replicate the same information across all repetitions and sequential-, simultaneous-, and
individual intracellular recordings. For analysis, this means that we can easily focus on individual
aspects of an experiment while still being able to easily access information about information from
related tables.

.. note:: All of the above mentioned metadata tables are optional and are created automatically
          by the :py:class:`~pynwb.file.NWBFile` class the first time data is being
          added to a table via the corresponding add functions. However, as tables at higher
          levels of the hierarchy link to the other tables that are lower in the hierarchy,
          we may only exclude tables from the top of the hierarchy. This means, for example,
          a file containing a :py:class:`~pynwb.icephys.SimultaneousRecordingsTable` then
          must also always contain a corresponding :py:class:`~pynwb.icephys.IntracellularRecordingsTable`.
"""

#####################################################################
# Imports used in the tutorial
# ------------------------------

# sphinx_gallery_thumbnail_path = 'figures/gallery_thumbnails_icephys.png'
# Standard Python imports
from datetime import datetime
from uuid import uuid4

import numpy as np
import pandas
from dateutil.tz import tzlocal

# Set pandas rendering option to avoid very wide tables in the html docs
pandas.set_option("display.max_colwidth", 30)
pandas.set_option("display.max_rows", 10)

# Import I/O class used for reading and writing NWB files
# Import main NWB file class
from pynwb import NWBHDF5IO, NWBFile

# Import additional core datatypes used in the example
from pynwb.core import DynamicTable, VectorData
from pynwb.base import TimeSeriesReference, TimeSeriesReferenceVectorData

# Import icephys TimeSeries types used
from pynwb.icephys import VoltageClampSeries, VoltageClampStimulusSeries

#####################################################################
# A brief example
# ---------------
#
# The following brief example provides a quick overview of the main steps
# to create an NWBFile for intracelluar electrophysiology data. We then
# discuss the individual steps in more detail afterwards.
#
# .. note:
#    To avoid collisions between this example script and the more
#    detailed discussion we prefix all variables in the example
#    script with ``ex_``.

# Create an ICEphysFile
ex_nwbfile = NWBFile(
    session_description="my first synthetic recording",
    identifier=str(uuid4()),
    session_start_time=datetime.now(tzlocal()),
    experimenter="Baggins, Bilbo",
    lab="Bag End Laboratory",
    institution="University of Middle Earth at the Shire",
    experiment_description="I went on an adventure with thirteen dwarves "
    "to reclaim vast treasures.",
    session_id="LONELYMTN",
)

# Add a device
ex_device = ex_nwbfile.create_device(name="Heka ITC-1600")

# Add an intracellular electrode
ex_electrode = ex_nwbfile.create_icephys_electrode(
    name="elec0", description="a mock intracellular electrode", device=ex_device
)

# Create an ic-ephys stimulus
ex_stimulus = VoltageClampStimulusSeries(
    name="stimulus",
    data=[1, 2, 3, 4, 5],
    starting_time=123.6,
    rate=10e3,
    electrode=ex_electrode,
    gain=0.02,
)

# Create an ic-response
ex_response = VoltageClampSeries(
    name="response",
    data=[0.1, 0.2, 0.3, 0.4, 0.5],
    conversion=1e-12,
    resolution=np.nan,
    starting_time=123.6,
    rate=20e3,
    electrode=ex_electrode,
    gain=0.02,
    capacitance_slow=100e-12,
    resistance_comp_correction=70.0,
)

# (A) Add an intracellular recording to the file
#     NOTE: We can optionally define time-ranges for the stimulus/response via
#     the corresponding optional _start_index and _index_count parameters.
#     NOTE: It is allowed to add a recording with just a stimulus or a response
#     NOTE: We can  add custom columns to any of our tables in steps (A)-(E)
ex_ir_index = ex_nwbfile.add_intracellular_recording(
    electrode=ex_electrode, stimulus=ex_stimulus, response=ex_response
)

# (B) Add a list of sweeps to the simultaneous recordings table
ex_sweep_index = ex_nwbfile.add_icephys_simultaneous_recording(
    recordings=[
        ex_ir_index,
    ]
)

# (C) Add a list of simultaneous recordings table indices as a sequential recording
ex_sequence_index = ex_nwbfile.add_icephys_sequential_recording(
    simultaneous_recordings=[
        ex_sweep_index,
    ],
    stimulus_type="square",
)

# (D) Add a list of sequential recordings table indices as a repetition
run_index = ex_nwbfile.add_icephys_repetition(
    sequential_recordings=[
        ex_sequence_index,
    ]
)

# (E) Add a list of repetition table indices as a experimental condition
ex_nwbfile.add_icephys_experimental_condition(
    repetitions=[
        run_index,
    ]
)

# Write our test file
ex_testpath = "ex_test_icephys_file.nwb"
with NWBHDF5IO(ex_testpath, "w") as io:
    io.write(ex_nwbfile)

# Read the data back in
with NWBHDF5IO(ex_testpath, "r") as io:
    infile = io.read()

# Optionally plot the organization of our example NWB file
try:
    import matplotlib.pyplot as plt
    from hdmf_docutils.doctools.render import (
        HierarchyDescription,
        NXGraphHierarchyDescription,
    )

    ex_file_hierarchy = HierarchyDescription.from_hdf5(ex_testpath)
    ex_file_graph = NXGraphHierarchyDescription(ex_file_hierarchy)
    ex_fig = ex_file_graph.draw(
        show_plot=False,
        figsize=(12, 16),
        label_offset=(0.0, 0.0065),
        label_font_size=10,
    )
    plt.show()
except ImportError:  # ignore in case hdmf_docutils is not installed
    pass

#####################################################################
# Now that we have seen a brief example, we are going to start from the beginning and
# go through each of the steps in more detail in the following sections.


#####################################################################
# Creating an NWB file for Intracellular electrophysiology
# --------------------------------------------------------
#
# When creating an NWB file, the first step is to create the :py:class:`~pynwb.file.NWBFile`. The first
# argument is a brief description of the dataset.

# Create the file
nwbfile = NWBFile(
    session_description="my first synthetic recording",
    identifier=str(uuid4()),
    session_start_time=datetime.now(tzlocal()),
    experimenter=[
        "Baggins, Bilbo",
    ],
    lab="Bag End Laboratory",
    institution="University of Middle Earth at the Shire",
    experiment_description="I went on an adventure to reclaim vast treasures.",
    session_id="LONELYMTN001",
)

#####################################################################
# Device metadata
# ^^^^^^^^^^^^^^^
#
# Device metadata is represented by :py:class:`~pynwb.device.Device` objects.
# To create a device, you can use the :py:class:`~pynwb.file.NWBFile` instance method
# :py:meth:`~pynwb.file.NWBFile.create_device`.

device = nwbfile.create_device(name="Heka ITC-1600")

#####################################################################
# Electrode metadata
# ^^^^^^^^^^^^^^^^^^
#
# Intracellular electrode metadata is represented by :py:class:`~pynwb.icephys.IntracellularElectrode` objects.
# To create an electrode group, you can use the :py:class:`~pynwb.file.NWBFile` instance method
# :py:meth:`~pynwb.file.NWBFile.create_icephys_electrode`.

electrode = nwbfile.create_icephys_electrode(
    name="elec0", description="a mock intracellular electrode", device=device
)

#####################################################################
# Stimulus and response data
# ^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Intracellular stimulus and response data are represented with subclasses of
# :py:class:`~pynwb.icephys.PatchClampSeries`. A stimulus is described by a
# time series representing voltage or current stimulation with a particular
# set of parameters. There are two classes for representing stimulus data:
#
# - :py:class:`~pynwb.icephys.VoltageClampStimulusSeries`
# - :py:class:`~pynwb.icephys.CurrentClampStimulusSeries`
#
# The response is then described by a time series representing voltage or current
# recorded from a single cell using a single intracellular electrode via one of
# the following classes:
#
# - :py:class:`~pynwb.icephys.VoltageClampSeries`
# - :py:class:`~pynwb.icephys.CurrentClampSeries`
# - :py:class:`~pynwb.icephys.IZeroClampSeries`
#
# Below we create a simple example stimulus/response recording data pair.

# Create an example icephys stimulus.
stimulus = VoltageClampStimulusSeries(
    name="ccss",
    data=[1, 2, 3, 4, 5],
    starting_time=123.6,
    rate=10e3,
    electrode=electrode,
    gain=0.02,
    sweep_number=np.uint64(15),
)

# Create and icephys response
response = VoltageClampSeries(
    name="vcs",
    data=[0.1, 0.2, 0.3, 0.4, 0.5],
    conversion=1e-12,
    resolution=np.nan,
    starting_time=123.6,
    rate=20e3,
    electrode=electrode,
    gain=0.02,
    capacitance_slow=100e-12,
    resistance_comp_correction=70.0,
    sweep_number=np.uint64(15),
)

#####################################################################
# Adding an intracellular recording
# ---------------------------------
#
# As mentioned earlier, intracellular recordings are organized in the
# :py:class:`~pynwb.icephys.IntracellularRecordingsTable` which relates electrode, stimulus
# and response pairs and describes metadata specific to individual recordings.
#
# .. figure:: ../../figures/plot_icephys_intracellular_recordings_table.png
#    :figwidth: 90%
#    :alt: IntracellularRecordingsTable
#
#    Illustration of the structure of the IntracellularRecordingsTable
#
# We can add an intracellular recording to the file via :py:meth:`~pynwb.file.NWBFile.add_intracellular_recording`.
# The function will record the data in the :py:class:`~pynwb.icephys.IntracellularRecordingsTable`
# and add the given electrode, stimulus, or response to the NWBFile object if necessary.
# Any time we add a row to one of our tables, the corresponding add function (here
# :py:meth:`~pynwb.file.NWBFile.add_intracellular_recording`) returns the integer index of the
# newly created row. The ``rowindex`` is used in subsequent tables that reference rows in our table.

rowindex = nwbfile.add_intracellular_recording(
    electrode=electrode, stimulus=stimulus, response=response, id=10
)

#####################################################################
# .. note:: Since :py:meth:`~pynwb.file.NWBFile.add_intracellular_recording` can automatically add
#          the objects to the NWBFile we do not need to separately call
#          :py:meth:`~pynwb.file.NWBFile.add_stimulus` and :py:meth:`~pynwb.file.NWBFile.add_acquisition`
#          to add our stimulus and response, but it is still fine to do so.
#
# .. note:: The ``id`` parameter in the call is optional and if the ``id`` is omitted then PyNWB will
#          automatically number recordings in sequences (i.e., id is the same as the rowindex)
#
# .. note:: The IntracellularRecordigns, SimultaneousRecordings, SequentialRecordingsTable,
#          RepetitionsTable and ExperimentalConditionsTable tables all enforce unique ids
#          when adding rows. I.e., adding an intracellular recording with the same id twice
#          results in a ValueError.
#

#####################################################################
# .. note:: We may optionally also specify the relevant time range for a stimulus and/or response as part of
#           the intracellular_recording. This is useful, e.g., in case where the recording of the stimulus
#           and response do not align (e.g., in case the recording of the response started before
#           the recording of the stimulus).

rowindex2 = nwbfile.add_intracellular_recording(
    electrode=electrode,
    stimulus=stimulus,
    stimulus_start_index=1,
    stimulus_index_count=3,
    response=response,
    response_start_index=2,
    response_index_count=3,
    id=11,
)

#####################################################################
# .. note:: A recording may optionally also consist of just an electrode and stimulus or electrode
#           and response, but at least one of stimulus or response is required. If either stimulus or response
#           is missing, then the stimulus and response are internally set to the same TimeSeries and the
#           start_index and index_count for the missing parameter are set to -1. When retrieving
#           data from the :py:class:`~pynwb.base.TimeSeriesReferenceVectorData`, the missing values
#           will be represented via masked numpy arrays, i.e., as masked values in a
#           ``numpy.ma.masked_array`` or as a ``np.ma.core.MaskedConstant``.

rowindex3 = nwbfile.add_intracellular_recording(
    electrode=electrode, response=response, id=12
)

#####################################################################
# .. warning:: For brevity we reused in the above example the same response and stimulus in
#        all rows of the intracellular_recordings. While this is allowed, in most practical
#        cases the stimulus and response will change between intracellular_recordings.

#####################################################################
# Adding custom columns to the intracellular recordings table
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# We can add a column to the main intracellular recordings table as follows.

nwbfile.intracellular_recordings.add_column(
    name="recording_tag",
    data=["A1", "A2", "A3"],
    description="String with a recording tag",
)

#####################################################################
# The :py:class:`~pynwb.icephys.IntracellularRecordingsTable` table is not just a ``DynamicTable``
# but an ``AlignedDynamicTable``. The ``AlignedDynamicTable`` type is itself a ``DynamicTable``
# that may contain an arbitrary number of additional ``DynamicTable``, each of which defines
# a "category". This is similar to a table with "sub-headings". In the case of the
# :py:class:`~pynwb.icephys.IntracellularRecordingsTable`, we have three predefined categories,
# i.e., electrodes, stimuli, and responses. We can also dynamically add new categories to
# the table. As each category corresponds to a ``DynamicTable``, this means we have to create a
# new ``DynamicTable`` and add it to our table.

# Create a new DynamicTable for our category that contains a location column of type VectorData
location_column = VectorData(
    name="location",
    data=["Mordor", "Gondor", "Rohan"],
    description="Recording location in Middle Earth",
)

lab_category = DynamicTable(
    name="recording_lab_data",
    description="category table for lab-specific recording metadata",
    colnames=[
        "location",
    ],
    columns=[
        location_column,
    ],
)
# Add the table as a new category to our intracellular_recordings
nwbfile.intracellular_recordings.add_category(category=lab_category)
# Note, the name of the category is name of the table, i.e., 'recording_lab_data'

#####################################################################
# .. note:: In an ``AlignedDynamicTable`` all category tables MUST align with the main table,
#           i.e., all tables must have the same number of rows and rows are expected to
#           correspond to each other by index

#####################################################################
# We can also add custom columns to any of the subcategory tables, i.e.,
# the electrodes, stimuli, and responses tables, and any custom subcategory tables.
# All we need to do is indicate the name of the category we want to add the column to.

nwbfile.intracellular_recordings.add_column(
    name="voltage_threshold",
    data=[0.1, 0.12, 0.13],
    description="Just an example column on the electrodes category table",
    category="electrodes",
)

#####################################################################
# Adding stimulus templates
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# One predefined subcategory column is the ``stimulus_template`` column in the stimuli table. This column is
# used to store template waveforms of stimuli in addition to the actual recorded stimulus that is stored in the
# ``stimulus`` column. The ``stimulus_template`` column contains an idealized version of the template waveform used as
# the stimulus. This can be useful as a noiseless version of the stimulus for data analysis or to validate that the
# recorded stimulus matches the expected waveform of the template. Similar to the ``stimulus`` and ``response``
# columns, we can specify a relevant time range.

stimulus_template = VoltageClampStimulusSeries(
    name="ccst",
    data=[0, 1, 2, 3, 4],
    starting_time=0.0,
    rate=10e3,
    electrode=electrode,
    gain=0.02,
)
nwbfile.add_stimulus_template(stimulus_template)

nwbfile.intracellular_recordings.add_column(
    name="stimulus_template",
    data=[TimeSeriesReference(0, 5, stimulus_template),  # (start_index, index_count, stimulus_template)
          TimeSeriesReference(1, 3, stimulus_template),
          TimeSeriesReference.empty(stimulus_template)],  # if there was no data for that recording, use empty reference
    description="Column storing the reference to the stimulus template for the recording (rows).",
    category="stimuli",
    col_cls=TimeSeriesReferenceVectorData
)

# we can also add stimulus template data as follows
rowindex = nwbfile.add_intracellular_recording(
    electrode=electrode,
    stimulus=stimulus,
    stimulus_template=stimulus_template,  # the full time range of the stimulus template will be used unless specified
    recording_tag='A4',
    recording_lab_data={'location': 'Isengard'},
    electrode_metadata={'voltage_threshold': 0.14},
    id=13,
)

#####################################################################
# .. note:: If a stimulus template column exists but there is no stimulus template data for that recording, then
#           :py:meth:`~pynwb.file.NWBFile.add_intracellular_recording` will internally set the stimulus template to the
#           provided stimulus or response TimeSeries and the start_index and index_count for the missing parameter are
#           set to -1. The missing values will be represented via masked numpy arrays.

#####################################################################
# .. note:: Since stimulus templates are often reused across many recordings, the timestamps in the templates are not
#           usually aligned with the recording nor with the reference time of the file. The timestamps often start
#           at 0 and are relative to the time of the application of the stimulus.

#####################################################################
# Add a simultaneous recording
# ---------------------------------
#
# Before adding a simultaneous recording, we will take a brief discourse to illustrate
# how we can add custom columns to tables before and after we have populated the table with data
#
# Define a custom column for a simultaneous recording before populating the table
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Before we add a simultaneous recording, let's create a custom data column in our
# :py:class:`~pynwb.icephys.SimultaneousRecordingsTable`. We can create columns at the
# beginning (i.e., before we populate the table with rows/data) or we can add columns
# after we have already populated the table with rows. Here we will show the former.
# For this, we first need to get access to our table.

print(nwbfile.icephys_simultaneous_recordings)

#####################################################################
# The :py:class:`~pynwb.icephys.SimultaneousRecordingsTable` is optional, and since we have
# not populated it with any data yet, we can see that the table does not actually exist yet.
# In order to make sure the table is being created we can use
# :py:meth:`~pynwb.file.NWBFile.get_icephys_simultaneous_recordings`, which ensures
# that the table is being created if it does not exist yet.

icephys_simultaneous_recordings = nwbfile.get_icephys_simultaneous_recordings()
icephys_simultaneous_recordings.add_column(
    name="simultaneous_recording_tag",
    description="A custom tag for simultaneous_recordings",
)
print(icephys_simultaneous_recordings.colnames)

#####################################################################
# As we can see, we now have successfully created a new custom column.
#
# .. note:: The same process applies to all our other tables as well. We can use the
#         corresponding :py:meth:`~pynwb.file.NWBFile.get_intracellular_recordings`,
#         :py:meth:`~pynwb.file.NWBFile.get_icephys_sequential_recordings`,
#         :py:meth:`~pynwb.file.NWBFile.get_icephys_repetitions` functions instead.
#         In general, we can always use the get functions instead of accessing the property
#         of the file.
#

#####################################################################
# Add a simultaneous recording
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Add a single simultaneous recording consisting of a set of intracellular recordings.
# Again, setting the id for a simultaneous recording is optional. The recordings
# argument of the :py:meth:`~pynwb.file.NWBFile.add_icephys_simultaneous_recording` function
# here is simply a list of ints with the indices of the corresponding rows in
# the :py:class:`~pynwb.icephys.IntracellularRecordingsTable`
#
# .. note:: Since we created our custom ``simultaneous_recording_tag column`` earlier,
#           we now also need to populate this custom field for every row we add to
#           the :py:class:`~pynwb.icephys.SimultaneousRecordingsTable`.
#

rowindex = nwbfile.add_icephys_simultaneous_recording(
    recordings=[rowindex, rowindex2, rowindex3],
    id=12,
    simultaneous_recording_tag="LabTag1",
)

#####################################################################
# .. note:: The ``recordings`` argument is the list of indices of the rows in the
#           :py:class:`~pynwb.icephys.IntracellularRecordingsTable` that we want
#           to reference. The indices are determined by the order in which we
#           added the elements to the table. If we don't know the row indices,
#           but only the ids of the relevant intracellular recordings, then
#           we can search for them as follows:

temp_row_indices = nwbfile.intracellular_recordings.id == [10, 11]
print(temp_row_indices)

#####################################################################
# .. note::  The same is true for our other tables as well, i.e., referencing is
#            done always by indices of rows (NOT ids). If we only know ids then we
#            can search for them in the same manner on the other tables as well,
#            e.g,. via  ``nwbfile.simultaneous_recordings.id == 15``. In the search
#            we can use a list of integer ids or a single int.

#####################################################################
# Define a custom column for a simultaneous recording after adding rows
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Depending on the lab workflow, it may be useful to add complete columns to a table
# after we have already populated the table with rows. We can do this the same way as
# before, only now we need to provide a data array to populate the values for
# the existing rows. E.g.:

nwbfile.icephys_simultaneous_recordings.add_column(
    name="simultaneous_recording_type",
    description="Description of the type of simultaneous_recording",
    data=[
        "SimultaneousRecordingType1",
    ],
)

#####################################################################
# Add a sequential recording
# --------------------------
#
# Add a single sequential recording consisting of a set of simultaneous recordings.
# Again, setting the id for a sequential recording is optional. Also this table is
# optional and will be created automatically by NWBFile. The ``simultaneous_recordings``
# argument of the :py:meth:`~pynwb.file.NWBFile.add_icephys_sequential_recording` function
# here is simply a list of ints with the indices of the corresponding rows in
# the :py:class:`~pynwb.icephys.SimultaneousRecordingsTable`.

rowindex = nwbfile.add_icephys_sequential_recording(
    simultaneous_recordings=[0], stimulus_type="square", id=15
)

#####################################################################
# Add a repetition
# ----------------
#
# Add a single repetition consisting of a set of sequential recordings. Again, setting
# the id for a repetition is optional. Also this table is optional and will be created
# automatically by NWBFile. The ``sequential_recordings argument`` of the
# :py:meth:`~pynwb.file.NWBFile.add_icephys_repetition` function here is simply
# a list of ints with the indices of the corresponding rows in
# the :py:class:`~pynwb.icephys.SequentialRecordingsTable`.

rowindex = nwbfile.add_icephys_repetition(sequential_recordings=[0], id=17)

#####################################################################
# Add an experimental condition
# -----------------------------
#
# Add a single experimental condition consisting of a set of repetitions. Again,
# setting the id for a condition is optional. Also this table is optional and
# will be created automatically by NWBFile. The ``repetitions`` argument of
# the :py:meth:`~pynwb.file.NWBFile.add_icephys_experimental_condition` function again is
# simply a list of ints with the indices of the correspondingto rows in the
# :py:class:`~pynwb.icephys.RepetitionsTable`.

rowindex = nwbfile.add_icephys_experimental_condition(repetitions=[0], id=19)

#####################################################################
# As mentioned earlier, to add additional columns to any of the tables, we can
# use the ``.add_column`` function on the corresponding table after they have
# been created.

nwbfile.icephys_experimental_conditions.add_column(
    name="tag",
    data=np.arange(1),
    description="integer tag for a experimental condition",
)

#####################################################################
# When we add new items, then we now also need to set the values for the new column, e.g.:

rowindex = nwbfile.add_icephys_experimental_condition(repetitions=[0], id=21, tag=3)

#####################################################################
# Read/write the NWBFile
# -----------------------------
#

# Write our test file
testpath = "test_icephys_file.nwb"
with NWBHDF5IO(testpath, "w") as io:
    io.write(nwbfile)

# Read the data back in
with NWBHDF5IO(testpath, "r") as io:
    infile = io.read()


#####################################################################
# Accessing the tables
# -----------------------------
#
# All of the icephys metadata tables are available as attributes on the NWBFile object.
# For display purposes, we convert the tables to pandas DataFrames to show their content.
# For a more in-depth discussion of how to access and use the tables,
# see the tutorial on :ref:`icephys_pandas_tutorial`.
pandas.set_option("display.max_columns", 6)  # avoid oversize table in the html docs
nwbfile.intracellular_recordings.to_dataframe()

#####################################################################
#

# optionally we can ignore the id columns of the category subtables
pandas.set_option("display.max_columns", 5)  # avoid oversize table in the html docs
nwbfile.intracellular_recordings.to_dataframe(ignore_category_ids=True)

#####################################################################
#
nwbfile.icephys_simultaneous_recordings.to_dataframe()

#####################################################################
#

nwbfile.icephys_sequential_recordings.to_dataframe()

#####################################################################
#

nwbfile.icephys_repetitions.to_dataframe()

#####################################################################
#

nwbfile.icephys_experimental_conditions.to_dataframe()


#####################################################################
# Validate data
# ^^^^^^^^^^^^^
#
# This section is for internal testing purposes only to validate that the roundtrip
# of the data (i.e., generate --> write --> read) produces the correct results.

# Read the data back in
with NWBHDF5IO(testpath, "r") as io:
    infile = io.read()

    # assert intracellular_recordings
    assert np.all(
        infile.intracellular_recordings.id[:] == nwbfile.intracellular_recordings.id[:]
    )

    # Assert that the ids and the VectorData, VectorIndex, and table target of the
    # recordings column of the Sweeps table are correct
    assert np.all(
        infile.icephys_simultaneous_recordings.id[:]
        == nwbfile.icephys_simultaneous_recordings.id[:]
    )
    assert np.all(
        infile.icephys_simultaneous_recordings["recordings"].target.data[:]
        == nwbfile.icephys_simultaneous_recordings["recordings"].target.data[:]
    )
    assert np.all(
        infile.icephys_simultaneous_recordings["recordings"].data[:]
        == nwbfile.icephys_simultaneous_recordings["recordings"].data[:]
    )
    assert (
        infile.icephys_simultaneous_recordings["recordings"].target.table.name
        == nwbfile.icephys_simultaneous_recordings["recordings"].target.table.name
    )

    # Assert that the ids and the VectorData, VectorIndex, and table target of the simultaneous
    #  recordings column of the SweepSequences table are correct
    assert np.all(
        infile.icephys_sequential_recordings.id[:]
        == nwbfile.icephys_sequential_recordings.id[:]
    )
    assert np.all(
        infile.icephys_sequential_recordings["simultaneous_recordings"].target.data[:]
        == nwbfile.icephys_sequential_recordings["simultaneous_recordings"].target.data[
            :
        ]
    )
    assert np.all(
        infile.icephys_sequential_recordings["simultaneous_recordings"].data[:]
        == nwbfile.icephys_sequential_recordings["simultaneous_recordings"].data[:]
    )
    assert (
        infile.icephys_sequential_recordings[
            "simultaneous_recordings"
        ].target.table.name
        == nwbfile.icephys_sequential_recordings[
            "simultaneous_recordings"
        ].target.table.name
    )

    # Assert that the ids and the VectorData, VectorIndex, and table target of the
    # sequential_recordings column of the Repetitions table are correct
    assert np.all(infile.icephys_repetitions.id[:] == nwbfile.icephys_repetitions.id[:])
    assert np.all(
        infile.icephys_repetitions["sequential_recordings"].target.data[:]
        == nwbfile.icephys_repetitions["sequential_recordings"].target.data[:]
    )
    assert np.all(
        infile.icephys_repetitions["sequential_recordings"].data[:]
        == nwbfile.icephys_repetitions["sequential_recordings"].data[:]
    )
    assert (
        infile.icephys_repetitions["sequential_recordings"].target.table.name
        == nwbfile.icephys_repetitions["sequential_recordings"].target.table.name
    )

    # Assert that the ids and the VectorData, VectorIndex, and table target of the
    # repetitions column of the Conditions table are correct
    assert np.all(
        infile.icephys_experimental_conditions.id[:]
        == nwbfile.icephys_experimental_conditions.id[:]
    )
    assert np.all(
        infile.icephys_experimental_conditions["repetitions"].target.data[:]
        == nwbfile.icephys_experimental_conditions["repetitions"].target.data[:]
    )
    assert np.all(
        infile.icephys_experimental_conditions["repetitions"].data[:]
        == nwbfile.icephys_experimental_conditions["repetitions"].data[:]
    )
    assert (
        infile.icephys_experimental_conditions["repetitions"].target.table.name
        == nwbfile.icephys_experimental_conditions["repetitions"].target.table.name
    )
    assert np.all(
        infile.icephys_experimental_conditions["tag"][:]
        == nwbfile.icephys_experimental_conditions["tag"][:]
    )