1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
|
# -*- coding: utf-8 -*-
"""
.. _icephys_tutorial_new:
Intracellular Electrophysiology
===============================
The following tutorial describes storage of intracellular electrophysiology data in NWB.
NWB supports storage of the time series describing the stimulus and response, information
about the electrode and device used, as well as metadata about the organization of the
experiment.
.. note:: For a video tutorial on intracellular electrophysiology in NWB see also the
:incf_lesson:`Intracellular electrophysiology basics in NWB <intracellular-electrophysiology-basics-nwb>` and
:incf_lesson:`Intracellular ephys metadata <intracellular-electrophysiology-structured-metadata-nwb>`
tutorials as part of the :incf_collection:`NWB Course <neurodata-without-borders-neurophysiology-nwbn>`
at the INCF Training Space.
.. figure:: ../../figures/plot_icephys_table_hierarchy.png
:figwidth: 100%
:alt: Intracellular electrophysiology metadata table hierarchy
Illustration of the hierarchy of metadata tables used to describe the organization of
intracellular electrophysiology experiments.
Recordings of intracellular electrophysiology stimuli and responses are represented
with subclasses of :py:class:`~pynwb.icephys.PatchClampSeries` using the
:py:class:`~pynwb.icephys.IntracellularElectrode` and :py:class:`~pynwb.device.Device`
type to describe the electrode and device used.
To describe the organization of intracellular experiments, the metadata is organized
hierarchically in a sequence of tables. All of the tables are so-called DynamicTables
enabling users to add columns for custom metadata.
- :py:class:`~pynwb.icephys.IntracellularRecordingsTable` relates electrode, stimulus
and response pairs and describes metadata specific to individual recordings.
- :py:class:`~pynwb.icephys.SimultaneousRecordingsTable` groups intracellular
recordings from the :py:class:`~pynwb.icephys.IntracellularRecordingsTable`
together that were recorded simultaneously from different electrodes and/or cells
and describes metadata that is constant across the simultaneous recordings.
In practice a simultaneous recording is often also referred to as a sweep.
- :py:class:`~pynwb.icephys.SequentialRecordingsTable` groups simultaneously
recorded intracellular recordings from the
:py:class:`~pynwb.icephys.SimultaneousRecordingsTable` together and describes
metadata that is constant across the simultaneous recordings. In practice a
sequential recording is often also referred to as a sweep sequence. A common
use of sequential recordings is to group together simultaneous recordings
where a sequence of stimuli of the same type with varying parameters
have been presented in a sequence (e.g., a sequence of square waveforms with
varying amplitude).
- :py:class:`~pynwb.icephys.RepetitionsTable` groups sequential recordings from
the :py:class:`~pynwb.icephys.SequentialRecordingsTable`. In practice a
repetition is often also referred to a run. A typical use of the
:py:class:`~pynwb.icephys.RepetitionsTable` is to group sets of different stimuli
that are applied in sequence that may be repeated.
- :py:class:`~pynwb.icephys.ExperimentalConditionsTable` groups repetitions of
intracellular recording from the :py:class:`~pynwb.icephys.RepetitionsTable`
together that belong to the same experimental conditions.
Storing data in hierarchical tables has the advantage that it allows us to avoid duplication of
metadata. E.g., for a single experiment we only need to describe the metadata that is constant
across an experimental condition as a single row in the :py:class:`~pynwb.icephys.ExperimentalConditionsTable`
without having to replicate the same information across all repetitions and sequential-, simultaneous-, and
individual intracellular recordings. For analysis, this means that we can easily focus on individual
aspects of an experiment while still being able to easily access information about information from
related tables.
.. note:: All of the above mentioned metadata tables are optional and are created automatically
by the :py:class:`~pynwb.file.NWBFile` class the first time data is being
added to a table via the corresponding add functions. However, as tables at higher
levels of the hierarchy link to the other tables that are lower in the hierarchy,
we may only exclude tables from the top of the hierarchy. This means, for example,
a file containing a :py:class:`~pynwb.icephys.SimultaneousRecordingsTable` then
must also always contain a corresponding :py:class:`~pynwb.icephys.IntracellularRecordingsTable`.
"""
#####################################################################
# Imports used in the tutorial
# ------------------------------
# sphinx_gallery_thumbnail_path = 'figures/gallery_thumbnails_icephys.png'
# Standard Python imports
from datetime import datetime
from uuid import uuid4
import numpy as np
import pandas
from dateutil.tz import tzlocal
# Set pandas rendering option to avoid very wide tables in the html docs
pandas.set_option("display.max_colwidth", 30)
pandas.set_option("display.max_rows", 10)
# Import I/O class used for reading and writing NWB files
# Import main NWB file class
from pynwb import NWBHDF5IO, NWBFile
# Import additional core datatypes used in the example
from pynwb.core import DynamicTable, VectorData
from pynwb.base import TimeSeriesReference, TimeSeriesReferenceVectorData
# Import icephys TimeSeries types used
from pynwb.icephys import VoltageClampSeries, VoltageClampStimulusSeries
#####################################################################
# A brief example
# ---------------
#
# The following brief example provides a quick overview of the main steps
# to create an NWBFile for intracelluar electrophysiology data. We then
# discuss the individual steps in more detail afterwards.
#
# .. note:
# To avoid collisions between this example script and the more
# detailed discussion we prefix all variables in the example
# script with ``ex_``.
# Create an ICEphysFile
ex_nwbfile = NWBFile(
session_description="my first synthetic recording",
identifier=str(uuid4()),
session_start_time=datetime.now(tzlocal()),
experimenter="Baggins, Bilbo",
lab="Bag End Laboratory",
institution="University of Middle Earth at the Shire",
experiment_description="I went on an adventure with thirteen dwarves "
"to reclaim vast treasures.",
session_id="LONELYMTN",
)
# Add a device
ex_device = ex_nwbfile.create_device(name="Heka ITC-1600")
# Add an intracellular electrode
ex_electrode = ex_nwbfile.create_icephys_electrode(
name="elec0", description="a mock intracellular electrode", device=ex_device
)
# Create an ic-ephys stimulus
ex_stimulus = VoltageClampStimulusSeries(
name="stimulus",
data=[1, 2, 3, 4, 5],
starting_time=123.6,
rate=10e3,
electrode=ex_electrode,
gain=0.02,
)
# Create an ic-response
ex_response = VoltageClampSeries(
name="response",
data=[0.1, 0.2, 0.3, 0.4, 0.5],
conversion=1e-12,
resolution=np.nan,
starting_time=123.6,
rate=20e3,
electrode=ex_electrode,
gain=0.02,
capacitance_slow=100e-12,
resistance_comp_correction=70.0,
)
# (A) Add an intracellular recording to the file
# NOTE: We can optionally define time-ranges for the stimulus/response via
# the corresponding optional _start_index and _index_count parameters.
# NOTE: It is allowed to add a recording with just a stimulus or a response
# NOTE: We can add custom columns to any of our tables in steps (A)-(E)
ex_ir_index = ex_nwbfile.add_intracellular_recording(
electrode=ex_electrode, stimulus=ex_stimulus, response=ex_response
)
# (B) Add a list of sweeps to the simultaneous recordings table
ex_sweep_index = ex_nwbfile.add_icephys_simultaneous_recording(
recordings=[
ex_ir_index,
]
)
# (C) Add a list of simultaneous recordings table indices as a sequential recording
ex_sequence_index = ex_nwbfile.add_icephys_sequential_recording(
simultaneous_recordings=[
ex_sweep_index,
],
stimulus_type="square",
)
# (D) Add a list of sequential recordings table indices as a repetition
run_index = ex_nwbfile.add_icephys_repetition(
sequential_recordings=[
ex_sequence_index,
]
)
# (E) Add a list of repetition table indices as a experimental condition
ex_nwbfile.add_icephys_experimental_condition(
repetitions=[
run_index,
]
)
# Write our test file
ex_testpath = "ex_test_icephys_file.nwb"
with NWBHDF5IO(ex_testpath, "w") as io:
io.write(ex_nwbfile)
# Read the data back in
with NWBHDF5IO(ex_testpath, "r") as io:
infile = io.read()
# Optionally plot the organization of our example NWB file
try:
import matplotlib.pyplot as plt
from hdmf_docutils.doctools.render import (
HierarchyDescription,
NXGraphHierarchyDescription,
)
ex_file_hierarchy = HierarchyDescription.from_hdf5(ex_testpath)
ex_file_graph = NXGraphHierarchyDescription(ex_file_hierarchy)
ex_fig = ex_file_graph.draw(
show_plot=False,
figsize=(12, 16),
label_offset=(0.0, 0.0065),
label_font_size=10,
)
plt.show()
except ImportError: # ignore in case hdmf_docutils is not installed
pass
#####################################################################
# Now that we have seen a brief example, we are going to start from the beginning and
# go through each of the steps in more detail in the following sections.
#####################################################################
# Creating an NWB file for Intracellular electrophysiology
# --------------------------------------------------------
#
# When creating an NWB file, the first step is to create the :py:class:`~pynwb.file.NWBFile`. The first
# argument is a brief description of the dataset.
# Create the file
nwbfile = NWBFile(
session_description="my first synthetic recording",
identifier=str(uuid4()),
session_start_time=datetime.now(tzlocal()),
experimenter=[
"Baggins, Bilbo",
],
lab="Bag End Laboratory",
institution="University of Middle Earth at the Shire",
experiment_description="I went on an adventure to reclaim vast treasures.",
session_id="LONELYMTN001",
)
#####################################################################
# Device metadata
# ^^^^^^^^^^^^^^^
#
# Device metadata is represented by :py:class:`~pynwb.device.Device` objects.
# To create a device, you can use the :py:class:`~pynwb.file.NWBFile` instance method
# :py:meth:`~pynwb.file.NWBFile.create_device`.
device = nwbfile.create_device(name="Heka ITC-1600")
#####################################################################
# Electrode metadata
# ^^^^^^^^^^^^^^^^^^
#
# Intracellular electrode metadata is represented by :py:class:`~pynwb.icephys.IntracellularElectrode` objects.
# To create an electrode group, you can use the :py:class:`~pynwb.file.NWBFile` instance method
# :py:meth:`~pynwb.file.NWBFile.create_icephys_electrode`.
electrode = nwbfile.create_icephys_electrode(
name="elec0", description="a mock intracellular electrode", device=device
)
#####################################################################
# Stimulus and response data
# ^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Intracellular stimulus and response data are represented with subclasses of
# :py:class:`~pynwb.icephys.PatchClampSeries`. A stimulus is described by a
# time series representing voltage or current stimulation with a particular
# set of parameters. There are two classes for representing stimulus data:
#
# - :py:class:`~pynwb.icephys.VoltageClampStimulusSeries`
# - :py:class:`~pynwb.icephys.CurrentClampStimulusSeries`
#
# The response is then described by a time series representing voltage or current
# recorded from a single cell using a single intracellular electrode via one of
# the following classes:
#
# - :py:class:`~pynwb.icephys.VoltageClampSeries`
# - :py:class:`~pynwb.icephys.CurrentClampSeries`
# - :py:class:`~pynwb.icephys.IZeroClampSeries`
#
# Below we create a simple example stimulus/response recording data pair.
# Create an example icephys stimulus.
stimulus = VoltageClampStimulusSeries(
name="ccss",
data=[1, 2, 3, 4, 5],
starting_time=123.6,
rate=10e3,
electrode=electrode,
gain=0.02,
sweep_number=np.uint64(15),
)
# Create and icephys response
response = VoltageClampSeries(
name="vcs",
data=[0.1, 0.2, 0.3, 0.4, 0.5],
conversion=1e-12,
resolution=np.nan,
starting_time=123.6,
rate=20e3,
electrode=electrode,
gain=0.02,
capacitance_slow=100e-12,
resistance_comp_correction=70.0,
sweep_number=np.uint64(15),
)
#####################################################################
# Adding an intracellular recording
# ---------------------------------
#
# As mentioned earlier, intracellular recordings are organized in the
# :py:class:`~pynwb.icephys.IntracellularRecordingsTable` which relates electrode, stimulus
# and response pairs and describes metadata specific to individual recordings.
#
# .. figure:: ../../figures/plot_icephys_intracellular_recordings_table.png
# :figwidth: 90%
# :alt: IntracellularRecordingsTable
#
# Illustration of the structure of the IntracellularRecordingsTable
#
# We can add an intracellular recording to the file via :py:meth:`~pynwb.file.NWBFile.add_intracellular_recording`.
# The function will record the data in the :py:class:`~pynwb.icephys.IntracellularRecordingsTable`
# and add the given electrode, stimulus, or response to the NWBFile object if necessary.
# Any time we add a row to one of our tables, the corresponding add function (here
# :py:meth:`~pynwb.file.NWBFile.add_intracellular_recording`) returns the integer index of the
# newly created row. The ``rowindex`` is used in subsequent tables that reference rows in our table.
rowindex = nwbfile.add_intracellular_recording(
electrode=electrode, stimulus=stimulus, response=response, id=10
)
#####################################################################
# .. note:: Since :py:meth:`~pynwb.file.NWBFile.add_intracellular_recording` can automatically add
# the objects to the NWBFile we do not need to separately call
# :py:meth:`~pynwb.file.NWBFile.add_stimulus` and :py:meth:`~pynwb.file.NWBFile.add_acquisition`
# to add our stimulus and response, but it is still fine to do so.
#
# .. note:: The ``id`` parameter in the call is optional and if the ``id`` is omitted then PyNWB will
# automatically number recordings in sequences (i.e., id is the same as the rowindex)
#
# .. note:: The IntracellularRecordigns, SimultaneousRecordings, SequentialRecordingsTable,
# RepetitionsTable and ExperimentalConditionsTable tables all enforce unique ids
# when adding rows. I.e., adding an intracellular recording with the same id twice
# results in a ValueError.
#
#####################################################################
# .. note:: We may optionally also specify the relevant time range for a stimulus and/or response as part of
# the intracellular_recording. This is useful, e.g., in case where the recording of the stimulus
# and response do not align (e.g., in case the recording of the response started before
# the recording of the stimulus).
rowindex2 = nwbfile.add_intracellular_recording(
electrode=electrode,
stimulus=stimulus,
stimulus_start_index=1,
stimulus_index_count=3,
response=response,
response_start_index=2,
response_index_count=3,
id=11,
)
#####################################################################
# .. note:: A recording may optionally also consist of just an electrode and stimulus or electrode
# and response, but at least one of stimulus or response is required. If either stimulus or response
# is missing, then the stimulus and response are internally set to the same TimeSeries and the
# start_index and index_count for the missing parameter are set to -1. When retrieving
# data from the :py:class:`~pynwb.base.TimeSeriesReferenceVectorData`, the missing values
# will be represented via masked numpy arrays, i.e., as masked values in a
# ``numpy.ma.masked_array`` or as a ``np.ma.core.MaskedConstant``.
rowindex3 = nwbfile.add_intracellular_recording(
electrode=electrode, response=response, id=12
)
#####################################################################
# .. warning:: For brevity we reused in the above example the same response and stimulus in
# all rows of the intracellular_recordings. While this is allowed, in most practical
# cases the stimulus and response will change between intracellular_recordings.
#####################################################################
# Adding custom columns to the intracellular recordings table
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# We can add a column to the main intracellular recordings table as follows.
nwbfile.intracellular_recordings.add_column(
name="recording_tag",
data=["A1", "A2", "A3"],
description="String with a recording tag",
)
#####################################################################
# The :py:class:`~pynwb.icephys.IntracellularRecordingsTable` table is not just a ``DynamicTable``
# but an ``AlignedDynamicTable``. The ``AlignedDynamicTable`` type is itself a ``DynamicTable``
# that may contain an arbitrary number of additional ``DynamicTable``, each of which defines
# a "category". This is similar to a table with "sub-headings". In the case of the
# :py:class:`~pynwb.icephys.IntracellularRecordingsTable`, we have three predefined categories,
# i.e., electrodes, stimuli, and responses. We can also dynamically add new categories to
# the table. As each category corresponds to a ``DynamicTable``, this means we have to create a
# new ``DynamicTable`` and add it to our table.
# Create a new DynamicTable for our category that contains a location column of type VectorData
location_column = VectorData(
name="location",
data=["Mordor", "Gondor", "Rohan"],
description="Recording location in Middle Earth",
)
lab_category = DynamicTable(
name="recording_lab_data",
description="category table for lab-specific recording metadata",
colnames=[
"location",
],
columns=[
location_column,
],
)
# Add the table as a new category to our intracellular_recordings
nwbfile.intracellular_recordings.add_category(category=lab_category)
# Note, the name of the category is name of the table, i.e., 'recording_lab_data'
#####################################################################
# .. note:: In an ``AlignedDynamicTable`` all category tables MUST align with the main table,
# i.e., all tables must have the same number of rows and rows are expected to
# correspond to each other by index
#####################################################################
# We can also add custom columns to any of the subcategory tables, i.e.,
# the electrodes, stimuli, and responses tables, and any custom subcategory tables.
# All we need to do is indicate the name of the category we want to add the column to.
nwbfile.intracellular_recordings.add_column(
name="voltage_threshold",
data=[0.1, 0.12, 0.13],
description="Just an example column on the electrodes category table",
category="electrodes",
)
#####################################################################
# Adding stimulus templates
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# One predefined subcategory column is the ``stimulus_template`` column in the stimuli table. This column is
# used to store template waveforms of stimuli in addition to the actual recorded stimulus that is stored in the
# ``stimulus`` column. The ``stimulus_template`` column contains an idealized version of the template waveform used as
# the stimulus. This can be useful as a noiseless version of the stimulus for data analysis or to validate that the
# recorded stimulus matches the expected waveform of the template. Similar to the ``stimulus`` and ``response``
# columns, we can specify a relevant time range.
stimulus_template = VoltageClampStimulusSeries(
name="ccst",
data=[0, 1, 2, 3, 4],
starting_time=0.0,
rate=10e3,
electrode=electrode,
gain=0.02,
)
nwbfile.add_stimulus_template(stimulus_template)
nwbfile.intracellular_recordings.add_column(
name="stimulus_template",
data=[TimeSeriesReference(0, 5, stimulus_template), # (start_index, index_count, stimulus_template)
TimeSeriesReference(1, 3, stimulus_template),
TimeSeriesReference.empty(stimulus_template)], # if there was no data for that recording, use empty reference
description="Column storing the reference to the stimulus template for the recording (rows).",
category="stimuli",
col_cls=TimeSeriesReferenceVectorData
)
# we can also add stimulus template data as follows
rowindex = nwbfile.add_intracellular_recording(
electrode=electrode,
stimulus=stimulus,
stimulus_template=stimulus_template, # the full time range of the stimulus template will be used unless specified
recording_tag='A4',
recording_lab_data={'location': 'Isengard'},
electrode_metadata={'voltage_threshold': 0.14},
id=13,
)
#####################################################################
# .. note:: If a stimulus template column exists but there is no stimulus template data for that recording, then
# :py:meth:`~pynwb.file.NWBFile.add_intracellular_recording` will internally set the stimulus template to the
# provided stimulus or response TimeSeries and the start_index and index_count for the missing parameter are
# set to -1. The missing values will be represented via masked numpy arrays.
#####################################################################
# .. note:: Since stimulus templates are often reused across many recordings, the timestamps in the templates are not
# usually aligned with the recording nor with the reference time of the file. The timestamps often start
# at 0 and are relative to the time of the application of the stimulus.
#####################################################################
# Add a simultaneous recording
# ---------------------------------
#
# Before adding a simultaneous recording, we will take a brief discourse to illustrate
# how we can add custom columns to tables before and after we have populated the table with data
#
# Define a custom column for a simultaneous recording before populating the table
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Before we add a simultaneous recording, let's create a custom data column in our
# :py:class:`~pynwb.icephys.SimultaneousRecordingsTable`. We can create columns at the
# beginning (i.e., before we populate the table with rows/data) or we can add columns
# after we have already populated the table with rows. Here we will show the former.
# For this, we first need to get access to our table.
print(nwbfile.icephys_simultaneous_recordings)
#####################################################################
# The :py:class:`~pynwb.icephys.SimultaneousRecordingsTable` is optional, and since we have
# not populated it with any data yet, we can see that the table does not actually exist yet.
# In order to make sure the table is being created we can use
# :py:meth:`~pynwb.file.NWBFile.get_icephys_simultaneous_recordings`, which ensures
# that the table is being created if it does not exist yet.
icephys_simultaneous_recordings = nwbfile.get_icephys_simultaneous_recordings()
icephys_simultaneous_recordings.add_column(
name="simultaneous_recording_tag",
description="A custom tag for simultaneous_recordings",
)
print(icephys_simultaneous_recordings.colnames)
#####################################################################
# As we can see, we now have successfully created a new custom column.
#
# .. note:: The same process applies to all our other tables as well. We can use the
# corresponding :py:meth:`~pynwb.file.NWBFile.get_intracellular_recordings`,
# :py:meth:`~pynwb.file.NWBFile.get_icephys_sequential_recordings`,
# :py:meth:`~pynwb.file.NWBFile.get_icephys_repetitions` functions instead.
# In general, we can always use the get functions instead of accessing the property
# of the file.
#
#####################################################################
# Add a simultaneous recording
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Add a single simultaneous recording consisting of a set of intracellular recordings.
# Again, setting the id for a simultaneous recording is optional. The recordings
# argument of the :py:meth:`~pynwb.file.NWBFile.add_icephys_simultaneous_recording` function
# here is simply a list of ints with the indices of the corresponding rows in
# the :py:class:`~pynwb.icephys.IntracellularRecordingsTable`
#
# .. note:: Since we created our custom ``simultaneous_recording_tag column`` earlier,
# we now also need to populate this custom field for every row we add to
# the :py:class:`~pynwb.icephys.SimultaneousRecordingsTable`.
#
rowindex = nwbfile.add_icephys_simultaneous_recording(
recordings=[rowindex, rowindex2, rowindex3],
id=12,
simultaneous_recording_tag="LabTag1",
)
#####################################################################
# .. note:: The ``recordings`` argument is the list of indices of the rows in the
# :py:class:`~pynwb.icephys.IntracellularRecordingsTable` that we want
# to reference. The indices are determined by the order in which we
# added the elements to the table. If we don't know the row indices,
# but only the ids of the relevant intracellular recordings, then
# we can search for them as follows:
temp_row_indices = nwbfile.intracellular_recordings.id == [10, 11]
print(temp_row_indices)
#####################################################################
# .. note:: The same is true for our other tables as well, i.e., referencing is
# done always by indices of rows (NOT ids). If we only know ids then we
# can search for them in the same manner on the other tables as well,
# e.g,. via ``nwbfile.simultaneous_recordings.id == 15``. In the search
# we can use a list of integer ids or a single int.
#####################################################################
# Define a custom column for a simultaneous recording after adding rows
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Depending on the lab workflow, it may be useful to add complete columns to a table
# after we have already populated the table with rows. We can do this the same way as
# before, only now we need to provide a data array to populate the values for
# the existing rows. E.g.:
nwbfile.icephys_simultaneous_recordings.add_column(
name="simultaneous_recording_type",
description="Description of the type of simultaneous_recording",
data=[
"SimultaneousRecordingType1",
],
)
#####################################################################
# Add a sequential recording
# --------------------------
#
# Add a single sequential recording consisting of a set of simultaneous recordings.
# Again, setting the id for a sequential recording is optional. Also this table is
# optional and will be created automatically by NWBFile. The ``simultaneous_recordings``
# argument of the :py:meth:`~pynwb.file.NWBFile.add_icephys_sequential_recording` function
# here is simply a list of ints with the indices of the corresponding rows in
# the :py:class:`~pynwb.icephys.SimultaneousRecordingsTable`.
rowindex = nwbfile.add_icephys_sequential_recording(
simultaneous_recordings=[0], stimulus_type="square", id=15
)
#####################################################################
# Add a repetition
# ----------------
#
# Add a single repetition consisting of a set of sequential recordings. Again, setting
# the id for a repetition is optional. Also this table is optional and will be created
# automatically by NWBFile. The ``sequential_recordings argument`` of the
# :py:meth:`~pynwb.file.NWBFile.add_icephys_repetition` function here is simply
# a list of ints with the indices of the corresponding rows in
# the :py:class:`~pynwb.icephys.SequentialRecordingsTable`.
rowindex = nwbfile.add_icephys_repetition(sequential_recordings=[0], id=17)
#####################################################################
# Add an experimental condition
# -----------------------------
#
# Add a single experimental condition consisting of a set of repetitions. Again,
# setting the id for a condition is optional. Also this table is optional and
# will be created automatically by NWBFile. The ``repetitions`` argument of
# the :py:meth:`~pynwb.file.NWBFile.add_icephys_experimental_condition` function again is
# simply a list of ints with the indices of the correspondingto rows in the
# :py:class:`~pynwb.icephys.RepetitionsTable`.
rowindex = nwbfile.add_icephys_experimental_condition(repetitions=[0], id=19)
#####################################################################
# As mentioned earlier, to add additional columns to any of the tables, we can
# use the ``.add_column`` function on the corresponding table after they have
# been created.
nwbfile.icephys_experimental_conditions.add_column(
name="tag",
data=np.arange(1),
description="integer tag for a experimental condition",
)
#####################################################################
# When we add new items, then we now also need to set the values for the new column, e.g.:
rowindex = nwbfile.add_icephys_experimental_condition(repetitions=[0], id=21, tag=3)
#####################################################################
# Read/write the NWBFile
# -----------------------------
#
# Write our test file
testpath = "test_icephys_file.nwb"
with NWBHDF5IO(testpath, "w") as io:
io.write(nwbfile)
# Read the data back in
with NWBHDF5IO(testpath, "r") as io:
infile = io.read()
#####################################################################
# Accessing the tables
# -----------------------------
#
# All of the icephys metadata tables are available as attributes on the NWBFile object.
# For display purposes, we convert the tables to pandas DataFrames to show their content.
# For a more in-depth discussion of how to access and use the tables,
# see the tutorial on :ref:`icephys_pandas_tutorial`.
pandas.set_option("display.max_columns", 6) # avoid oversize table in the html docs
nwbfile.intracellular_recordings.to_dataframe()
#####################################################################
#
# optionally we can ignore the id columns of the category subtables
pandas.set_option("display.max_columns", 5) # avoid oversize table in the html docs
nwbfile.intracellular_recordings.to_dataframe(ignore_category_ids=True)
#####################################################################
#
nwbfile.icephys_simultaneous_recordings.to_dataframe()
#####################################################################
#
nwbfile.icephys_sequential_recordings.to_dataframe()
#####################################################################
#
nwbfile.icephys_repetitions.to_dataframe()
#####################################################################
#
nwbfile.icephys_experimental_conditions.to_dataframe()
#####################################################################
# Validate data
# ^^^^^^^^^^^^^
#
# This section is for internal testing purposes only to validate that the roundtrip
# of the data (i.e., generate --> write --> read) produces the correct results.
# Read the data back in
with NWBHDF5IO(testpath, "r") as io:
infile = io.read()
# assert intracellular_recordings
assert np.all(
infile.intracellular_recordings.id[:] == nwbfile.intracellular_recordings.id[:]
)
# Assert that the ids and the VectorData, VectorIndex, and table target of the
# recordings column of the Sweeps table are correct
assert np.all(
infile.icephys_simultaneous_recordings.id[:]
== nwbfile.icephys_simultaneous_recordings.id[:]
)
assert np.all(
infile.icephys_simultaneous_recordings["recordings"].target.data[:]
== nwbfile.icephys_simultaneous_recordings["recordings"].target.data[:]
)
assert np.all(
infile.icephys_simultaneous_recordings["recordings"].data[:]
== nwbfile.icephys_simultaneous_recordings["recordings"].data[:]
)
assert (
infile.icephys_simultaneous_recordings["recordings"].target.table.name
== nwbfile.icephys_simultaneous_recordings["recordings"].target.table.name
)
# Assert that the ids and the VectorData, VectorIndex, and table target of the simultaneous
# recordings column of the SweepSequences table are correct
assert np.all(
infile.icephys_sequential_recordings.id[:]
== nwbfile.icephys_sequential_recordings.id[:]
)
assert np.all(
infile.icephys_sequential_recordings["simultaneous_recordings"].target.data[:]
== nwbfile.icephys_sequential_recordings["simultaneous_recordings"].target.data[
:
]
)
assert np.all(
infile.icephys_sequential_recordings["simultaneous_recordings"].data[:]
== nwbfile.icephys_sequential_recordings["simultaneous_recordings"].data[:]
)
assert (
infile.icephys_sequential_recordings[
"simultaneous_recordings"
].target.table.name
== nwbfile.icephys_sequential_recordings[
"simultaneous_recordings"
].target.table.name
)
# Assert that the ids and the VectorData, VectorIndex, and table target of the
# sequential_recordings column of the Repetitions table are correct
assert np.all(infile.icephys_repetitions.id[:] == nwbfile.icephys_repetitions.id[:])
assert np.all(
infile.icephys_repetitions["sequential_recordings"].target.data[:]
== nwbfile.icephys_repetitions["sequential_recordings"].target.data[:]
)
assert np.all(
infile.icephys_repetitions["sequential_recordings"].data[:]
== nwbfile.icephys_repetitions["sequential_recordings"].data[:]
)
assert (
infile.icephys_repetitions["sequential_recordings"].target.table.name
== nwbfile.icephys_repetitions["sequential_recordings"].target.table.name
)
# Assert that the ids and the VectorData, VectorIndex, and table target of the
# repetitions column of the Conditions table are correct
assert np.all(
infile.icephys_experimental_conditions.id[:]
== nwbfile.icephys_experimental_conditions.id[:]
)
assert np.all(
infile.icephys_experimental_conditions["repetitions"].target.data[:]
== nwbfile.icephys_experimental_conditions["repetitions"].target.data[:]
)
assert np.all(
infile.icephys_experimental_conditions["repetitions"].data[:]
== nwbfile.icephys_experimental_conditions["repetitions"].data[:]
)
assert (
infile.icephys_experimental_conditions["repetitions"].target.table.name
== nwbfile.icephys_experimental_conditions["repetitions"].target.table.name
)
assert np.all(
infile.icephys_experimental_conditions["tag"][:]
== nwbfile.icephys_experimental_conditions["tag"][:]
)
|