File: test_base.py

package info (click to toggle)
pynwb 2.8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 44,312 kB
  • sloc: python: 17,501; makefile: 597; sh: 11
file content (899 lines) | stat: -rw-r--r-- 35,759 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
import numpy as np
from numpy.testing import assert_array_equal

from pynwb.base import (
    ProcessingModule,
    TimeSeries,
    Images,
    Image,
    TimeSeriesReferenceVectorData,
    TimeSeriesReference,
    ImageReferences
)
from pynwb.testing import TestCase
from pynwb.testing.mock.base import mock_TimeSeries
from hdmf.data_utils import DataChunkIterator
from hdmf.backends.hdf5 import H5DataIO


class TestProcessingModule(TestCase):
    def setUp(self):
        self.pm = ProcessingModule(
            name="test_procmod", description="a test processing module"
        )

    def _create_time_series(self):
        ts = TimeSeries(
            name="test_ts",
            data=[0, 1, 2, 3, 4, 5],
            unit="grams",
            timestamps=[0.0, 0.1, 0.2, 0.3, 0.4, 0.5],
        )
        return ts

    def test_init(self):
        """Test creating a ProcessingModule."""
        self.assertEqual(self.pm.name, "test_procmod")
        self.assertEqual(self.pm.description, "a test processing module")

    def test_add_data_interface(self):
        """Test adding a data interface to a ProcessingModule using add(...) and retrieving it."""
        ts = self._create_time_series()
        self.pm.add(ts)
        self.assertIn(ts.name, self.pm.containers)
        self.assertIs(ts, self.pm.containers[ts.name])

    def test_deprecated_add_data_interface(self):
        ts = self._create_time_series()
        with self.assertWarnsWith(
            PendingDeprecationWarning, "add_data_interface will be replaced by add"
        ):
            self.pm.add_data_interface(ts)
        self.assertIn(ts.name, self.pm.containers)
        self.assertIs(ts, self.pm.containers[ts.name])

    def test_deprecated_add_container(self):
        ts = self._create_time_series()
        with self.assertWarnsWith(
            PendingDeprecationWarning, "add_container will be replaced by add"
        ):
            self.pm.add_container(ts)
        self.assertIn(ts.name, self.pm.containers)
        self.assertIs(ts, self.pm.containers[ts.name])

    def test_get_data_interface(self):
        """Test adding a data interface to a ProcessingModule and retrieving it using get(...)."""
        ts = self._create_time_series()
        self.pm.add(ts)
        tmp = self.pm.get("test_ts")
        self.assertIs(tmp, ts)
        self.assertIs(self.pm["test_ts"], self.pm.get("test_ts"))

    def test_deprecated_get_data_interface(self):
        ts = self._create_time_series()
        self.pm.add(ts)
        with self.assertWarnsWith(
            PendingDeprecationWarning, "get_data_interface will be replaced by get"
        ):
            tmp = self.pm.get_data_interface("test_ts")
        self.assertIs(tmp, ts)

    def test_deprecated_get_container(self):
        ts = self._create_time_series()
        self.pm.add(ts)
        with self.assertWarnsWith(
            PendingDeprecationWarning, "get_container will be replaced by get"
        ):
            tmp = self.pm.get_container("test_ts")
        self.assertIs(tmp, ts)

    def test_getitem(self):
        """Test adding a data interface to a ProcessingModule and retrieving it using __getitem__(...)."""
        ts = self._create_time_series()
        self.pm.add(ts)
        tmp = self.pm["test_ts"]
        self.assertIs(tmp, ts)


class TestTimeSeries(TestCase):
    def test_init_no_parent(self):
        """Test creating an empty TimeSeries and that it has no parent."""
        ts = TimeSeries(name="test_ts", data=list(), unit="unit", timestamps=list())
        self.assertEqual(ts.name, "test_ts")
        self.assertIsNone(ts.parent)

    def test_init_datalink_set(self):
        """Test creating a TimeSeries and that data_link is an empty set."""
        ts = TimeSeries(name="test_ts", data=list(), unit="unit", timestamps=list())
        self.assertIsInstance(ts.data_link, set)
        self.assertEqual(len(ts.data_link), 0)

    def test_init_timestampslink_set(self):
        """Test creating a TimeSeries and that timestamps_link is an empty set."""
        ts = TimeSeries(name="test_ts", data=list(), unit="unit", timestamps=list())
        self.assertIsInstance(ts.timestamp_link, set)
        self.assertEqual(len(ts.timestamp_link), 0)

    def test_init_data_timestamps(self):
        data = [0, 1, 2, 3, 4]
        timestamps = [0.0, 0.1, 0.2, 0.3, 0.4]
        ts = TimeSeries(name="test_ts", data=data, unit="volts", timestamps=timestamps)
        self.assertIs(ts.data, data)
        self.assertIs(ts.timestamps, timestamps)
        self.assertEqual(ts.conversion, 1.0)
        self.assertEqual(ts.offset, 0.0)
        self.assertEqual(ts.resolution, -1.0)
        self.assertEqual(ts.unit, "volts")
        self.assertEqual(ts.interval, 1)
        self.assertEqual(ts.time_unit, "seconds")
        self.assertEqual(ts.num_samples, 5)
        self.assertIsNone(ts.continuity)
        self.assertIsNone(ts.rate)
        self.assertIsNone(ts.starting_time)

    def test_init_conversion_offset(self):
        data = [0, 1, 2, 3, 4]
        timestamps = [0.0, 0.1, 0.2, 0.3, 0.4]
        conversion = 2.1
        offset = 1.2
        ts = TimeSeries(
            name="test_ts",
            data=data,
            unit="volts",
            timestamps=timestamps,
            conversion=conversion,
            offset=offset,
        )
        self.assertIs(ts.data, data)
        self.assertEqual(ts.conversion, conversion)
        self.assertEqual(ts.offset, offset)

    def test_no_time(self):
        with self.assertRaisesWith(
            TypeError, "either 'timestamps' or 'rate' must be specified"
        ):
            TimeSeries(name="test_ts2", data=[10, 11, 12, 13, 14, 15], unit="grams")

    def test_no_starting_time(self):
        """Test that if no starting_time is given, 0.0 is assumed."""
        ts1 = TimeSeries(name="test_ts1", data=[1, 2, 3], unit="unit", rate=0.1)
        self.assertEqual(ts1.starting_time, 0.0)

    def test_init_rate(self):
        ts = TimeSeries(
            name="test_ts",
            data=list(),
            unit="volts",
            starting_time=1.0,
            rate=2.0,
        )
        self.assertEqual(ts.starting_time, 1.0)
        self.assertEqual(ts.starting_time_unit, "seconds")
        self.assertEqual(ts.rate, 2.0)
        self.assertEqual(ts.time_unit, "seconds")
        self.assertIsNone(ts.timestamps)

    def test_data_timeseries(self):
        """Test that setting a TimeSeries.data to another TimeSeries links the data correctly."""
        data = [0, 1, 2, 3]
        timestamps1 = [0.0, 0.1, 0.2, 0.3]
        timestamps2 = [1.0, 1.1, 1.2, 1.3]
        ts1 = TimeSeries(
            name="test_ts1", data=data, unit="grams", timestamps=timestamps1
        )
        ts2 = TimeSeries(
            name="test_ts2", data=ts1, unit="grams", timestamps=timestamps2
        )
        self.assertEqual(ts2.data, data)
        self.assertEqual(ts1.num_samples, ts2.num_samples)
        self.assertEqual(ts1.data_link, set([ts2]))

    def test_timestamps_timeseries(self):
        """Test that setting a TimeSeries.timestamps to another TimeSeries links the timestamps correctly."""
        data1 = [0, 1, 2, 3]
        data2 = [10, 11, 12, 13]
        timestamps = [0.0, 0.1, 0.2, 0.3]
        ts1 = TimeSeries(
            name="test_ts1", data=data1, unit="grams", timestamps=timestamps
        )
        ts2 = TimeSeries(name="test_ts2", data=data2, unit="grams", timestamps=ts1)
        self.assertEqual(ts2.timestamps, timestamps)
        self.assertEqual(ts1.timestamp_link, set([ts2]))

    def test_good_continuity_timeseries(self):
        ts = TimeSeries(
            name="test_ts1",
            data=[0, 1, 2, 3, 4, 5],
            unit="grams",
            timestamps=[0.0, 0.1, 0.2, 0.3, 0.4, 0.5],
            continuity="continuous",
        )
        self.assertEqual(ts.continuity, "continuous")

    def test_bad_continuity_timeseries(self):
        msg = (
            "TimeSeries.__init__: forbidden value for 'continuity' (got 'wrong', "
            "expected ['continuous', 'instantaneous', 'step'])"
        )
        with self.assertRaisesWith(ValueError, msg):
            TimeSeries(
                name="test_ts1",
                data=[0, 1, 2, 3, 4, 5],
                unit="grams",
                timestamps=[0.0, 0.1, 0.2, 0.3, 0.4, 0.5],
                continuity="wrong",
            )

    def _create_time_series_with_data(self, data):
        ts = TimeSeries(name="test_ts1", data=data, unit="grams", rate=0.1)
        return ts

    def test_dataio_list_data(self):
        length = 100
        data = list(range(length))
        ts = self._create_time_series_with_data(data)
        self.assertEqual(ts.num_samples, length)
        assert data == list(ts.data)

    def test_dataio_dci_data(self):
        def generator_factory():
            return (i for i in range(100))

        data = H5DataIO(DataChunkIterator(data=generator_factory()))
        ts = self._create_time_series_with_data(data)
        with self.assertWarnsWith(
            UserWarning,
            "The data attribute on this TimeSeries (named: test_ts1) has a "
            "__len__, but it cannot be read",
        ):
            self.assertIsNone(ts.num_samples)
        for xi, yi in zip(data, generator_factory()):
            assert np.allclose(xi, yi)

    def test_dci_data(self):
        def generator_factory():
            return (i for i in range(100))

        data = DataChunkIterator(data=generator_factory())
        ts = self._create_time_series_with_data(data)
        with self.assertWarnsWith(
            UserWarning,
            "The data attribute on this TimeSeries (named: test_ts1) has no __len__",
        ):
            self.assertIsNone(ts.num_samples)
        for xi, yi in zip(data, generator_factory()):
            assert np.allclose(xi, yi)

    def test_dci_data_arr(self):
        def generator_factory():
            return (np.array([i, i + 1]) for i in range(100))

        data = DataChunkIterator(data=generator_factory())
        ts = self._create_time_series_with_data(data)
        with self.assertWarnsWith(
            UserWarning,
            "The data attribute on this TimeSeries (named: test_ts1) has no __len__",
        ):
            self.assertIsNone(ts.num_samples)
        for xi, yi in zip(data, generator_factory()):
            assert np.allclose(xi, yi)

    def test_dataio_list_timestamps(self):
        length = 100
        data = list(range(length))
        ts = self._create_time_series_with_data(data)
        self.assertEqual(ts.num_samples, length)
        assert data == list(ts.data)

    def _create_time_series_with_timestamps(self, timestamps):
        # data has no __len__ for these tests
        def generator_factory():
            return (i for i in range(100))

        ts = TimeSeries(
            name="test_ts1",
            data=DataChunkIterator(data=generator_factory()),
            unit="grams",
            timestamps=timestamps,
        )
        return ts

    def test_dataio_dci_timestamps(self):
        def generator_factory():
            return (i for i in range(100))

        timestamps = H5DataIO(DataChunkIterator(data=generator_factory()))
        ts = self._create_time_series_with_timestamps(timestamps)
        with self.assertWarns(UserWarning) as record:
            self.assertIsNone(ts.num_samples)
        assert len(record.warnings) == 2
        assert record.warnings[0].message.args[0] == (
            "The data attribute on this TimeSeries (named: test_ts1) has no __len__"
        )
        assert record.warnings[1].message.args[0] == (
            "The timestamps attribute on this TimeSeries (named: test_ts1) has a "
            "__len__, but it cannot be read"
        )
        for xi, yi in zip(timestamps, generator_factory()):
            assert np.allclose(xi, yi)

    def test_dci_timestamps(self):
        def generator_factory():
            return (i for i in range(100))

        timestamps = DataChunkIterator(data=generator_factory())
        ts = self._create_time_series_with_timestamps(timestamps)
        with self.assertWarns(UserWarning) as record:
            self.assertIsNone(ts.num_samples)
        assert len(record.warnings) == 2
        assert record.warnings[0].message.args[0] == (
            "The data attribute on this TimeSeries (named: test_ts1) has no __len__"
        )
        assert record.warnings[1].message.args[0] == (
            "The timestamps attribute on this TimeSeries (named: test_ts1) has no __len__"
        )
        for xi, yi in zip(timestamps, generator_factory()):
            assert np.allclose(xi, yi)

    def test_dci_timestamps_arr(self):
        def generator_factory():
            return np.array(np.arange(100))

        timestamps = DataChunkIterator(data=generator_factory())
        ts = self._create_time_series_with_timestamps(timestamps)
        with self.assertWarns(UserWarning) as record:
            self.assertIsNone(ts.num_samples)
        assert len(record.warnings) == 2
        assert record.warnings[0].message.args[0] == (
            "The data attribute on this TimeSeries (named: test_ts1) has no __len__"
        )
        assert record.warnings[1].message.args[0] == (
            "The timestamps attribute on this TimeSeries (named: test_ts1) has no __len__"
        )
        for xi, yi in zip(timestamps, generator_factory()):
            assert np.allclose(xi, yi)

    def test_conflicting_time_args(self):
        with self.assertRaisesWith(
            ValueError, "Specifying rate and timestamps is not supported."
        ):
            TimeSeries(
                name="test_ts2",
                data=[10, 11, 12],
                unit="grams",
                rate=30.0,
                timestamps=[0.3, 0.4, 0.5],
            )
        with self.assertRaisesWith(
            ValueError, "Specifying starting_time and timestamps is not supported."
        ):
            TimeSeries(
                name="test_ts2",
                data=[10, 11, 12],
                unit="grams",
                starting_time=30.0,
                timestamps=[0.3, 0.4, 0.5],
            )

    def test_dimension_warning(self):
        msg = (
            "TimeSeries 'test_ts2': Length of data does not match length of timestamps. Your data may be "
            "transposed. Time should be on the 0th dimension"
        )
        with self.assertWarnsWith(UserWarning, msg):
            TimeSeries(
                name="test_ts2",
                data=[10, 11, 12],
                unit="grams",
                timestamps=[0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
            )

    def test_get_timestamps(self):
        time_series = mock_TimeSeries(data=[1, 2, 3], rate=40.0, starting_time=30.0)
        assert_array_equal(time_series.get_timestamps(), [30, 30+1/40, 30+2/40])

        time_series = mock_TimeSeries(data=[1, 2, 3], timestamps=[3, 4, 5], rate=None)
        assert_array_equal(time_series.get_timestamps(), [3, 4, 5])

    def test_get_data_in_units(self):
        ts = mock_TimeSeries(data=[1., 2., 3.], conversion=2., offset=3.)
        assert_array_equal(ts.get_data_in_units(), [5., 7., 9.])

        ts = mock_TimeSeries(data=[1., 2., 3.], conversion=2.)
        assert_array_equal(ts.get_data_in_units(), [2., 4., 6.])

        ts = mock_TimeSeries(data=[1., 2., 3.])
        assert_array_equal(ts.get_data_in_units(), [1., 2., 3.])

    def test_non_positive_rate(self):
        with self.assertRaisesWith(ValueError, 'Rate must not be a negative value.'):
            TimeSeries(name='test_ts', data=list(), unit='volts', rate=-1.0)

        with self.assertWarnsWith(UserWarning,
                                  'Timeseries has a rate of 0.0 Hz, but the length of the data is greater than 1.'):
            TimeSeries(name='test_ts1', data=[1, 2, 3], unit='volts', rate=0.0)

    def test_file_with_non_positive_rate_in_construct_mode(self):
        """Test that UserWarning is raised when rate is 0 or negative
         while being in construct mode (i.e,. on data read)."""
        obj = TimeSeries.__new__(TimeSeries,
                                 container_source=None,
                                 parent=None,
                                 object_id="test",
                                 in_construct_mode=True)
        with self.assertWarnsWith(warn_type=UserWarning, exc_msg='Rate must not be a negative value.'):
            obj.__init__(
                name="test_ts",
                data=list(),
                unit="volts",
                rate=-1.0
            )

    def test_file_with_rate_and_timestamps_in_construct_mode(self):
        """Test that UserWarning is raised when rate and timestamps are both specified
         while being in construct mode (i.e,. on data read)."""
        obj = TimeSeries.__new__(TimeSeries,
                                 container_source=None,
                                 parent=None,
                                 object_id="test",
                                 in_construct_mode=True)
        with self.assertWarnsWith(warn_type=UserWarning, exc_msg='Specifying rate and timestamps is not supported.'):
            obj.__init__(
                name="test_ts",
                data=[11, 12, 13, 14, 15],
                unit="volts",
                rate=1.0,
                timestamps=[1, 2, 3, 4, 5]
            )

    def test_file_with_starting_time_and_timestamps_in_construct_mode(self):
        """Test that UserWarning is raised when starting_time and timestamps are both specified
         while being in construct mode (i.e,. on data read)."""
        obj = TimeSeries.__new__(TimeSeries,
                                 container_source=None,
                                 parent=None,
                                 object_id="test",
                                 in_construct_mode=True)
        with self.assertWarnsWith(warn_type=UserWarning,
                                  exc_msg='Specifying starting_time and timestamps is not supported.'):
            obj.__init__(
                name="test_ts",
                data=[11, 12, 13, 14, 15],
                unit="volts",
                starting_time=1.0,
                timestamps=[1, 2, 3, 4, 5]
            )

    def test_repr_html(self):
        """ Test that html representation of linked timestamp data will occur as expected and will not cause a
        RecursionError
        """
        data1 = [0, 1, 2, 3]
        data2 = [4, 5, 6, 7]
        timestamps = [0.0, 0.1, 0.2, 0.3]
        ts1 = TimeSeries(name="test_ts1", data=data1, unit="grams", timestamps=timestamps)
        ts2 = TimeSeries(name="test_ts2", data=data2, unit="grams", timestamps=ts1)
        pm = ProcessingModule(name="processing", description="a test processing module")
        pm.add(ts1)
        pm.add(ts2)
        self.assertIn('(link to processing/test_ts1/timestamps)', pm._repr_html_())


class TestImage(TestCase):
    def test_init(self):
        im = Image(name="test_image", data=np.ones((10, 10)))
        assert im.name == "test_image"
        assert np.all(im.data == np.ones((10, 10)))


class TestImages(TestCase):

    def test_images(self):
        image1 = Image(name='test_image1', data=np.ones((10, 10)))
        image2 = Image(name='test_image2', data=np.ones((10, 10)))
        image_references = ImageReferences(name='order_of_images', data=[image2, image1])
        images = Images(name='images_name', images=[image1, image2], order_of_images=image_references)

        assert images.name == "images_name"
        assert images.images == dict(test_image1=image1, test_image2=image2)
        self.assertIs(images.order_of_images[0], image2)
        self.assertIs(images.order_of_images[1], image1)


class TestTimeSeriesReferenceVectorData(TestCase):
    def _create_time_series_with_rate(self):
        ts = TimeSeries(
            name="test",
            description="test",
            data=np.arange(10),
            unit="unit",
            starting_time=5.0,
            rate=0.1,
        )
        return ts

    def _create_time_series_with_timestamps(self):
        ts = TimeSeries(
            name="test",
            description="test",
            data=np.arange(10),
            unit="unit",
            timestamps=np.arange(10.0),
        )
        return ts

    def test_init(self):
        temp = TimeSeriesReferenceVectorData()
        self.assertEqual(temp.name, "timeseries")
        self.assertEqual(
            temp.description,
            "Column storing references to a TimeSeries (rows). For each TimeSeries this "
            "VectorData column stores the start_index and count to indicate the range in time "
            "to be selected as well as an object reference to the TimeSeries.",
        )
        self.assertListEqual(temp.data, [])
        temp = TimeSeriesReferenceVectorData(name="test", description="test")
        self.assertEqual(temp.name, "test")
        self.assertEqual(temp.description, "test")

    def test_get_empty(self):
        """Get data from an empty TimeSeriesReferenceVectorData"""
        temp = TimeSeriesReferenceVectorData()
        self.assertListEqual(temp[:], [])
        with self.assertRaises(IndexError):
            temp[0]

    def test_append_get_length1_valid_data(self):
        """Get data from a TimeSeriesReferenceVectorData with one element and valid data"""
        temp = TimeSeriesReferenceVectorData()
        value = TimeSeriesReference(0, 5, self._create_time_series_with_rate())
        temp.append(value)
        self.assertTupleEqual(temp[0], value)
        self.assertListEqual(
            temp[:],
            [
                TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(*value),
            ],
        )

    def test_add_row_get_length1_valid_data(self):
        """Get data from a TimeSeriesReferenceVectorData with one element and valid data"""
        temp = TimeSeriesReferenceVectorData()
        value = TimeSeriesReference(0, 5, self._create_time_series_with_rate())
        temp.add_row(value)
        self.assertTupleEqual(temp[0], value)
        self.assertListEqual(
            temp[:],
            [
                TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(*value),
            ],
        )

    def test_get_length1_invalid_data(self):
        """Get data from a TimeSeriesReferenceVectorData with one element and invalid data"""
        temp = TimeSeriesReferenceVectorData()
        value = TimeSeriesReference(-1, -1, self._create_time_series_with_rate())
        temp.append(value)
        # test index slicing
        re = temp[0]
        self.assertTrue(
            isinstance(re, TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE)
        )
        self.assertTupleEqual(
            re, TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_NONE_TYPE
        )
        # test array slicing and list slicing
        selection = [
            slice(None),
            [
                0,
            ],
        ]
        for s in selection:
            re = temp[s]
            self.assertTrue(isinstance(re, list))
            self.assertTrue(len(re), 1)
            self.assertTrue(
                isinstance(
                    re[0], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE
                )
            )
            self.assertTupleEqual(
                re[0], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_NONE_TYPE
            )

    def test_get_length5_valid_data(self):
        """Get data from a TimeSeriesReferenceVectorData with 5 elements"""
        temp = TimeSeriesReferenceVectorData()
        num_values = 5
        values = [
            TimeSeriesReference(0, 5, self._create_time_series_with_rate())
            for i in range(num_values)
        ]
        for v in values:
            temp.append(v)
        # Test single element selection
        for i in range(num_values):
            # test index slicing
            re = temp[i]
            self.assertTupleEqual(re, values[i])
            # test slicing
            re = temp[i : i + 1]
            self.assertTupleEqual(
                re[0],
                TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(*values[i]),
            )
        # Test multi element selection
        re = temp[0:2]
        self.assertTupleEqual(
            re[0], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(*values[0])
        )
        self.assertTupleEqual(
            re[1], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(*values[1])
        )

    def test_get_length5_with_invalid_data(self):
        """Get data from a TimeSeriesReferenceVectorData with 5 elements"""
        temp = TimeSeriesReferenceVectorData()
        num_values = 5
        values = [
            TimeSeriesReference(0, 5, self._create_time_series_with_rate())
            for i in range(num_values - 2)
        ]
        values = (
            [
                TimeSeriesReference(-1, -1, self._create_time_series_with_rate()),
            ]
            + values
            + [
                TimeSeriesReference(-1, -1, self._create_time_series_with_rate()),
            ]
        )
        for v in values:
            temp.append(v)
        # Test single element selection
        for i in range(num_values):
            # test index slicing
            re = temp[i]
            if i in [0, 4]:
                self.assertTrue(
                    isinstance(
                        re, TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE
                    )
                )
                self.assertTupleEqual(
                    re, TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_NONE_TYPE
                )
            else:
                self.assertTupleEqual(re, values[i])
            # test slicing
            re = temp[i : i + 1]
            if i in [0, 4]:
                self.assertTrue(
                    isinstance(
                        re[0], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE
                    )
                )
                self.assertTupleEqual(
                    re[0], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_NONE_TYPE
                )
            else:
                self.assertTupleEqual(
                    re[0],
                    TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(
                        *values[i]
                    ),
                )
        # Test multi element selection
        re = temp[0:2]
        self.assertTupleEqual(
            re[0], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_NONE_TYPE
        )
        self.assertTupleEqual(
            re[1], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(*values[1])
        )

    def test_add_row(self):
        v = TimeSeriesReferenceVectorData(name='a', description='a')
        val = TimeSeriesReference(0, 5, TimeSeries(name='test', description='test',
                                                   data=np.arange(10), unit='unit', starting_time=5.0, rate=0.1))
        v.add_row(val)
        self.assertTupleEqual(v[0], val)

    def test_add_row_with_plain_tuple(self):
        v = TimeSeriesReferenceVectorData(name='a', description='a')
        val = (0, 5, TimeSeries(name='test', description='test',
                                data=np.arange(10), unit='unit', starting_time=5.0, rate=0.1))
        v.add_row(val)
        self.assertTupleEqual(v[0], val)

    def test_add_row_with_bad_tuple(self):
        v = TimeSeriesReferenceVectorData(name='a', description='a')
        val = (0.0, 5, TimeSeries(name='test', description='test',
                                  data=np.arange(10), unit='unit', starting_time=5.0, rate=0.1))
        with self.assertRaisesWith(TypeError, "idx_start must be an integer not <class 'float'>"):
            v.add_row(val)

    def test_add_row_restricted_type(self):
        v = TimeSeriesReferenceVectorData(name="a", description="a")
        with self.assertRaisesWith(
            TypeError,
            "TimeSeriesReferenceVectorData.add_row: incorrect type for "
            "'val' (got 'int', expected 'TimeSeriesReference or tuple')",
        ):
            v.add_row(1)

    def test_append(self):
        v = TimeSeriesReferenceVectorData(name='a', description='a')
        val = TimeSeriesReference(0, 5, TimeSeries(name='test', description='test',
                                                   data=np.arange(10), unit='unit', starting_time=5.0, rate=0.1))
        v.append(val)
        self.assertTupleEqual(v[0], val)

    def test_append_with_plain_tuple(self):
        v = TimeSeriesReferenceVectorData(name='a', description='a')
        val = (0, 5, TimeSeries(name='test', description='test',
                                data=np.arange(10), unit='unit', starting_time=5.0, rate=0.1))
        v.append(val)
        self.assertTupleEqual(v[0], val)

    def test_append_with_bad_tuple(self):
        v = TimeSeriesReferenceVectorData(name='a', description='a')
        val = (0.0, 5, TimeSeries(name='test', description='test',
                                  data=np.arange(10), unit='unit', starting_time=5.0, rate=0.1))
        with self.assertRaisesWith(TypeError, "idx_start must be an integer not <class 'float'>"):
            v.append(val)

    def test_append_restricted_type(self):
        v = TimeSeriesReferenceVectorData(name="a", description="a")
        with self.assertRaisesWith(
            TypeError,
            "TimeSeriesReferenceVectorData.append: incorrect type for "
            "'arg' (got 'float', expected 'TimeSeriesReference or tuple')",
        ):
            v.append(2.0)


class TestTimeSeriesReference(TestCase):
    def _create_time_series_with_rate(self):
        ts = TimeSeries(
            name="test",
            description="test",
            data=np.arange(10),
            unit="unit",
            starting_time=5.0,
            rate=0.1,
        )
        return ts

    def _create_time_series_with_timestamps(self):
        ts = TimeSeries(
            name="test",
            description="test",
            data=np.arange(10),
            unit="unit",
            timestamps=np.arange(10.0),
        )
        return ts

    def test_check_types(self):
        # invalid selection but with correct types
        tsr = TimeSeriesReference(-1, -1, self._create_time_series_with_rate())
        self.assertTrue(tsr.check_types())
        # invalid types, use float instead of int for both idx_start and count
        tsr = TimeSeriesReference(1.0, 5.0, self._create_time_series_with_rate())
        with self.assertRaisesWith(
            TypeError, "idx_start must be an integer not <class 'float'>"
        ):
            tsr.check_types()
        # invalid types, use float instead of int for idx_start only
        tsr = TimeSeriesReference(1.0, 5, self._create_time_series_with_rate())
        with self.assertRaisesWith(
            TypeError, "idx_start must be an integer not <class 'float'>"
        ):
            tsr.check_types()
        # invalid types, use float instead of int for count only
        tsr = TimeSeriesReference(1, 5.0, self._create_time_series_with_rate())
        with self.assertRaisesWith(
            TypeError, "count must be an integer <class 'float'>"
        ):
            tsr.check_types()
        # invalid type for TimeSeries but valid idx_start and count
        tsr = TimeSeriesReference(1, 5, None)
        with self.assertRaisesWith(
            TypeError, "timeseries must be of type TimeSeries. <class 'NoneType'>"
        ):
            tsr.check_types()

    def test_is_invalid(self):
        tsr = TimeSeriesReference(-1, -1, self._create_time_series_with_rate())
        self.assertFalse(tsr.isvalid())

    def test_is_valid(self):
        tsr = TimeSeriesReference(0, 10, self._create_time_series_with_rate())
        self.assertTrue(tsr.isvalid())

    def test_is_valid_bad_index(self):
        # Error: negative start_index but positive count
        tsr = TimeSeriesReference(-1, 10, self._create_time_series_with_rate())
        with self.assertRaisesWith(
            IndexError, "'idx_start' -1 out of range for timeseries 'test'"
        ):
            tsr.isvalid()
        # Error: start_index too large
        tsr = TimeSeriesReference(10, 0, self._create_time_series_with_rate())
        with self.assertRaisesWith(
            IndexError, "'idx_start' 10 out of range for timeseries 'test'"
        ):
            tsr.isvalid()
        # Error: positive start_index but negative count
        tsr = TimeSeriesReference(0, -3, self._create_time_series_with_rate())
        with self.assertRaisesWith(
            IndexError, "'count' -3 invalid. 'count' must be positive"
        ):
            tsr.isvalid()
        # Error:  start_index + count too large
        tsr = TimeSeriesReference(3, 10, self._create_time_series_with_rate())
        with self.assertRaisesWith(
            IndexError, "'idx_start + count' out of range for timeseries 'test'"
        ):
            tsr.isvalid()

    def test_is_valid_no_num_samples(self):
        def generator_factory():
            return (i for i in range(100))

        data = DataChunkIterator(data=generator_factory())
        ts = TimeSeries(name="test_ts1", data=data, unit="grams", rate=0.1)
        tsr = TimeSeriesReference(0, 10, ts)
        with self.assertWarnsWith(
            UserWarning,
            "The data attribute on this TimeSeries (named: test_ts1) has no __len__",
        ):
            self.assertTrue(tsr.isvalid())

    def test_timestamps_property(self):
        # Timestamps from starting_time and rate
        tsr = TimeSeriesReference(5, 4, self._create_time_series_with_rate())
        np.testing.assert_array_equal(tsr.timestamps, np.array([5.5, 5.6, 5.7, 5.8]))
        # Timestamps from timestamps directly
        tsr = TimeSeriesReference(5, 4, self._create_time_series_with_timestamps())
        np.testing.assert_array_equal(tsr.timestamps, np.array([5.0, 6.0, 7.0, 8.0]))

    def test_timestamps_property_invalid_reference(self):
        # Timestamps from starting_time and rate
        tsr = TimeSeriesReference(-1, -1, self._create_time_series_with_rate())
        self.assertIsNone(tsr.timestamps)

    def test_timestamps_property_bad_reference(self):
        tsr = TimeSeriesReference(0, 12, self._create_time_series_with_timestamps())
        with self.assertRaisesWith(
            IndexError, "'idx_start + count' out of range for timeseries 'test'"
        ):
            tsr.timestamps
        tsr = TimeSeriesReference(0, 12, self._create_time_series_with_rate())
        with self.assertRaisesWith(
            IndexError, "'idx_start + count' out of range for timeseries 'test'"
        ):
            tsr.timestamps

    def test_data_property(self):
        tsr = TimeSeriesReference(5, 4, self._create_time_series_with_rate())
        np.testing.assert_array_equal(tsr.data, np.array([5.0, 6.0, 7.0, 8.0]))

    def test_data_property_invalid_reference(self):
        tsr = TimeSeriesReference(-1, -1, self._create_time_series_with_rate())
        self.assertIsNone(tsr.data)

    def test_data_property_bad_reference(self):
        tsr = TimeSeriesReference(0, 12, self._create_time_series_with_rate())
        with self.assertRaisesWith(
            IndexError, "'idx_start + count' out of range for timeseries 'test'"
        ):
            tsr.data

    def test_empty_reference_creation(self):
        tsr = TimeSeriesReference.empty(self._create_time_series_with_rate())
        self.assertFalse(tsr.isvalid())
        self.assertIsNone(tsr.data)
        self.assertIsNone(tsr.timestamps)