1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
|
import numpy as np
from numpy.testing import assert_array_equal
from pynwb.base import (
ProcessingModule,
TimeSeries,
Images,
Image,
TimeSeriesReferenceVectorData,
TimeSeriesReference,
ImageReferences
)
from pynwb.testing import TestCase
from pynwb.testing.mock.base import mock_TimeSeries
from hdmf.data_utils import DataChunkIterator
from hdmf.backends.hdf5 import H5DataIO
class TestProcessingModule(TestCase):
def setUp(self):
self.pm = ProcessingModule(
name="test_procmod", description="a test processing module"
)
def _create_time_series(self):
ts = TimeSeries(
name="test_ts",
data=[0, 1, 2, 3, 4, 5],
unit="grams",
timestamps=[0.0, 0.1, 0.2, 0.3, 0.4, 0.5],
)
return ts
def test_init(self):
"""Test creating a ProcessingModule."""
self.assertEqual(self.pm.name, "test_procmod")
self.assertEqual(self.pm.description, "a test processing module")
def test_add_data_interface(self):
"""Test adding a data interface to a ProcessingModule using add(...) and retrieving it."""
ts = self._create_time_series()
self.pm.add(ts)
self.assertIn(ts.name, self.pm.containers)
self.assertIs(ts, self.pm.containers[ts.name])
def test_deprecated_add_data_interface(self):
ts = self._create_time_series()
with self.assertWarnsWith(
PendingDeprecationWarning, "add_data_interface will be replaced by add"
):
self.pm.add_data_interface(ts)
self.assertIn(ts.name, self.pm.containers)
self.assertIs(ts, self.pm.containers[ts.name])
def test_deprecated_add_container(self):
ts = self._create_time_series()
with self.assertWarnsWith(
PendingDeprecationWarning, "add_container will be replaced by add"
):
self.pm.add_container(ts)
self.assertIn(ts.name, self.pm.containers)
self.assertIs(ts, self.pm.containers[ts.name])
def test_get_data_interface(self):
"""Test adding a data interface to a ProcessingModule and retrieving it using get(...)."""
ts = self._create_time_series()
self.pm.add(ts)
tmp = self.pm.get("test_ts")
self.assertIs(tmp, ts)
self.assertIs(self.pm["test_ts"], self.pm.get("test_ts"))
def test_deprecated_get_data_interface(self):
ts = self._create_time_series()
self.pm.add(ts)
with self.assertWarnsWith(
PendingDeprecationWarning, "get_data_interface will be replaced by get"
):
tmp = self.pm.get_data_interface("test_ts")
self.assertIs(tmp, ts)
def test_deprecated_get_container(self):
ts = self._create_time_series()
self.pm.add(ts)
with self.assertWarnsWith(
PendingDeprecationWarning, "get_container will be replaced by get"
):
tmp = self.pm.get_container("test_ts")
self.assertIs(tmp, ts)
def test_getitem(self):
"""Test adding a data interface to a ProcessingModule and retrieving it using __getitem__(...)."""
ts = self._create_time_series()
self.pm.add(ts)
tmp = self.pm["test_ts"]
self.assertIs(tmp, ts)
class TestTimeSeries(TestCase):
def test_init_no_parent(self):
"""Test creating an empty TimeSeries and that it has no parent."""
ts = TimeSeries(name="test_ts", data=list(), unit="unit", timestamps=list())
self.assertEqual(ts.name, "test_ts")
self.assertIsNone(ts.parent)
def test_init_datalink_set(self):
"""Test creating a TimeSeries and that data_link is an empty set."""
ts = TimeSeries(name="test_ts", data=list(), unit="unit", timestamps=list())
self.assertIsInstance(ts.data_link, set)
self.assertEqual(len(ts.data_link), 0)
def test_init_timestampslink_set(self):
"""Test creating a TimeSeries and that timestamps_link is an empty set."""
ts = TimeSeries(name="test_ts", data=list(), unit="unit", timestamps=list())
self.assertIsInstance(ts.timestamp_link, set)
self.assertEqual(len(ts.timestamp_link), 0)
def test_init_data_timestamps(self):
data = [0, 1, 2, 3, 4]
timestamps = [0.0, 0.1, 0.2, 0.3, 0.4]
ts = TimeSeries(name="test_ts", data=data, unit="volts", timestamps=timestamps)
self.assertIs(ts.data, data)
self.assertIs(ts.timestamps, timestamps)
self.assertEqual(ts.conversion, 1.0)
self.assertEqual(ts.offset, 0.0)
self.assertEqual(ts.resolution, -1.0)
self.assertEqual(ts.unit, "volts")
self.assertEqual(ts.interval, 1)
self.assertEqual(ts.time_unit, "seconds")
self.assertEqual(ts.num_samples, 5)
self.assertIsNone(ts.continuity)
self.assertIsNone(ts.rate)
self.assertIsNone(ts.starting_time)
def test_init_conversion_offset(self):
data = [0, 1, 2, 3, 4]
timestamps = [0.0, 0.1, 0.2, 0.3, 0.4]
conversion = 2.1
offset = 1.2
ts = TimeSeries(
name="test_ts",
data=data,
unit="volts",
timestamps=timestamps,
conversion=conversion,
offset=offset,
)
self.assertIs(ts.data, data)
self.assertEqual(ts.conversion, conversion)
self.assertEqual(ts.offset, offset)
def test_no_time(self):
with self.assertRaisesWith(
TypeError, "either 'timestamps' or 'rate' must be specified"
):
TimeSeries(name="test_ts2", data=[10, 11, 12, 13, 14, 15], unit="grams")
def test_no_starting_time(self):
"""Test that if no starting_time is given, 0.0 is assumed."""
ts1 = TimeSeries(name="test_ts1", data=[1, 2, 3], unit="unit", rate=0.1)
self.assertEqual(ts1.starting_time, 0.0)
def test_init_rate(self):
ts = TimeSeries(
name="test_ts",
data=list(),
unit="volts",
starting_time=1.0,
rate=2.0,
)
self.assertEqual(ts.starting_time, 1.0)
self.assertEqual(ts.starting_time_unit, "seconds")
self.assertEqual(ts.rate, 2.0)
self.assertEqual(ts.time_unit, "seconds")
self.assertIsNone(ts.timestamps)
def test_data_timeseries(self):
"""Test that setting a TimeSeries.data to another TimeSeries links the data correctly."""
data = [0, 1, 2, 3]
timestamps1 = [0.0, 0.1, 0.2, 0.3]
timestamps2 = [1.0, 1.1, 1.2, 1.3]
ts1 = TimeSeries(
name="test_ts1", data=data, unit="grams", timestamps=timestamps1
)
ts2 = TimeSeries(
name="test_ts2", data=ts1, unit="grams", timestamps=timestamps2
)
self.assertEqual(ts2.data, data)
self.assertEqual(ts1.num_samples, ts2.num_samples)
self.assertEqual(ts1.data_link, set([ts2]))
def test_timestamps_timeseries(self):
"""Test that setting a TimeSeries.timestamps to another TimeSeries links the timestamps correctly."""
data1 = [0, 1, 2, 3]
data2 = [10, 11, 12, 13]
timestamps = [0.0, 0.1, 0.2, 0.3]
ts1 = TimeSeries(
name="test_ts1", data=data1, unit="grams", timestamps=timestamps
)
ts2 = TimeSeries(name="test_ts2", data=data2, unit="grams", timestamps=ts1)
self.assertEqual(ts2.timestamps, timestamps)
self.assertEqual(ts1.timestamp_link, set([ts2]))
def test_good_continuity_timeseries(self):
ts = TimeSeries(
name="test_ts1",
data=[0, 1, 2, 3, 4, 5],
unit="grams",
timestamps=[0.0, 0.1, 0.2, 0.3, 0.4, 0.5],
continuity="continuous",
)
self.assertEqual(ts.continuity, "continuous")
def test_bad_continuity_timeseries(self):
msg = (
"TimeSeries.__init__: forbidden value for 'continuity' (got 'wrong', "
"expected ['continuous', 'instantaneous', 'step'])"
)
with self.assertRaisesWith(ValueError, msg):
TimeSeries(
name="test_ts1",
data=[0, 1, 2, 3, 4, 5],
unit="grams",
timestamps=[0.0, 0.1, 0.2, 0.3, 0.4, 0.5],
continuity="wrong",
)
def _create_time_series_with_data(self, data):
ts = TimeSeries(name="test_ts1", data=data, unit="grams", rate=0.1)
return ts
def test_dataio_list_data(self):
length = 100
data = list(range(length))
ts = self._create_time_series_with_data(data)
self.assertEqual(ts.num_samples, length)
assert data == list(ts.data)
def test_dataio_dci_data(self):
def generator_factory():
return (i for i in range(100))
data = H5DataIO(DataChunkIterator(data=generator_factory()))
ts = self._create_time_series_with_data(data)
with self.assertWarnsWith(
UserWarning,
"The data attribute on this TimeSeries (named: test_ts1) has a "
"__len__, but it cannot be read",
):
self.assertIsNone(ts.num_samples)
for xi, yi in zip(data, generator_factory()):
assert np.allclose(xi, yi)
def test_dci_data(self):
def generator_factory():
return (i for i in range(100))
data = DataChunkIterator(data=generator_factory())
ts = self._create_time_series_with_data(data)
with self.assertWarnsWith(
UserWarning,
"The data attribute on this TimeSeries (named: test_ts1) has no __len__",
):
self.assertIsNone(ts.num_samples)
for xi, yi in zip(data, generator_factory()):
assert np.allclose(xi, yi)
def test_dci_data_arr(self):
def generator_factory():
return (np.array([i, i + 1]) for i in range(100))
data = DataChunkIterator(data=generator_factory())
ts = self._create_time_series_with_data(data)
with self.assertWarnsWith(
UserWarning,
"The data attribute on this TimeSeries (named: test_ts1) has no __len__",
):
self.assertIsNone(ts.num_samples)
for xi, yi in zip(data, generator_factory()):
assert np.allclose(xi, yi)
def test_dataio_list_timestamps(self):
length = 100
data = list(range(length))
ts = self._create_time_series_with_data(data)
self.assertEqual(ts.num_samples, length)
assert data == list(ts.data)
def _create_time_series_with_timestamps(self, timestamps):
# data has no __len__ for these tests
def generator_factory():
return (i for i in range(100))
ts = TimeSeries(
name="test_ts1",
data=DataChunkIterator(data=generator_factory()),
unit="grams",
timestamps=timestamps,
)
return ts
def test_dataio_dci_timestamps(self):
def generator_factory():
return (i for i in range(100))
timestamps = H5DataIO(DataChunkIterator(data=generator_factory()))
ts = self._create_time_series_with_timestamps(timestamps)
with self.assertWarns(UserWarning) as record:
self.assertIsNone(ts.num_samples)
assert len(record.warnings) == 2
assert record.warnings[0].message.args[0] == (
"The data attribute on this TimeSeries (named: test_ts1) has no __len__"
)
assert record.warnings[1].message.args[0] == (
"The timestamps attribute on this TimeSeries (named: test_ts1) has a "
"__len__, but it cannot be read"
)
for xi, yi in zip(timestamps, generator_factory()):
assert np.allclose(xi, yi)
def test_dci_timestamps(self):
def generator_factory():
return (i for i in range(100))
timestamps = DataChunkIterator(data=generator_factory())
ts = self._create_time_series_with_timestamps(timestamps)
with self.assertWarns(UserWarning) as record:
self.assertIsNone(ts.num_samples)
assert len(record.warnings) == 2
assert record.warnings[0].message.args[0] == (
"The data attribute on this TimeSeries (named: test_ts1) has no __len__"
)
assert record.warnings[1].message.args[0] == (
"The timestamps attribute on this TimeSeries (named: test_ts1) has no __len__"
)
for xi, yi in zip(timestamps, generator_factory()):
assert np.allclose(xi, yi)
def test_dci_timestamps_arr(self):
def generator_factory():
return np.array(np.arange(100))
timestamps = DataChunkIterator(data=generator_factory())
ts = self._create_time_series_with_timestamps(timestamps)
with self.assertWarns(UserWarning) as record:
self.assertIsNone(ts.num_samples)
assert len(record.warnings) == 2
assert record.warnings[0].message.args[0] == (
"The data attribute on this TimeSeries (named: test_ts1) has no __len__"
)
assert record.warnings[1].message.args[0] == (
"The timestamps attribute on this TimeSeries (named: test_ts1) has no __len__"
)
for xi, yi in zip(timestamps, generator_factory()):
assert np.allclose(xi, yi)
def test_conflicting_time_args(self):
with self.assertRaisesWith(
ValueError, "Specifying rate and timestamps is not supported."
):
TimeSeries(
name="test_ts2",
data=[10, 11, 12],
unit="grams",
rate=30.0,
timestamps=[0.3, 0.4, 0.5],
)
with self.assertRaisesWith(
ValueError, "Specifying starting_time and timestamps is not supported."
):
TimeSeries(
name="test_ts2",
data=[10, 11, 12],
unit="grams",
starting_time=30.0,
timestamps=[0.3, 0.4, 0.5],
)
def test_dimension_warning(self):
msg = (
"TimeSeries 'test_ts2': Length of data does not match length of timestamps. Your data may be "
"transposed. Time should be on the 0th dimension"
)
with self.assertWarnsWith(UserWarning, msg):
TimeSeries(
name="test_ts2",
data=[10, 11, 12],
unit="grams",
timestamps=[0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
)
def test_get_timestamps(self):
time_series = mock_TimeSeries(data=[1, 2, 3], rate=40.0, starting_time=30.0)
assert_array_equal(time_series.get_timestamps(), [30, 30+1/40, 30+2/40])
time_series = mock_TimeSeries(data=[1, 2, 3], timestamps=[3, 4, 5], rate=None)
assert_array_equal(time_series.get_timestamps(), [3, 4, 5])
def test_get_data_in_units(self):
ts = mock_TimeSeries(data=[1., 2., 3.], conversion=2., offset=3.)
assert_array_equal(ts.get_data_in_units(), [5., 7., 9.])
ts = mock_TimeSeries(data=[1., 2., 3.], conversion=2.)
assert_array_equal(ts.get_data_in_units(), [2., 4., 6.])
ts = mock_TimeSeries(data=[1., 2., 3.])
assert_array_equal(ts.get_data_in_units(), [1., 2., 3.])
def test_non_positive_rate(self):
with self.assertRaisesWith(ValueError, 'Rate must not be a negative value.'):
TimeSeries(name='test_ts', data=list(), unit='volts', rate=-1.0)
with self.assertWarnsWith(UserWarning,
'Timeseries has a rate of 0.0 Hz, but the length of the data is greater than 1.'):
TimeSeries(name='test_ts1', data=[1, 2, 3], unit='volts', rate=0.0)
def test_file_with_non_positive_rate_in_construct_mode(self):
"""Test that UserWarning is raised when rate is 0 or negative
while being in construct mode (i.e,. on data read)."""
obj = TimeSeries.__new__(TimeSeries,
container_source=None,
parent=None,
object_id="test",
in_construct_mode=True)
with self.assertWarnsWith(warn_type=UserWarning, exc_msg='Rate must not be a negative value.'):
obj.__init__(
name="test_ts",
data=list(),
unit="volts",
rate=-1.0
)
def test_file_with_rate_and_timestamps_in_construct_mode(self):
"""Test that UserWarning is raised when rate and timestamps are both specified
while being in construct mode (i.e,. on data read)."""
obj = TimeSeries.__new__(TimeSeries,
container_source=None,
parent=None,
object_id="test",
in_construct_mode=True)
with self.assertWarnsWith(warn_type=UserWarning, exc_msg='Specifying rate and timestamps is not supported.'):
obj.__init__(
name="test_ts",
data=[11, 12, 13, 14, 15],
unit="volts",
rate=1.0,
timestamps=[1, 2, 3, 4, 5]
)
def test_file_with_starting_time_and_timestamps_in_construct_mode(self):
"""Test that UserWarning is raised when starting_time and timestamps are both specified
while being in construct mode (i.e,. on data read)."""
obj = TimeSeries.__new__(TimeSeries,
container_source=None,
parent=None,
object_id="test",
in_construct_mode=True)
with self.assertWarnsWith(warn_type=UserWarning,
exc_msg='Specifying starting_time and timestamps is not supported.'):
obj.__init__(
name="test_ts",
data=[11, 12, 13, 14, 15],
unit="volts",
starting_time=1.0,
timestamps=[1, 2, 3, 4, 5]
)
def test_repr_html(self):
""" Test that html representation of linked timestamp data will occur as expected and will not cause a
RecursionError
"""
data1 = [0, 1, 2, 3]
data2 = [4, 5, 6, 7]
timestamps = [0.0, 0.1, 0.2, 0.3]
ts1 = TimeSeries(name="test_ts1", data=data1, unit="grams", timestamps=timestamps)
ts2 = TimeSeries(name="test_ts2", data=data2, unit="grams", timestamps=ts1)
pm = ProcessingModule(name="processing", description="a test processing module")
pm.add(ts1)
pm.add(ts2)
self.assertIn('(link to processing/test_ts1/timestamps)', pm._repr_html_())
class TestImage(TestCase):
def test_init(self):
im = Image(name="test_image", data=np.ones((10, 10)))
assert im.name == "test_image"
assert np.all(im.data == np.ones((10, 10)))
class TestImages(TestCase):
def test_images(self):
image1 = Image(name='test_image1', data=np.ones((10, 10)))
image2 = Image(name='test_image2', data=np.ones((10, 10)))
image_references = ImageReferences(name='order_of_images', data=[image2, image1])
images = Images(name='images_name', images=[image1, image2], order_of_images=image_references)
assert images.name == "images_name"
assert images.images == dict(test_image1=image1, test_image2=image2)
self.assertIs(images.order_of_images[0], image2)
self.assertIs(images.order_of_images[1], image1)
class TestTimeSeriesReferenceVectorData(TestCase):
def _create_time_series_with_rate(self):
ts = TimeSeries(
name="test",
description="test",
data=np.arange(10),
unit="unit",
starting_time=5.0,
rate=0.1,
)
return ts
def _create_time_series_with_timestamps(self):
ts = TimeSeries(
name="test",
description="test",
data=np.arange(10),
unit="unit",
timestamps=np.arange(10.0),
)
return ts
def test_init(self):
temp = TimeSeriesReferenceVectorData()
self.assertEqual(temp.name, "timeseries")
self.assertEqual(
temp.description,
"Column storing references to a TimeSeries (rows). For each TimeSeries this "
"VectorData column stores the start_index and count to indicate the range in time "
"to be selected as well as an object reference to the TimeSeries.",
)
self.assertListEqual(temp.data, [])
temp = TimeSeriesReferenceVectorData(name="test", description="test")
self.assertEqual(temp.name, "test")
self.assertEqual(temp.description, "test")
def test_get_empty(self):
"""Get data from an empty TimeSeriesReferenceVectorData"""
temp = TimeSeriesReferenceVectorData()
self.assertListEqual(temp[:], [])
with self.assertRaises(IndexError):
temp[0]
def test_append_get_length1_valid_data(self):
"""Get data from a TimeSeriesReferenceVectorData with one element and valid data"""
temp = TimeSeriesReferenceVectorData()
value = TimeSeriesReference(0, 5, self._create_time_series_with_rate())
temp.append(value)
self.assertTupleEqual(temp[0], value)
self.assertListEqual(
temp[:],
[
TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(*value),
],
)
def test_add_row_get_length1_valid_data(self):
"""Get data from a TimeSeriesReferenceVectorData with one element and valid data"""
temp = TimeSeriesReferenceVectorData()
value = TimeSeriesReference(0, 5, self._create_time_series_with_rate())
temp.add_row(value)
self.assertTupleEqual(temp[0], value)
self.assertListEqual(
temp[:],
[
TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(*value),
],
)
def test_get_length1_invalid_data(self):
"""Get data from a TimeSeriesReferenceVectorData with one element and invalid data"""
temp = TimeSeriesReferenceVectorData()
value = TimeSeriesReference(-1, -1, self._create_time_series_with_rate())
temp.append(value)
# test index slicing
re = temp[0]
self.assertTrue(
isinstance(re, TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE)
)
self.assertTupleEqual(
re, TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_NONE_TYPE
)
# test array slicing and list slicing
selection = [
slice(None),
[
0,
],
]
for s in selection:
re = temp[s]
self.assertTrue(isinstance(re, list))
self.assertTrue(len(re), 1)
self.assertTrue(
isinstance(
re[0], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE
)
)
self.assertTupleEqual(
re[0], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_NONE_TYPE
)
def test_get_length5_valid_data(self):
"""Get data from a TimeSeriesReferenceVectorData with 5 elements"""
temp = TimeSeriesReferenceVectorData()
num_values = 5
values = [
TimeSeriesReference(0, 5, self._create_time_series_with_rate())
for i in range(num_values)
]
for v in values:
temp.append(v)
# Test single element selection
for i in range(num_values):
# test index slicing
re = temp[i]
self.assertTupleEqual(re, values[i])
# test slicing
re = temp[i : i + 1]
self.assertTupleEqual(
re[0],
TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(*values[i]),
)
# Test multi element selection
re = temp[0:2]
self.assertTupleEqual(
re[0], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(*values[0])
)
self.assertTupleEqual(
re[1], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(*values[1])
)
def test_get_length5_with_invalid_data(self):
"""Get data from a TimeSeriesReferenceVectorData with 5 elements"""
temp = TimeSeriesReferenceVectorData()
num_values = 5
values = [
TimeSeriesReference(0, 5, self._create_time_series_with_rate())
for i in range(num_values - 2)
]
values = (
[
TimeSeriesReference(-1, -1, self._create_time_series_with_rate()),
]
+ values
+ [
TimeSeriesReference(-1, -1, self._create_time_series_with_rate()),
]
)
for v in values:
temp.append(v)
# Test single element selection
for i in range(num_values):
# test index slicing
re = temp[i]
if i in [0, 4]:
self.assertTrue(
isinstance(
re, TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE
)
)
self.assertTupleEqual(
re, TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_NONE_TYPE
)
else:
self.assertTupleEqual(re, values[i])
# test slicing
re = temp[i : i + 1]
if i in [0, 4]:
self.assertTrue(
isinstance(
re[0], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE
)
)
self.assertTupleEqual(
re[0], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_NONE_TYPE
)
else:
self.assertTupleEqual(
re[0],
TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(
*values[i]
),
)
# Test multi element selection
re = temp[0:2]
self.assertTupleEqual(
re[0], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_NONE_TYPE
)
self.assertTupleEqual(
re[1], TimeSeriesReferenceVectorData.TIME_SERIES_REFERENCE_TUPLE(*values[1])
)
def test_add_row(self):
v = TimeSeriesReferenceVectorData(name='a', description='a')
val = TimeSeriesReference(0, 5, TimeSeries(name='test', description='test',
data=np.arange(10), unit='unit', starting_time=5.0, rate=0.1))
v.add_row(val)
self.assertTupleEqual(v[0], val)
def test_add_row_with_plain_tuple(self):
v = TimeSeriesReferenceVectorData(name='a', description='a')
val = (0, 5, TimeSeries(name='test', description='test',
data=np.arange(10), unit='unit', starting_time=5.0, rate=0.1))
v.add_row(val)
self.assertTupleEqual(v[0], val)
def test_add_row_with_bad_tuple(self):
v = TimeSeriesReferenceVectorData(name='a', description='a')
val = (0.0, 5, TimeSeries(name='test', description='test',
data=np.arange(10), unit='unit', starting_time=5.0, rate=0.1))
with self.assertRaisesWith(TypeError, "idx_start must be an integer not <class 'float'>"):
v.add_row(val)
def test_add_row_restricted_type(self):
v = TimeSeriesReferenceVectorData(name="a", description="a")
with self.assertRaisesWith(
TypeError,
"TimeSeriesReferenceVectorData.add_row: incorrect type for "
"'val' (got 'int', expected 'TimeSeriesReference or tuple')",
):
v.add_row(1)
def test_append(self):
v = TimeSeriesReferenceVectorData(name='a', description='a')
val = TimeSeriesReference(0, 5, TimeSeries(name='test', description='test',
data=np.arange(10), unit='unit', starting_time=5.0, rate=0.1))
v.append(val)
self.assertTupleEqual(v[0], val)
def test_append_with_plain_tuple(self):
v = TimeSeriesReferenceVectorData(name='a', description='a')
val = (0, 5, TimeSeries(name='test', description='test',
data=np.arange(10), unit='unit', starting_time=5.0, rate=0.1))
v.append(val)
self.assertTupleEqual(v[0], val)
def test_append_with_bad_tuple(self):
v = TimeSeriesReferenceVectorData(name='a', description='a')
val = (0.0, 5, TimeSeries(name='test', description='test',
data=np.arange(10), unit='unit', starting_time=5.0, rate=0.1))
with self.assertRaisesWith(TypeError, "idx_start must be an integer not <class 'float'>"):
v.append(val)
def test_append_restricted_type(self):
v = TimeSeriesReferenceVectorData(name="a", description="a")
with self.assertRaisesWith(
TypeError,
"TimeSeriesReferenceVectorData.append: incorrect type for "
"'arg' (got 'float', expected 'TimeSeriesReference or tuple')",
):
v.append(2.0)
class TestTimeSeriesReference(TestCase):
def _create_time_series_with_rate(self):
ts = TimeSeries(
name="test",
description="test",
data=np.arange(10),
unit="unit",
starting_time=5.0,
rate=0.1,
)
return ts
def _create_time_series_with_timestamps(self):
ts = TimeSeries(
name="test",
description="test",
data=np.arange(10),
unit="unit",
timestamps=np.arange(10.0),
)
return ts
def test_check_types(self):
# invalid selection but with correct types
tsr = TimeSeriesReference(-1, -1, self._create_time_series_with_rate())
self.assertTrue(tsr.check_types())
# invalid types, use float instead of int for both idx_start and count
tsr = TimeSeriesReference(1.0, 5.0, self._create_time_series_with_rate())
with self.assertRaisesWith(
TypeError, "idx_start must be an integer not <class 'float'>"
):
tsr.check_types()
# invalid types, use float instead of int for idx_start only
tsr = TimeSeriesReference(1.0, 5, self._create_time_series_with_rate())
with self.assertRaisesWith(
TypeError, "idx_start must be an integer not <class 'float'>"
):
tsr.check_types()
# invalid types, use float instead of int for count only
tsr = TimeSeriesReference(1, 5.0, self._create_time_series_with_rate())
with self.assertRaisesWith(
TypeError, "count must be an integer <class 'float'>"
):
tsr.check_types()
# invalid type for TimeSeries but valid idx_start and count
tsr = TimeSeriesReference(1, 5, None)
with self.assertRaisesWith(
TypeError, "timeseries must be of type TimeSeries. <class 'NoneType'>"
):
tsr.check_types()
def test_is_invalid(self):
tsr = TimeSeriesReference(-1, -1, self._create_time_series_with_rate())
self.assertFalse(tsr.isvalid())
def test_is_valid(self):
tsr = TimeSeriesReference(0, 10, self._create_time_series_with_rate())
self.assertTrue(tsr.isvalid())
def test_is_valid_bad_index(self):
# Error: negative start_index but positive count
tsr = TimeSeriesReference(-1, 10, self._create_time_series_with_rate())
with self.assertRaisesWith(
IndexError, "'idx_start' -1 out of range for timeseries 'test'"
):
tsr.isvalid()
# Error: start_index too large
tsr = TimeSeriesReference(10, 0, self._create_time_series_with_rate())
with self.assertRaisesWith(
IndexError, "'idx_start' 10 out of range for timeseries 'test'"
):
tsr.isvalid()
# Error: positive start_index but negative count
tsr = TimeSeriesReference(0, -3, self._create_time_series_with_rate())
with self.assertRaisesWith(
IndexError, "'count' -3 invalid. 'count' must be positive"
):
tsr.isvalid()
# Error: start_index + count too large
tsr = TimeSeriesReference(3, 10, self._create_time_series_with_rate())
with self.assertRaisesWith(
IndexError, "'idx_start + count' out of range for timeseries 'test'"
):
tsr.isvalid()
def test_is_valid_no_num_samples(self):
def generator_factory():
return (i for i in range(100))
data = DataChunkIterator(data=generator_factory())
ts = TimeSeries(name="test_ts1", data=data, unit="grams", rate=0.1)
tsr = TimeSeriesReference(0, 10, ts)
with self.assertWarnsWith(
UserWarning,
"The data attribute on this TimeSeries (named: test_ts1) has no __len__",
):
self.assertTrue(tsr.isvalid())
def test_timestamps_property(self):
# Timestamps from starting_time and rate
tsr = TimeSeriesReference(5, 4, self._create_time_series_with_rate())
np.testing.assert_array_equal(tsr.timestamps, np.array([5.5, 5.6, 5.7, 5.8]))
# Timestamps from timestamps directly
tsr = TimeSeriesReference(5, 4, self._create_time_series_with_timestamps())
np.testing.assert_array_equal(tsr.timestamps, np.array([5.0, 6.0, 7.0, 8.0]))
def test_timestamps_property_invalid_reference(self):
# Timestamps from starting_time and rate
tsr = TimeSeriesReference(-1, -1, self._create_time_series_with_rate())
self.assertIsNone(tsr.timestamps)
def test_timestamps_property_bad_reference(self):
tsr = TimeSeriesReference(0, 12, self._create_time_series_with_timestamps())
with self.assertRaisesWith(
IndexError, "'idx_start + count' out of range for timeseries 'test'"
):
tsr.timestamps
tsr = TimeSeriesReference(0, 12, self._create_time_series_with_rate())
with self.assertRaisesWith(
IndexError, "'idx_start + count' out of range for timeseries 'test'"
):
tsr.timestamps
def test_data_property(self):
tsr = TimeSeriesReference(5, 4, self._create_time_series_with_rate())
np.testing.assert_array_equal(tsr.data, np.array([5.0, 6.0, 7.0, 8.0]))
def test_data_property_invalid_reference(self):
tsr = TimeSeriesReference(-1, -1, self._create_time_series_with_rate())
self.assertIsNone(tsr.data)
def test_data_property_bad_reference(self):
tsr = TimeSeriesReference(0, 12, self._create_time_series_with_rate())
with self.assertRaisesWith(
IndexError, "'idx_start + count' out of range for timeseries 'test'"
):
tsr.data
def test_empty_reference_creation(self):
tsr = TimeSeriesReference.empty(self._create_time_series_with_rate())
self.assertFalse(tsr.isvalid())
self.assertIsNone(tsr.data)
self.assertIsNone(tsr.timestamps)
|