1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
import numpy as np
from hdmf.common import DynamicTable, VectorData, DynamicTableRegion
from pynwb.misc import AnnotationSeries, AbstractFeatureSeries, IntervalSeries, Units, DecompositionSeries
from pynwb.file import TimeSeries, ElectrodeTable as get_electrode_table
from pynwb.device import Device
from pynwb.ecephys import ElectrodeGroup
from pynwb.testing import TestCase
class AnnotationSeriesConstructor(TestCase):
def test_init(self):
aS = AnnotationSeries('test_aS', data=[1, 2, 3], timestamps=[1., 2., 3.])
self.assertEqual(aS.name, 'test_aS')
aS.add_annotation(2.0, 'comment')
class AbstractFeatureSeriesConstructor(TestCase):
def test_init(self):
aFS = AbstractFeatureSeries('test_aFS', ['feature units'], ['features'], timestamps=list())
self.assertEqual(aFS.name, 'test_aFS')
self.assertEqual(aFS.feature_units, ['feature units'])
self.assertEqual(aFS.features, ['features'])
aFS.add_features(2.0, [1.])
class DecompositionSeriesConstructor(TestCase):
def test_init(self):
timeseries = TimeSeries(name='dummy timeseries', description='desc',
data=np.ones((3, 3)), unit='Volts',
timestamps=[1., 2., 3.])
bands = DynamicTable(name='bands', description='band info for LFPSpectralAnalysis', columns=[
VectorData(name='band_name', description='name of bands', data=['alpha', 'beta', 'gamma']),
VectorData(name='band_limits', description='low and high cutoffs in Hz', data=np.ones((3, 2))),
VectorData(name='band_mean', description='mean gaussian filters in Hz', data=np.ones((3,))),
VectorData(
name='band_stdev',
description='standard deviation of gaussian filters in Hz',
data=np.ones((3,))
),
])
spec_anal = DecompositionSeries(name='LFPSpectralAnalysis',
description='my description',
data=np.ones((3, 3, 3)),
timestamps=[1., 2., 3.],
source_timeseries=timeseries,
metric='amplitude',
bands=bands)
self.assertEqual(spec_anal.name, 'LFPSpectralAnalysis')
self.assertEqual(spec_anal.description, 'my description')
np.testing.assert_equal(spec_anal.data, np.ones((3, 3, 3)))
np.testing.assert_equal(spec_anal.timestamps, [1., 2., 3.])
self.assertEqual(spec_anal.bands['band_name'].data, ['alpha', 'beta', 'gamma'])
np.testing.assert_equal(spec_anal.bands['band_limits'].data, np.ones((3, 2)))
np.testing.assert_equal(spec_anal.bands['band_mean'].data, np.ones((3,)))
np.testing.assert_equal(spec_anal.bands['band_stdev'].data, np.ones((3,)))
self.assertEqual(spec_anal.source_timeseries, timeseries)
self.assertEqual(spec_anal.metric, 'amplitude')
def test_init_delayed_bands(self):
timeseries = TimeSeries(name='dummy timeseries', description='desc',
data=np.ones((3, 3)), unit='Volts',
timestamps=np.ones((3,)))
spec_anal = DecompositionSeries(name='LFPSpectralAnalysis',
description='my description',
data=np.ones((3, 3, 3)),
timestamps=[1., 2., 3.],
source_timeseries=timeseries,
metric='amplitude')
for band_name in ['alpha', 'beta', 'gamma']:
spec_anal.add_band(band_name=band_name, band_limits=(1., 1.), band_mean=1., band_stdev=1.)
self.assertEqual(spec_anal.name, 'LFPSpectralAnalysis')
self.assertEqual(spec_anal.description, 'my description')
np.testing.assert_equal(spec_anal.data, np.ones((3, 3, 3)))
np.testing.assert_equal(spec_anal.timestamps, [1., 2., 3.])
self.assertEqual(spec_anal.bands['band_name'].data, ['alpha', 'beta', 'gamma'])
np.testing.assert_equal(spec_anal.bands['band_limits'].data, np.ones((3, 2)))
self.assertEqual(spec_anal.source_timeseries, timeseries)
self.assertEqual(spec_anal.metric, 'amplitude')
@staticmethod
def make_electrode_table(self):
""" Make an electrode table, electrode group, and device """
self.table = get_electrode_table()
self.dev1 = Device(name='dev1')
self.group = ElectrodeGroup(name='tetrode1',
description='tetrode description',
location='tetrode location',
device=self.dev1)
for i in range(4):
self.table.add_row(location='CA1', group=self.group, group_name='tetrode1')
def test_init_with_source_channels(self):
self.make_electrode_table(self)
region = DynamicTableRegion(name='source_channels',
data=[0, 2],
description='the first and third electrodes',
table=self.table)
data = np.random.randn(100, 2, 30)
timestamps = np.arange(100)/100
ds = DecompositionSeries(name='test_DS',
data=data,
source_channels=region,
timestamps=timestamps,
metric='amplitude')
self.assertIs(ds.source_channels, region)
class IntervalSeriesConstructor(TestCase):
def test_init(self):
data = [1.0, -1.0, 1.0, -1.0]
timestamps = [0.0, 1.0, 2.0, 3.0]
iS = IntervalSeries('test_iS', data=data, timestamps=timestamps)
self.assertEqual(iS.name, 'test_iS')
self.assertEqual(iS.data, data)
self.assertEqual(iS.timestamps, timestamps)
def test_add_interval(self):
data = [1.0, -1.0, 1.0, -1.0]
timestamps = [0.0, 1.0, 2.0, 3.0]
iS = IntervalSeries('test_iS', data=data, timestamps=timestamps)
iS.add_interval(4.0, 5.0)
data.append(1.0)
data.append(-1.0)
timestamps.append(4.0)
timestamps.append(5.0)
self.assertEqual(iS.data, data)
self.assertEqual(iS.timestamps, timestamps)
class UnitsTests(TestCase):
def test_init(self):
ut = Units()
self.assertEqual(ut.name, 'Units')
self.assertFalse(ut.columns)
def test_add_spike_times(self):
ut = Units()
ut.add_unit(spike_times=[0, 1, 2])
ut.add_unit(spike_times=[3, 4, 5])
self.assertEqual(ut.id.data, [0, 1])
self.assertEqual(ut['spike_times'].target.data, [0, 1, 2, 3, 4, 5])
self.assertEqual(ut['spike_times'].data, [3, 6])
self.assertEqual(ut['spike_times'][0], [0, 1, 2])
self.assertEqual(ut['spike_times'][1], [3, 4, 5])
def test_add_waveforms(self):
ut = Units()
wf1 = [
[ # elec 1
[1, 2, 3],
[1, 2, 3],
[1, 2, 3]
], [ # elec 2
[1, 2, 3],
[1, 2, 3],
[1, 2, 3]
]
]
wf2 = [
[ # elec 1
[1, 2, 3], # spike 1, [sample 1, sample 2, sample 3]
[1, 2, 3], # spike 2
[1, 2, 3], # spike 3
[1, 2, 3] # spike 4
], [ # elec 2
[1, 2, 3], # spike 1
[1, 2, 3], # spike 2
[1, 2, 3], # spike 3
[1, 2, 3] # spike 4
], [ # elec 3
[1, 2, 3], # spike 1
[1, 2, 3], # spike 2
[1, 2, 3], # spike 3
[1, 2, 3] # spike 4
]
]
ut.add_unit(waveforms=wf1)
ut.add_unit(waveforms=wf2)
self.assertEqual(ut.id.data, [0, 1])
self.assertEqual(ut['waveforms'].target.data, [3, 6, 10, 14, 18])
self.assertEqual(ut['waveforms'].data, [2, 5])
self.assertListEqual(ut['waveforms'][0], wf1)
self.assertListEqual(ut['waveforms'][1], wf2)
def test_get_spike_times(self):
ut = Units()
ut.add_unit(spike_times=[0, 1, 2])
ut.add_unit(spike_times=[3, 4, 5])
self.assertTrue(all(ut.get_unit_spike_times(0) == np.array([0, 1, 2])))
self.assertTrue(all(ut.get_unit_spike_times(1) == np.array([3, 4, 5])))
@staticmethod
def test_get_spike_times_interval():
ut = Units()
ut.add_unit(spike_times=[0, 1, 2])
ut.add_unit(spike_times=[3, 4, 5])
np.testing.assert_array_equal(ut.get_unit_spike_times(0, (.5, 3)), [1, 2])
np.testing.assert_array_equal(ut.get_unit_spike_times(0, (-.5, 1.1)), [0, 1])
def test_get_spike_times_multi(self):
ut = Units()
ut.add_unit(spike_times=[0, 1, 2])
ut.add_unit(spike_times=[3, 4, 5])
np.testing.assert_array_equal(ut.get_unit_spike_times((0, 1)), [[0, 1, 2], [3, 4, 5]])
def test_get_spike_times_multi_interval(self):
ut = Units()
ut.add_unit(spike_times=[0, 1, 2])
ut.add_unit(spike_times=[3, 4, 5])
np.testing.assert_array_equal(ut.get_unit_spike_times((0, 1), (1.5, 3.5)), [[2], [3]])
def test_times(self):
ut = Units()
ut.add_unit(spike_times=[0, 1, 2])
ut.add_unit(spike_times=[3, 4, 5])
self.assertTrue(all(ut['spike_times'][0] == np.array([0, 1, 2])))
self.assertTrue(all(ut['spike_times'][1] == np.array([3, 4, 5])))
def test_get_obs_intervals(self):
ut = Units()
ut.add_unit(obs_intervals=[[0, 1]])
ut.add_unit(obs_intervals=[[2, 3], [4, 5]])
self.assertTrue(np.all(ut.get_unit_obs_intervals(0) == np.array([[0, 1]])))
self.assertTrue(np.all(ut.get_unit_obs_intervals(1) == np.array([[2, 3], [4, 5]])))
def test_obs_intervals(self):
ut = Units()
ut.add_unit(obs_intervals=[[0, 1]])
ut.add_unit(obs_intervals=[[2, 3], [4, 5]])
self.assertTrue(np.all(ut['obs_intervals'][0] == np.array([[0, 1]])))
self.assertTrue(np.all(ut['obs_intervals'][1] == np.array([[2, 3], [4, 5]])))
def test_times_and_intervals(self):
ut = Units()
ut.add_unit(spike_times=[0, 1, 2], obs_intervals=[[0, 2]])
ut.add_unit(spike_times=[3, 4, 5], obs_intervals=[[2, 3], [4, 5]])
self.assertTrue(all(ut['spike_times'][0] == np.array([0, 1, 2])))
self.assertTrue(all(ut['spike_times'][1] == np.array([3, 4, 5])))
self.assertTrue(np.all(ut['obs_intervals'][0] == np.array([[0, 2]])))
self.assertTrue(np.all(ut['obs_intervals'][1] == np.array([[2, 3], [4, 5]])))
def test_electrode_group(self):
ut = Units()
device = Device('test_device')
electrode_group = ElectrodeGroup('test_electrode_group', 'description', 'location', device)
ut.add_unit(electrode_group=electrode_group)
self.assertEqual(ut['electrode_group'][0], electrode_group)
def test_waveform_attrs(self):
ut = Units(waveform_rate=40000.)
self.assertEqual(ut.waveform_rate, 40000.)
self.assertEqual(ut.waveform_unit, 'volts')
|