1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
# pyOCD debugger
# Copyright (c) 2006-2020 Arm Limited
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import os
import sys
from time import sleep
from random import randrange
import math
import logging
from pyocd.core.helpers import ConnectHelper
from pyocd.core.memory_map import MemoryType
from pyocd.flash.file_programmer import FileProgrammer
from pyocd.utility.conversion import (float32_to_u32, u16le_list_to_byte_list)
from pyocd.utility.mask import same
from test_util import (
Test,
get_session_options,
get_test_binary_path,
)
# Simple code sequence used to test range stepping.
# The important part is that it has no branches.
RANGE_STEP_CODE = u16le_list_to_byte_list([
0x3001, # adds r0, #1
0x43C1, # mvns r1, r0
0x3101, # adds r1, #1
0x0102, # movs r2, r0, lsl #4
0x0013, # movs r3, r2
0x404B, # eors r3, r1
0x1840, # adds r0, r1
0x1880, # adds r0, r2
0x1AC0, # subs r0, r3
0xBE00, # bkpt #0
])
class BasicTest(Test):
def __init__(self):
super(BasicTest, self).__init__("Basic Test", run_basic_test)
def run_basic_test(board_id):
return basic_test(board_id, None)
def basic_test(board_id, file):
with ConnectHelper.session_with_chosen_probe(unique_id=board_id, **get_session_options()) as session:
board = session.board
addr = 0
size = 0
f = None
binary_file = "l1_"
if file is None:
binary_file = get_test_binary_path(board.test_binary)
else:
binary_file = file
print("binary file: %s" % binary_file)
memory_map = board.target.get_memory_map()
ram_region = memory_map.get_default_region_of_type(MemoryType.RAM)
rom_region = memory_map.get_boot_memory()
addr = ram_region.start
size = 0x502
addr_bin = rom_region.start
target = board.target
flash = rom_region.flash
print("\n\n------ GET Unique ID ------")
print("Unique ID: %s" % board.unique_id)
print("\n\n------ TEST READ / WRITE CORE REGISTER ------")
pc = target.read_core_register('pc')
print("initial pc: 0x%X" % target.read_core_register('pc'))
# write in pc dummy value
target.write_core_register('pc', 0x3D82)
print("now pc: 0x%X" % target.read_core_register('pc'))
# write initial pc value
target.write_core_register('pc', pc)
print("initial pc value rewritten: 0x%X" % target.read_core_register('pc'))
msp = target.read_core_register('msp')
psp = target.read_core_register('psp')
print("MSP = 0x%08x; PSP = 0x%08x" % (msp, psp))
if 'faultmask' in target.core_registers.by_name:
control = target.read_core_register('control')
faultmask = target.read_core_register('faultmask')
basepri = target.read_core_register('basepri')
primask = target.read_core_register('primask')
print("CONTROL = 0x%02x; FAULTMASK = 0x%02x; BASEPRI = 0x%02x; PRIMASK = 0x%02x" % (control, faultmask, basepri, primask))
else:
control = target.read_core_register('control')
primask = target.read_core_register('primask')
print("CONTROL = 0x%02x; PRIMASK = 0x%02x" % (control, primask))
target.write_core_register('primask', 1)
newPrimask = target.read_core_register('primask')
print("New PRIMASK = 0x%02x" % newPrimask)
target.write_core_register('primask', primask)
newPrimask = target.read_core_register('primask')
print("Restored PRIMASK = 0x%02x" % newPrimask)
if target.selected_core.has_fpu:
s0 = target.read_core_register('s0')
print("S0 = %g (0x%08x)" % (s0, float32_to_u32(s0)))
target.write_core_register('s0', math.pi)
newS0 = target.read_core_register('s0')
print("New S0 = %g (0x%08x)" % (newS0, float32_to_u32(newS0)))
target.write_core_register('s0', s0)
newS0 = target.read_core_register('s0')
print("Restored S0 = %g (0x%08x)" % (newS0, float32_to_u32(newS0)))
print("\n\n------ TEST HALT / RESUME ------")
print("resume")
target.resume()
sleep(0.2)
print("halt")
target.halt()
print("HALT: pc: 0x%X" % target.read_core_register('pc'))
sleep(0.2)
print("\n\n------ TEST STEP ------")
print("reset and halt")
target.reset_and_halt()
currentPC = target.read_core_register('pc')
print("HALT: pc: 0x%X" % currentPC)
sleep(0.2)
for i in range(4):
print("step")
target.step()
newPC = target.read_core_register('pc')
print("STEP: pc: 0x%X" % newPC)
sleep(0.2)
print("\n\n------ TEST RANGE STEP ------")
# Add some extra room before end of memory, and a second copy so there are instructions
# after the final bkpt. Add 1 because region end is always odd.
test_addr = ram_region.end + 1 - len(RANGE_STEP_CODE) * 2 - 32
# Since the end address is inclusive, we need to exclude the last instruction.
test_end_addr = test_addr + len(RANGE_STEP_CODE) - 2
print("range start = %#010x; range_end = %#010x" % (test_addr, test_end_addr))
# Load up some code into ram to test range step.
target.write_memory_block8(test_addr, RANGE_STEP_CODE * 2)
check_data = target.read_memory_block8(test_addr, len(RANGE_STEP_CODE) * 2)
if not same(check_data, RANGE_STEP_CODE * 2):
print("Failed to write range step test code to RAM")
else:
print("wrote range test step code to RAM successfully")
target.write_core_register('pc', test_addr)
currentPC = target.read_core_register('pc')
print("start PC: 0x%X" % currentPC)
target.step(start=test_addr, end=test_end_addr)
newPC = target.read_core_register('pc')
print("end PC: 0x%X" % newPC)
# Now test again to ensure the bkpt stops it.
target.write_core_register('pc', test_addr)
currentPC = target.read_core_register('pc')
print("start PC: 0x%X" % currentPC)
target.step(start=test_addr, end=test_end_addr + 4) # include bkpt
newPC = target.read_core_register('pc')
print("end PC: 0x%X" % newPC)
halt_reason = target.get_halt_reason()
print("halt reason: %s (should be BREAKPOINT)" % halt_reason.name)
print("\n\n------ TEST READ / WRITE MEMORY ------")
target.halt()
print("READ32/WRITE32")
val = randrange(0, 0xffffffff)
print("write32 0x%X at 0x%X" % (val, addr))
target.write_memory(addr, val)
res = target.read_memory(addr)
print("read32 at 0x%X: 0x%X" % (addr, res))
if res != val:
print("ERROR in READ/WRITE 32")
print("\nREAD16/WRITE16")
val = randrange(0, 0xffff)
print("write16 0x%X at 0x%X" % (val, addr + 2))
target.write_memory(addr + 2, val, 16)
res = target.read_memory(addr + 2, 16)
print("read16 at 0x%X: 0x%X" % (addr + 2, res))
if res != val:
print("ERROR in READ/WRITE 16")
print("\nREAD8/WRITE8")
val = randrange(0, 0xff)
print("write8 0x%X at 0x%X" % (val, addr + 1))
target.write_memory(addr + 1, val, 8)
res = target.read_memory(addr + 1, 8)
print("read8 at 0x%X: 0x%X" % (addr + 1, res))
if res != val:
print("ERROR in READ/WRITE 8")
print("\n\n------ TEST READ / WRITE MEMORY BLOCK ------")
data = [randrange(1, 50) for x in range(size)]
target.write_memory_block8(addr, data)
block = target.read_memory_block8(addr, size)
error = False
for i in range(len(block)):
if (block[i] != data[i]):
error = True
print("ERROR: 0x%X, 0x%X, 0x%X!!!" % ((addr + i), block[i], data[i]))
if error:
print("TEST FAILED")
else:
print("TEST PASSED")
print("\n\n------ TEST RESET ------")
target.reset()
sleep(0.1)
target.halt()
for i in range(5):
target.step()
print("pc: 0x%X" % target.read_core_register('pc'))
print("\n\n------ TEST PROGRAM/ERASE PAGE ------")
# Fill 3 pages with 0x55
sector_size = rom_region.sector_size
page_size = rom_region.page_size
sectors_to_test = min(rom_region.length // sector_size, 3)
addr_flash = rom_region.start + rom_region.length - sector_size * sectors_to_test
fill = [0x55] * page_size
for i in range(0, sectors_to_test):
address = addr_flash + sector_size * i
# Test only supports a location with 3 aligned
# pages of the same size
current_page_size = flash.get_page_info(addr_flash).size
assert page_size == current_page_size
assert address % current_page_size == 0
print("Erasing sector @ 0x%x (%d bytes)" % (address, sector_size))
flash.init(flash.Operation.ERASE)
flash.erase_sector(address)
print("Verifying erased sector @ 0x%x (%d bytes)" % (address, sector_size))
data = target.read_memory_block8(address, sector_size)
if data != [flash.region.erased_byte_value] * sector_size:
print("FAILED to erase sector @ 0x%x (%d bytes)" % (address, sector_size))
else:
print("Programming page @ 0x%x (%d bytes)" % (address, page_size))
flash.init(flash.Operation.PROGRAM)
flash.program_page(address, fill)
print("Verifying programmed page @ 0x%x (%d bytes)" % (address, page_size))
data = target.read_memory_block8(address, page_size)
if data != fill:
print("FAILED to program page @ 0x%x (%d bytes)" % (address, page_size))
# Erase the middle sector
if sectors_to_test > 1:
address = addr_flash + sector_size
print("Erasing sector @ 0x%x (%d bytes)" % (address, sector_size))
flash.init(flash.Operation.ERASE)
flash.erase_sector(address)
flash.cleanup()
print("Verifying erased sector @ 0x%x (%d bytes)" % (address, sector_size))
data = target.read_memory_block8(address, sector_size)
if data != [flash.region.erased_byte_value] * sector_size:
print("FAILED to erase sector @ 0x%x (%d bytes)" % (address, sector_size))
# Re-verify the 1st and 3rd page were not erased, and that the 2nd page is fully erased
did_pass = False
for i in range(0, sectors_to_test):
address = addr_flash + sector_size * i
print("Verifying page @ 0x%x (%d bytes)" % (address, page_size))
data = target.read_memory_block8(address, page_size)
expected = ([flash.region.erased_byte_value] * page_size) if (i == 1) else fill
did_pass = (data == expected)
if not did_pass:
print("FAILED verify for page @ 0x%x (%d bytes)" % (address, page_size))
break
if did_pass:
print("TEST PASSED")
else:
print("TEST FAILED")
print("\n\n----- FLASH NEW BINARY -----")
FileProgrammer(session).program(binary_file, base_address=addr_bin)
target.reset()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='A CMSIS-DAP python debugger')
parser.add_argument('-f', help='binary file', dest="file")
parser.add_argument('-d', '--debug', action="store_true", help='Enable debug logging')
args = parser.parse_args()
level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(level=level)
file = args.file
basic_test(None, file)
|