File: basic_test.py

package info (click to toggle)
pyocd 0.36.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 341,216 kB
  • sloc: xml: 3,682,260; python: 59,213; ansic: 112; makefile: 87; asm: 25; sh: 14
file content (321 lines) | stat: -rw-r--r-- 12,687 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# pyOCD debugger
# Copyright (c) 2006-2020 Arm Limited
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import argparse
import os
import sys
from time import sleep
from random import randrange
import math
import logging

from pyocd.core.helpers import ConnectHelper
from pyocd.core.memory_map import MemoryType
from pyocd.flash.file_programmer import FileProgrammer
from pyocd.utility.conversion import (float32_to_u32, u16le_list_to_byte_list)
from pyocd.utility.mask import same

from test_util import (
    Test,
    get_session_options,
    get_test_binary_path,
    )

# Simple code sequence used to test range stepping.
# The important part is that it has no branches.
RANGE_STEP_CODE = u16le_list_to_byte_list([
        0x3001, # adds    r0, #1
        0x43C1, # mvns    r1, r0
        0x3101, # adds    r1, #1
        0x0102, # movs    r2, r0, lsl #4
        0x0013, # movs    r3, r2
        0x404B, # eors    r3, r1
        0x1840, # adds    r0, r1
        0x1880, # adds    r0, r2
        0x1AC0, # subs    r0, r3
        0xBE00, # bkpt    #0
        ])

class BasicTest(Test):
    def __init__(self):
        super(BasicTest, self).__init__("Basic Test", run_basic_test)

def run_basic_test(board_id):
    return basic_test(board_id, None)

def basic_test(board_id, file):
    with ConnectHelper.session_with_chosen_probe(unique_id=board_id, **get_session_options()) as session:
        board = session.board
        addr = 0
        size = 0
        f = None
        binary_file = "l1_"

        if file is None:
            binary_file = get_test_binary_path(board.test_binary)
        else:
            binary_file = file

        print("binary file: %s" % binary_file)

        memory_map = board.target.get_memory_map()
        ram_region = memory_map.get_default_region_of_type(MemoryType.RAM)
        rom_region = memory_map.get_boot_memory()

        addr = ram_region.start
        size = 0x502
        addr_bin = rom_region.start

        target = board.target
        flash = rom_region.flash

        print("\n\n------ GET Unique ID ------")
        print("Unique ID: %s" % board.unique_id)

        print("\n\n------ TEST READ / WRITE CORE REGISTER ------")
        pc = target.read_core_register('pc')
        print("initial pc: 0x%X" % target.read_core_register('pc'))
        # write in pc dummy value
        target.write_core_register('pc', 0x3D82)
        print("now pc: 0x%X" % target.read_core_register('pc'))
        # write initial pc value
        target.write_core_register('pc', pc)
        print("initial pc value rewritten: 0x%X" % target.read_core_register('pc'))

        msp = target.read_core_register('msp')
        psp = target.read_core_register('psp')
        print("MSP = 0x%08x; PSP = 0x%08x" % (msp, psp))

        if 'faultmask' in target.core_registers.by_name:
            control = target.read_core_register('control')
            faultmask = target.read_core_register('faultmask')
            basepri = target.read_core_register('basepri')
            primask = target.read_core_register('primask')
            print("CONTROL = 0x%02x; FAULTMASK = 0x%02x; BASEPRI = 0x%02x; PRIMASK = 0x%02x" % (control, faultmask, basepri, primask))
        else:
            control = target.read_core_register('control')
            primask = target.read_core_register('primask')
            print("CONTROL = 0x%02x; PRIMASK = 0x%02x" % (control, primask))

        target.write_core_register('primask', 1)
        newPrimask = target.read_core_register('primask')
        print("New PRIMASK = 0x%02x" % newPrimask)
        target.write_core_register('primask', primask)
        newPrimask = target.read_core_register('primask')
        print("Restored PRIMASK = 0x%02x" % newPrimask)

        if target.selected_core.has_fpu:
            s0 = target.read_core_register('s0')
            print("S0 = %g (0x%08x)" % (s0, float32_to_u32(s0)))
            target.write_core_register('s0', math.pi)
            newS0 = target.read_core_register('s0')
            print("New S0 = %g (0x%08x)" % (newS0, float32_to_u32(newS0)))
            target.write_core_register('s0', s0)
            newS0 = target.read_core_register('s0')
            print("Restored S0 = %g (0x%08x)" % (newS0, float32_to_u32(newS0)))


        print("\n\n------ TEST HALT / RESUME ------")

        print("resume")
        target.resume()
        sleep(0.2)

        print("halt")
        target.halt()
        print("HALT: pc: 0x%X" % target.read_core_register('pc'))
        sleep(0.2)


        print("\n\n------ TEST STEP ------")

        print("reset and halt")
        target.reset_and_halt()
        currentPC = target.read_core_register('pc')
        print("HALT: pc: 0x%X" % currentPC)
        sleep(0.2)

        for i in range(4):
            print("step")
            target.step()
            newPC = target.read_core_register('pc')
            print("STEP: pc: 0x%X" % newPC)
            sleep(0.2)

        print("\n\n------ TEST RANGE STEP ------")

        # Add some extra room before end of memory, and a second copy so there are instructions
        # after the final bkpt. Add 1 because region end is always odd.
        test_addr = ram_region.end + 1 - len(RANGE_STEP_CODE) * 2 - 32
        # Since the end address is inclusive, we need to exclude the last instruction.
        test_end_addr = test_addr + len(RANGE_STEP_CODE) - 2
        print("range start = %#010x; range_end = %#010x" % (test_addr, test_end_addr))
        # Load up some code into ram to test range step.
        target.write_memory_block8(test_addr, RANGE_STEP_CODE * 2)
        check_data = target.read_memory_block8(test_addr, len(RANGE_STEP_CODE) * 2)
        if not same(check_data, RANGE_STEP_CODE * 2):
            print("Failed to write range step test code to RAM")
        else:
            print("wrote range test step code to RAM successfully")

        target.write_core_register('pc', test_addr)
        currentPC = target.read_core_register('pc')
        print("start PC: 0x%X" % currentPC)
        target.step(start=test_addr, end=test_end_addr)
        newPC = target.read_core_register('pc')
        print("end PC: 0x%X" % newPC)

        # Now test again to ensure the bkpt stops it.
        target.write_core_register('pc', test_addr)
        currentPC = target.read_core_register('pc')
        print("start PC: 0x%X" % currentPC)
        target.step(start=test_addr, end=test_end_addr + 4) # include bkpt
        newPC = target.read_core_register('pc')
        print("end PC: 0x%X" % newPC)
        halt_reason = target.get_halt_reason()
        print("halt reason: %s (should be BREAKPOINT)" % halt_reason.name)

        print("\n\n------ TEST READ / WRITE MEMORY ------")
        target.halt()
        print("READ32/WRITE32")
        val = randrange(0, 0xffffffff)
        print("write32 0x%X at 0x%X" % (val, addr))
        target.write_memory(addr, val)
        res = target.read_memory(addr)
        print("read32 at 0x%X: 0x%X" % (addr, res))
        if res != val:
            print("ERROR in READ/WRITE 32")

        print("\nREAD16/WRITE16")
        val = randrange(0, 0xffff)
        print("write16 0x%X at 0x%X" % (val, addr + 2))
        target.write_memory(addr + 2, val, 16)
        res = target.read_memory(addr + 2, 16)
        print("read16 at 0x%X: 0x%X" % (addr + 2, res))
        if res != val:
            print("ERROR in READ/WRITE 16")

        print("\nREAD8/WRITE8")
        val = randrange(0, 0xff)
        print("write8 0x%X at 0x%X" % (val, addr + 1))
        target.write_memory(addr + 1, val, 8)
        res = target.read_memory(addr + 1, 8)
        print("read8 at 0x%X: 0x%X" % (addr + 1, res))
        if res != val:
            print("ERROR in READ/WRITE 8")


        print("\n\n------ TEST READ / WRITE MEMORY BLOCK ------")
        data = [randrange(1, 50) for x in range(size)]
        target.write_memory_block8(addr, data)
        block = target.read_memory_block8(addr, size)
        error = False
        for i in range(len(block)):
            if (block[i] != data[i]):
                error = True
                print("ERROR: 0x%X, 0x%X, 0x%X!!!" % ((addr + i), block[i], data[i]))
        if error:
            print("TEST FAILED")
        else:
            print("TEST PASSED")


        print("\n\n------ TEST RESET ------")
        target.reset()
        sleep(0.1)
        target.halt()

        for i in range(5):
            target.step()
            print("pc: 0x%X" % target.read_core_register('pc'))

        print("\n\n------ TEST PROGRAM/ERASE PAGE ------")
        # Fill 3 pages with 0x55
        sector_size = rom_region.sector_size
        page_size = rom_region.page_size
        sectors_to_test = min(rom_region.length // sector_size, 3)
        addr_flash = rom_region.start + rom_region.length - sector_size * sectors_to_test
        fill = [0x55] * page_size
        for i in range(0, sectors_to_test):
            address = addr_flash + sector_size * i
            # Test only supports a location with 3 aligned
            # pages of the same size
            current_page_size = flash.get_page_info(addr_flash).size
            assert page_size == current_page_size
            assert address % current_page_size == 0

            print("Erasing sector @ 0x%x (%d bytes)" % (address, sector_size))
            flash.init(flash.Operation.ERASE)
            flash.erase_sector(address)

            print("Verifying erased sector @ 0x%x (%d bytes)" % (address, sector_size))
            data = target.read_memory_block8(address, sector_size)
            if data != [flash.region.erased_byte_value] * sector_size:
                print("FAILED to erase sector @ 0x%x (%d bytes)" % (address, sector_size))
            else:
                print("Programming page @ 0x%x (%d bytes)" % (address, page_size))
                flash.init(flash.Operation.PROGRAM)
                flash.program_page(address, fill)

                print("Verifying programmed page @ 0x%x (%d bytes)" % (address, page_size))
                data = target.read_memory_block8(address, page_size)
                if data != fill:
                    print("FAILED to program page @ 0x%x (%d bytes)" % (address, page_size))

        # Erase the middle sector
        if sectors_to_test > 1:
            address = addr_flash + sector_size
            print("Erasing sector @ 0x%x (%d bytes)" % (address, sector_size))
            flash.init(flash.Operation.ERASE)
            flash.erase_sector(address)
        flash.cleanup()

        print("Verifying erased sector @ 0x%x (%d bytes)" % (address, sector_size))
        data = target.read_memory_block8(address, sector_size)
        if data != [flash.region.erased_byte_value] * sector_size:
            print("FAILED to erase sector @ 0x%x (%d bytes)" % (address, sector_size))

        # Re-verify the 1st and 3rd page were not erased, and that the 2nd page is fully erased
        did_pass = False
        for i in range(0, sectors_to_test):
            address = addr_flash + sector_size * i
            print("Verifying page @ 0x%x (%d bytes)" % (address, page_size))
            data = target.read_memory_block8(address, page_size)
            expected = ([flash.region.erased_byte_value] * page_size) if (i == 1) else fill
            did_pass = (data == expected)
            if not did_pass:
                print("FAILED verify for page @ 0x%x (%d bytes)" % (address, page_size))
                break
        if did_pass:
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("\n\n----- FLASH NEW BINARY -----")
        FileProgrammer(session).program(binary_file, base_address=addr_bin)

        target.reset()

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='A CMSIS-DAP python debugger')
    parser.add_argument('-f', help='binary file', dest="file")
    parser.add_argument('-d', '--debug', action="store_true", help='Enable debug logging')
    args = parser.parse_args()
    level = logging.DEBUG if args.debug else logging.INFO
    logging.basicConfig(level=level)
    file = args.file
    basic_test(None, file)