1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
import os
from tempfile import NamedTemporaryFile
import numpy as np
import numpy.testing
import pandas
import pandas as pd
import pytest
from conftest import odc_modules
from pyodc import Reader, codec
from pyodc.constants import INTERNAL_REAL_MISSING
# Each case is [data_column, expected_codec]
testcases = [
# Anything constant that fits in less than 8 bytes goes into codec.Constant
[[0, 0, 0, 0, 0, 0, 0], codec.Constant],
[[73] * 7, codec.Constant],
[[1.432] * 7, codec.Constant],
# Like the above but with missing values
[[1, 1, 1, None, 1, 1, 1], codec.ConstantOrMissing],
[[0.1, 0.1, 0.1, None, 0.1, 0.1, 0.1], codec.RealConstantOrMissing],
# Constant columns of strings of less than 8 bytes go into ConstantString
[["abcd"] * 7, codec.ConstantString],
# Constant columns of strings of more than 8 bytes must be handled differently
[["abcdefghi"] * 7, codec.Int8String],
# Columns of strings with less than 2^n unique values go into Int8String or Int16String
[["aoeu", "aoeu", "aaaaaaaooooooo", "None", "boo", "squiggle", "a"], codec.Int8String],
[["longconstant"] + [str(num) for num in range(256)], codec.Int16String],
# Integers
[[1, 2, 3, 4, 5, 6, 7], codec.Int8],
[[1, None, 3, 4, 5, None, 7], codec.Int8Missing],
[[-512, None, 3, 7623, -22000, None, 7], codec.Int16Missing],
# Integers supplied as int32, int16 or int8 need to be internally cast to int64 if using the codc encoder
[np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.uint8), codec.Int8],
[np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.int8), codec.Int8],
[np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.uint16), codec.Int8],
[np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.int16), codec.Int8],
[np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.uint32), codec.Int8],
[np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.int32), codec.Int8],
[np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.int64), codec.Int8],
# Integers encoded as floats
[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], codec.Int8],
[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, None], codec.Int8Missing],
[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, np.nan], codec.Int8Missing],
[np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, np.nan]), codec.Int8Missing],
[np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], dtype=np.float32), codec.Int8],
[np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, np.nan], dtype=np.float32), codec.Int8Missing],
# uint64 is not supported
# [np.array([1, 2, 3, 4, 5, 6, 7, 2**64 - 1], dtype = np.uint64), codec.Int8],
# Breaking the pattern, codec.Int32 accepts missing values.
[[-1234567, 8765432, None, 22, 22222222, -81222323, None], codec.Int32],
# Reals
[[999.99, 888.88, 777.77, 666.66, 555.55, 444.44, 333.33], codec.LongReal],
# ShortReal2 is the default codec for float32 which uses INTERNAL_REAL_MISSING[1] to represent missing data
[np.array([999.99, 888.88, 777.77, 666.66, 555.55, 444.44, 333.33], dtype=np.float32), codec.ShortReal2],
[
np.array([INTERNAL_REAL_MISSING[0], 888.88, 777.77, 666.66, 555.55, 444.44, 333.33], dtype=np.float32),
codec.ShortReal2,
],
# When INTERNAL_REAL_MISSING[1] is present,
# the codec switches to ShortReal which uses a different value to represent missing data
[
np.array([INTERNAL_REAL_MISSING[1], 888.88, 777.77, 666.66, 555.55, 444.44, 333.33], dtype=np.float32),
codec.ShortReal,
],
]
def first_codec(file):
return Reader(file).frames[0]._column_codecs[0]
@pytest.mark.parametrize("decoder", odc_modules)
@pytest.mark.parametrize("encoder", odc_modules)
@pytest.mark.parametrize("testcase", testcases)
def test_codec_choice(testcase, encoder, decoder):
"Check that codc and pyodc choose the same codec for all the test data"
testdata, expected_codec = testcase
df = pd.DataFrame(dict(column=testdata))
with NamedTemporaryFile() as fencode:
encoder.encode_odb(df, fencode.name)
round_tripped_data = decoder.read_odb(fencode.name, single=True)
chosen_codec = type(first_codec(fencode.name))
assert chosen_codec == expected_codec, (
f"{encoder.__name__} chose codec '{chosen_codec.__name__}'"
f"but we expected '{expected_codec.__name__}' for {testdata!r}"
)
# Check the data round tripped
numpy.testing.assert_array_equal(df.column.values, round_tripped_data.column.values)
@pytest.mark.parametrize("encoder", odc_modules)
@pytest.mark.parametrize("decoder", odc_modules)
def test_codec_choice_long_string(encoder, decoder):
"""
Check that codc and pyodc choose the same codec for long constant strings
in the presence of the ODC_ENABLE_WRITING_LONG_STRING_CODEC environment variable.
"""
testdata, expected_codec = [["abcdefghi"] * 7, codec.LongConstantString]
df = pd.DataFrame(dict(column=testdata))
os.environ["ODC_ENABLE_WRITING_LONG_STRING_CODEC"] = "true"
with NamedTemporaryFile() as fencode:
encoder.encode_odb(df, fencode.name)
round_tripped_data = decoder.read_odb(fencode.name, single=True)
chosen_codec = first_codec(fencode.name)
del os.environ["ODC_ENABLE_WRITING_LONG_STRING_CODEC"]
assert type(chosen_codec) is expected_codec
# Check the data round tripped
numpy.testing.assert_array_equal(df.column.values, round_tripped_data.column.values)
|