File: demo_mandelbrot.py

package info (click to toggle)
pyopencl 0.92.dfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: squeeze
  • size: 572 kB
  • ctags: 843
  • sloc: python: 3,982; cpp: 3,333; makefile: 101; sh: 2
file content (162 lines) | stat: -rw-r--r-- 4,933 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# I found this example for PyCuda here:
# http://wiki.tiker.net/PyCuda/Examples/Mandelbrot
#
# I adapted it for PyOpenCL. Hopefully it is useful to someone.
# July 2010, HolgerRapp@gmx.net
#
# Original readme below these lines. 

# Mandelbrot calculate using GPU, Serial numpy and faster numpy
# Use to show the speed difference between CPU and GPU calculations
# ian@ianozsvald.com March 2010

# Based on vegaseat's TKinter/numpy example code from 2006
# http://www.daniweb.com/code/snippet216851.html#
# with minor changes to move to numpy from the obsolete Numeric

import numpy as np
import time

import numpy
import numpy.linalg as la

import pyopencl as cl

# You can choose a calculation routine below (calc_fractal), uncomment
# one of the three lines to test the three variations
# Speed notes are listed in the same place

# set width and height of window, more pixels take longer to calculate
w = 256
h = 256

def calc_fractal_opencl(q, maxiter):
    ctx = cl.Context(cl.get_platforms()[0].get_devices())
    queue = cl.CommandQueue(ctx)

    output = np.empty(q.shape, dtype=np.uint16)

    mf = cl.mem_flags
    q_opencl = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=q)
    output_opencl = cl.Buffer(ctx, mf.WRITE_ONLY, output.nbytes)

    prg = cl.Program(ctx, """
    #pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
    __kernel void mandelbrot(__global float2 *q,
                     __global ushort *output, ushort const maxiter)
    {
        int gid = get_global_id(0);
        float nreal, real = 0;
        float imag = 0;

        output[gid] = 0;

        for(int curiter = 0; curiter < maxiter; curiter++) {
            nreal = real*real - imag*imag + q[gid].x;
            imag = 2* real*imag + q[gid].y;
            real = nreal;

            if (real*real + imag*imag > 4.0f)
                 output[gid] = curiter;
        }
    }
    """).build()

    prg.mandelbrot(queue, output.shape, (64,), q_opencl,
            output_opencl, np.uint16(maxiter))

    cl.enqueue_read_buffer(queue, output_opencl, output).wait()

    return output



def calc_fractal_serial(q, maxiter):
    # calculate z using numpy
    # this routine unrolls calc_fractal_numpy as an intermediate
    # step to the creation of calc_fractal_opencl
    # it runs slower than calc_fractal_numpy
    z = np.zeros(q.shape, np.complex64)
    output = np.resize(np.array(0,), q.shape)
    for i in range(len(q)):
        for iter in range(maxiter):
            z[i] = z[i]*z[i] + q[i]
            if abs(z[i]) > 2.0:
                q[i] = 0+0j
                z[i] = 0+0j
                output[i] = iter
    return output

def calc_fractal_numpy(q, maxiter):
    # calculate z using numpy, this is the original
    # routine from vegaseat's URL
    output = np.resize(np.array(0,), q.shape)
    z = np.zeros(q.shape, np.complex64)

    for iter in range(maxiter):
        z = z*z + q
        done = np.greater(abs(z), 2.0)
        q = np.where(done,0+0j, q)
        z = np.where(done,0+0j, z)
        output = np.where(done, iter, output)
    return output

# choose your calculation routine here by uncommenting one of the options
calc_fractal = calc_fractal_opencl
# calc_fractal = calc_fractal_serial
# calc_fractal = calc_fractal_numpy

if __name__ == '__main__':
    import Tkinter as tk
    import Image          # PIL
    import ImageTk        # PIL


    class Mandelbrot(object):
        def __init__(self):
            # create window
            self.root = tk.Tk()
            self.root.title("Mandelbrot Set")
            self.create_image()
            self.create_label()
            # start event loop
            self.root.mainloop()


        def draw(self, x1, x2, y1, y2, maxiter=30):
            # draw the Mandelbrot set, from numpy example
            xx = np.arange(x1, x2, (x2-x1)/w)
            yy = np.arange(y2, y1, (y1-y2)/h) * 1j
            q = np.ravel(xx+yy[:, np.newaxis]).astype(np.complex64)

            start_main = time.time()
            output = calc_fractal(q, maxiter)
            end_main = time.time()

            secs = end_main - start_main
            print "Main took", secs

            self.mandel = (output.reshape((h,w)) /
                    float(output.max()) * 255.).astype(np.uint8)

        def create_image(self):
            """"
            create the image from the draw() string
            """
            # you can experiment with these x and y ranges
            self.draw(-2.13, 0.77, -1.3, 1.3)
            self.im = Image.fromarray(self.mandel)
            self.im.putpalette(reduce(
                lambda a,b: a+b, ((i,0,0) for i in range(255))
            ))


        def create_label(self):
            # put the image on a label widget
            self.image = ImageTk.PhotoImage(self.im)
            self.label = tk.Label(self.root, image=self.image)
            self.label.pack()

    # test the class
    test = Mandelbrot()