File: test_array.py

package info (click to toggle)
pyopencl 0.92.dfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: squeeze
  • size: 572 kB
  • ctags: 843
  • sloc: python: 3,982; cpp: 3,333; makefile: 101; sh: 2
file content (560 lines) | stat: -rw-r--r-- 14,425 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
#! /usr/bin/env python
import numpy
import numpy.linalg as la
import sys
import pytools.test




def have_cl():
    try:
        import pyopencl
        return True
    except:
        return False

if have_cl():
    import pyopencl.array as cl_array
    import pyopencl as cl
    from pyopencl.tools import pytest_generate_tests_for_pyopencl \
            as pytest_generate_tests




def has_double_support(dev):
    for ext in dev.extensions.split(" "):
        if ext == "cl_khr_fp64":
            return True
    return False




@pytools.test.mark_test.opencl
def test_pow_array(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    a = numpy.array([1,2,3,4,5]).astype(numpy.float32)
    a_gpu = cl_array.to_device(context, queue, a)

    result = pow(a_gpu,a_gpu).get()
    assert (numpy.abs(a**a - result) < 1e-3).all()

    result = (a_gpu**a_gpu).get()
    assert (numpy.abs(pow(a, a) - result) < 1e-3).all()




@pytools.test.mark_test.opencl
def test_pow_number(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    a = numpy.array([1,2,3,4,5,6,7,8,9,10]).astype(numpy.float32)
    a_gpu = cl_array.to_device(context, queue, a)

    result = pow(a_gpu, 2).get()
    assert (numpy.abs(a**2 - result) < 1e-3).all()



@pytools.test.mark_test.opencl
def test_abs(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    a = -cl_array.arange(context, queue, 111, dtype=numpy.float32)
    res = a.get()

    for i in range(111):
        assert res[i] <= 0

    a = abs(a)

    res = a.get()

    for i in range (111):
        assert abs(res[i]) >= 0
        assert res[i] == i


@pytools.test.mark_test.opencl
def test_len(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    a = numpy.array([1,2,3,4,5,6,7,8,9,10]).astype(numpy.float32)
    a_cpu = cl_array.to_device(context, queue, a)
    assert len(a_cpu) == 10




@pytools.test.mark_test.opencl
def test_multiply(ctx_getter):
    """Test the muliplication of an array with a scalar. """

    context = ctx_getter()
    queue = cl.CommandQueue(context)


    for sz in [10, 50000]:
        for dtype, scalars in [
            (numpy.float32, [2]),
            #(numpy.complex64, [2, 2j])
            ]:
            for scalar in scalars:
                a = numpy.arange(sz).astype(dtype)
                a_gpu = cl_array.to_device(context, queue, a)
                a_doubled = (scalar * a_gpu).get()

                assert (a * scalar == a_doubled).all()

@pytools.test.mark_test.opencl
def test_multiply_array(ctx_getter):
    """Test the multiplication of two arrays."""

    context = ctx_getter()
    queue = cl.CommandQueue(context)

    a = numpy.array([1,2,3,4,5,6,7,8,9,10]).astype(numpy.float32)

    a_gpu = cl_array.to_device(context, queue, a)
    b_gpu = cl_array.to_device(context, queue, a)

    a_squared = (b_gpu*a_gpu).get()

    assert (a*a == a_squared).all()




@pytools.test.mark_test.opencl
def test_addition_array(ctx_getter):
    """Test the addition of two arrays."""

    context = ctx_getter()
    queue = cl.CommandQueue(context)

    a = numpy.array([1,2,3,4,5,6,7,8,9,10]).astype(numpy.float32)
    a_gpu = cl_array.to_device(context, queue, a)
    a_added = (a_gpu+a_gpu).get()

    assert (a+a == a_added).all()




@pytools.test.mark_test.opencl
def test_addition_scalar(ctx_getter):
    """Test the addition of an array and a scalar."""

    context = ctx_getter()
    queue = cl.CommandQueue(context)

    a = numpy.array([1,2,3,4,5,6,7,8,9,10]).astype(numpy.float32)
    a_gpu = cl_array.to_device(context, queue, a)
    a_added = (7+a_gpu).get()

    assert (7+a == a_added).all()




@pytools.test.mark_test.opencl
def test_substract_array(ctx_getter):
    """Test the substraction of two arrays."""
    #test data
    a = numpy.array([1,2,3,4,5,6,7,8,9,10]).astype(numpy.float32)
    b = numpy.array([10,20,30,40,50,60,70,80,90,100]).astype(numpy.float32)

    context = ctx_getter()
    queue = cl.CommandQueue(context)

    a_gpu = cl_array.to_device(context, queue, a)
    b_gpu = cl_array.to_device(context, queue, b)

    result = (a_gpu-b_gpu).get()
    assert (a-b == result).all()

    result = (b_gpu-a_gpu).get()
    assert (b-a == result).all()




@pytools.test.mark_test.opencl
def test_substract_scalar(ctx_getter):
    """Test the substraction of an array and a scalar."""

    context = ctx_getter()
    queue = cl.CommandQueue(context)

    #test data
    a = numpy.array([1,2,3,4,5,6,7,8,9,10]).astype(numpy.float32)

    #convert a to a gpu object
    a_gpu = cl_array.to_device(context, queue, a)

    result = (a_gpu-7).get()
    assert (a-7 == result).all()

    result = (7-a_gpu).get()
    assert (7-a == result).all()




@pytools.test.mark_test.opencl
def test_divide_scalar(ctx_getter):
    """Test the division of an array and a scalar."""

    context = ctx_getter()
    queue = cl.CommandQueue(context)

    a = numpy.array([1,2,3,4,5,6,7,8,9,10]).astype(numpy.float32)
    a_gpu = cl_array.to_device(context, queue, a)

    result = (a_gpu/2).get()
    assert (a/2 == result).all()

    result = (2/a_gpu).get()
    assert (2/a == result).all()




@pytools.test.mark_test.opencl
def test_divide_array(ctx_getter):
    """Test the division of an array and a scalar. """

    context = ctx_getter()
    queue = cl.CommandQueue(context)

    #test data
    a = numpy.array([10,20,30,40,50,60,70,80,90,100]).astype(numpy.float32)
    b = numpy.array([10,10,10,10,10,10,10,10,10,10]).astype(numpy.float32)

    a_gpu = cl_array.to_device(context, queue, a)
    b_gpu = cl_array.to_device(context, queue, b)

    a_divide = (a_gpu/b_gpu).get()
    assert (numpy.abs(a/b - a_divide) < 1e-3).all()

    a_divide = (b_gpu/a_gpu).get()
    assert (numpy.abs(b/a - a_divide) < 1e-3).all()




@pytools.test.mark_test.opencl
def test_random(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    from pyopencl.clrandom import rand as clrand

    if has_double_support(context.devices[0]):
        dtypes = [numpy.float32, numpy.float64]
    else:
        dtypes = [numpy.float32]

    for dtype in dtypes:
        a = clrand(context, queue, (10, 100), dtype=dtype).get()

        assert (0 <= a).all()
        assert (a < 1).all()




@pytools.test.mark_test.opencl
def test_nan_arithmetic(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    def make_nan_contaminated_vector(size):
        shape = (size,)
        a = numpy.random.randn(*shape).astype(numpy.float32)
        #for i in range(0, shape[0], 3):
            #a[i] = float('nan')
        from random import randrange
        for i in range(size//10):
            a[randrange(0, size)] = float('nan')
        return a

    size = 1 << 20

    a = make_nan_contaminated_vector(size)
    a_gpu = cl_array.to_device(context, queue, a)
    b = make_nan_contaminated_vector(size)
    b_gpu = cl_array.to_device(context, queue, b)

    ab = a*b
    ab_gpu = (a_gpu*b_gpu).get()

    for i in range(size):
        assert numpy.isnan(ab[i]) == numpy.isnan(ab_gpu[i])




@pytools.test.mark_test.opencl
def test_elwise_kernel(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    from pyopencl.clrandom import rand as clrand

    a_gpu = clrand(context, queue, (50,), numpy.float32)
    b_gpu = clrand(context, queue, (50,), numpy.float32)

    from pyopencl.elementwise import ElementwiseKernel
    lin_comb = ElementwiseKernel(context,
            "float a, float *x, float b, float *y, float *z",
            "z[i] = a*x[i] + b*y[i]",
            "linear_combination")

    c_gpu = cl_array.empty_like(a_gpu)
    lin_comb(5, a_gpu, 6, b_gpu, c_gpu)

    assert la.norm((c_gpu - (5*a_gpu+6*b_gpu)).get()) < 1e-5




@pytools.test.mark_test.opencl
def test_take(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    idx = cl_array.arange(context, queue, 0, 200000, 2, dtype=numpy.uint32)
    a = cl_array.arange(context, queue, 0, 600000, 3, dtype=numpy.float32)
    result = cl_array.take(a, idx)
    assert ((3*idx).get() == result.get()).all()




@pytools.test.mark_test.opencl
def test_arange(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    n = 5000
    a = cl_array.arange(context, queue, n, dtype=numpy.float32)
    assert (numpy.arange(n, dtype=numpy.float32) == a.get()).all()




@pytools.test.mark_test.opencl
def test_reverse(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    n = 5000
    a = numpy.arange(n).astype(numpy.float32)
    a_gpu = cl_array.to_device(context, queue, a)

    a_gpu = a_gpu.reverse()

    assert (a[::-1] == a_gpu.get()).all()

if False:
    # not yet

    @pytools.test.mark_test.opencl
    def test_sum(ctx_getter):
        context = ctx_getter()
        queue = cl.CommandQueue(context)

        from pyopencl.clrandom import rand as clrand

        a_gpu = clrand(context, queue, (200000,))
        a = a_gpu.get()

        sum_a = numpy.sum(a)

        from pycuda.reduction import get_sum_kernel
        sum_a_gpu = cl_array.sum(a_gpu).get()

        assert abs(sum_a_gpu-sum_a)/abs(sum_a) < 1e-4

    @pytools.test.mark_test.opencl
    def test_minmax(ctx_getter):
        context = ctx_getter()
        queue = cl.CommandQueue(context)

        from pyopencl.clrandom import rand as clrand

        if has_double_support():
            dtypes = [numpy.float64, numpy.float32, numpy.int32]
        else:
            dtypes = [numpy.float32, numpy.int32]

        for what in ["min", "max"]:
            for dtype in dtypes:
                a_gpu = clrand(context, queue, (200000,), dtype)
                a = a_gpu.get()

                op_a = getattr(numpy, what)(a)
                op_a_gpu = getattr(cl_array, what)(a_gpu).get()

                assert op_a_gpu == op_a, (op_a_gpu, op_a, dtype, what)

    @pytools.test.mark_test.opencl
    def test_subset_minmax(ctx_getter):
        context = ctx_getter()
        queue = cl.CommandQueue(context)

        from pyopencl.clrandom import rand as clrand

        l_a = 200000
        gran = 5
        l_m = l_a - l_a // gran + 1

        if has_double_support():
            dtypes = [numpy.float64, numpy.float32, numpy.int32]
        else:
            dtypes = [numpy.float32, numpy.int32]

        for dtype in dtypes:
            a_gpu = clrand(context, queue, (l_a,), dtype)
            a = a_gpu.get()

            meaningful_indices_gpu = cl_array.zeros(l_m, dtype=numpy.int32)
            meaningful_indices = meaningful_indices_gpu.get()
            j = 0
            for i in range(len(meaningful_indices)):
                meaningful_indices[i] = j
                j = j + 1
                if j % gran == 0:
                    j = j + 1

            meaningful_indices_gpu = cl_array.to_device(meaningful_indices)
            b = a[meaningful_indices]

            min_a = numpy.min(b)
            min_a_gpu = cl_array.subset_min(meaningful_indices_gpu, a_gpu).get()

            assert min_a_gpu == min_a

    @pytools.test.mark_test.opencl
    def test_dot(ctx_getter):
        from pyopencl.clrandom import rand as clrand
        a_gpu = clrand(context, queue, (200000,))
        a = a_gpu.get()
        b_gpu = clrand(context, queue, (200000,))
        b = b_gpu.get()

        dot_ab = numpy.dot(a, b)

        dot_ab_gpu = cl_array.dot(a_gpu, b_gpu).get()

        assert abs(dot_ab_gpu-dot_ab)/abs(dot_ab) < 1e-4

    @pytools.test.mark_test.opencl
    def test_slice(ctx_getter):
        from pyopencl.clrandom import rand as clrand

        l = 20000
        a_gpu = clrand(context, queue, (l,))
        a = a_gpu.get()

        from random import randrange
        for i in range(200):
            start = randrange(l)
            end = randrange(start, l)

            a_gpu_slice = a_gpu[start:end]
            a_slice = a[start:end]

            assert la.norm(a_gpu_slice.get()-a_slice) == 0

@pytools.test.mark_test.opencl
def test_if_positive(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    from pyopencl.clrandom import rand as clrand

    l = 20000
    a_gpu = clrand(context, queue, (l,), numpy.float32)
    b_gpu = clrand(context, queue, (l,), numpy.float32)
    a = a_gpu.get()
    b = b_gpu.get()

    max_a_b_gpu = cl_array.maximum(a_gpu, b_gpu)
    min_a_b_gpu = cl_array.minimum(a_gpu, b_gpu)

    print max_a_b_gpu
    print numpy.maximum(a, b)

    assert la.norm(max_a_b_gpu.get()- numpy.maximum(a, b)) == 0
    assert la.norm(min_a_b_gpu.get()- numpy.minimum(a, b)) == 0

@pytools.test.mark_test.opencl
def test_take_put(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    for n in [5, 17, 333]:
        one_field_size = 8
        buf_gpu = cl_array.zeros(context, queue,
                n*one_field_size, dtype=numpy.float32)
        dest_indices = cl_array.to_device(context, queue,
                numpy.array([ 0,  1,  2,  3, 32, 33, 34, 35], dtype=numpy.uint32))
        read_map = cl_array.to_device(context, queue,
                numpy.array([7, 6, 5, 4, 3, 2, 1, 0], dtype=numpy.uint32))

        cl_array.multi_take_put(
                arrays=[buf_gpu for i in range(n)],
                dest_indices=dest_indices,
                src_indices=read_map,
                src_offsets=[i*one_field_size for i in range(n)],
                dest_shape=(96,))

@pytools.test.mark_test.opencl
def test_astype(ctx_getter):
    context = ctx_getter()
    queue = cl.CommandQueue(context)

    from pyopencl.clrandom import rand as clrand

    if not has_double_support(context.devices[0]):
        return

    a_gpu = clrand(context, queue, (2000,), dtype=numpy.float32)

    a = a_gpu.get().astype(numpy.float64)
    a2 = a_gpu.astype(numpy.float64).get()

    assert a2.dtype == numpy.float64
    assert la.norm(a - a2) == 0, (a, a2)

    a_gpu = clrand(context, queue, (2000,), dtype=numpy.float64)

    a = a_gpu.get().astype(numpy.float32)
    a2 = a_gpu.astype(numpy.float32).get()

    assert a2.dtype == numpy.float32
    assert la.norm(a - a2)/la.norm(a) < 1e-7




if __name__ == "__main__":
    # make sure that import failures get reported, instead of skipping the tests.
    import pyopencl as cl

    import sys
    if len(sys.argv) > 1:
        exec sys.argv[1]
    else:
        from py.test.cmdline import main
        main([__file__])