File: translate.py

package info (click to toggle)
pyopencl 2016.1%2Bgit20161130-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 2,220 kB
  • ctags: 3,039
  • sloc: python: 20,232; cpp: 8,002; lisp: 4,361; makefile: 192; ansic: 103; sh: 1
file content (1449 lines) | stat: -rw-r--r-- 43,794 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
from __future__ import division, with_statement
from __future__ import absolute_import
from __future__ import print_function
import six
from six.moves import range

__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"

__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""

import cgen
import numpy as np
import re
from pymbolic.parser import Parser as ExpressionParserBase
from pymbolic.mapper import CombineMapper
import pymbolic.primitives as p
from pymbolic.mapper.c_code import CCodeMapper as CCodeMapperBase

from warnings import warn

import pytools.lex


class TranslatorWarning(UserWarning):
    pass


class TranslationError(RuntimeError):
    pass


def complex_type_name(dtype):
    if dtype == np.complex64:
        return "cfloat"
    if dtype == np.complex128:
        return "cdouble"
    else:
        raise RuntimeError


# {{{ AST components

def dtype_to_ctype(dtype):
    if dtype is None:
        raise ValueError("dtype may not be None")

    dtype = np.dtype(dtype)
    if dtype == np.int64:
        return "long"
    elif dtype == np.uint64:
        return "unsigned long"
    elif dtype == np.int32:
        return "int"
    elif dtype == np.uint32:
        return "unsigned int"
    elif dtype == np.int16:
        return "short int"
    elif dtype == np.uint16:
        return "short unsigned int"
    elif dtype == np.int8:
        return "signed char"
    elif dtype == np.uint8:
        return "unsigned char"
    elif dtype == np.float32:
        return "float"
    elif dtype == np.float64:
        return "double"
    elif dtype == np.complex64:
        return "cfloat_t"
    elif dtype == np.complex128:
        return "cdouble_t"
    else:
        raise ValueError("unable to map dtype '%s'" % dtype)


class POD(cgen.POD):
    def get_decl_pair(self):
        return [dtype_to_ctype(self.dtype)], self.name

# }}}


# {{{ expression parser

_less_than = intern("less_than")
_greater_than = intern("greater_than")
_less_equal = intern("less_equal")
_greater_equal = intern("greater_equal")
_equal = intern("equal")
_not_equal = intern("not_equal")

_not = intern("not")
_and = intern("and")
_or = intern("or")


class TypedLiteral(p.Leaf):
    def __init__(self, value, dtype):
        self.value = value
        self.dtype = np.dtype(dtype)

    def __getinitargs__(self):
        return self.value, self.dtype

    mapper_method = intern("map_literal")


def simplify_typed_literal(expr):
    if (isinstance(expr, p.Product)
            and len(expr.children) == 2
            and isinstance(expr.children[1], TypedLiteral)
            and p.is_constant(expr.children[0])
            and expr.children[0] == -1):
        tl = expr.children[1]
        return TypedLiteral("-"+tl.value, tl.dtype)
    else:
        return expr


class FortranExpressionParser(ExpressionParserBase):
    # FIXME double/single prec literals

    lex_table = [
        (_less_than, pytools.lex.RE(r"\.lt\.", re.I)),
        (_greater_than, pytools.lex.RE(r"\.gt\.", re.I)),
        (_less_equal, pytools.lex.RE(r"\.le\.", re.I)),
        (_greater_equal, pytools.lex.RE(r"\.ge\.", re.I)),
        (_equal, pytools.lex.RE(r"\.eq\.", re.I)),
        (_not_equal, pytools.lex.RE(r"\.ne\.", re.I)),

        (_not, pytools.lex.RE(r"\.not\.", re.I)),
        (_and, pytools.lex.RE(r"\.and\.", re.I)),
        (_or, pytools.lex.RE(r"\.or\.", re.I)),
        ] + ExpressionParserBase.lex_table

    def __init__(self, tree_walker):
        self.tree_walker = tree_walker

    _PREC_FUNC_ARGS = 1

    def parse_terminal(self, pstate):
        scope = self.tree_walker.scope_stack[-1]

        from pymbolic.parser import (
            _identifier, _openpar, _closepar, _float)

        next_tag = pstate.next_tag()
        if next_tag is _float:
            value = pstate.next_str_and_advance().lower()
            if "d" in value:
                dtype = np.float64
            else:
                dtype = np.float32

            value = value.replace("d", "e")
            if value.startswith("."):
                prev_value = value
                value = "0"+value
                print(value, prev_value)
            elif value.startswith("-."):
                prev_value = value
                value = "-0"+value[1:]
                print(value, prev_value)
            return TypedLiteral(value, dtype)

        elif next_tag is _identifier:
            name = pstate.next_str_and_advance()

            if pstate.is_at_end() or pstate.next_tag() is not _openpar:
                # not a subscript
                scope.use_name(name)

                return p.Variable(name)

            left_exp = p.Variable(name)

            pstate.advance()
            pstate.expect_not_end()

            if scope.is_known(name):
                cls = p.Subscript
            else:
                cls = p.Call

            if pstate.next_tag is _closepar:
                pstate.advance()
                left_exp = cls(left_exp, ())
            else:
                args = self.parse_expression(pstate, self._PREC_FUNC_ARGS)
                if not isinstance(args, tuple):
                    args = (args,)
                left_exp = cls(left_exp, args)
                pstate.expect(_closepar)
                pstate.advance()

            return left_exp
        else:
            return ExpressionParserBase.parse_terminal(
                    self, pstate)

    COMP_MAP = {
            _less_than: "<",
            _less_equal: "<=",
            _greater_than: ">",
            _greater_equal: ">=",
            _equal: "==",
            _not_equal: "!=",
            }

    def parse_prefix(self, pstate, min_precedence=0):
        from pymbolic.parser import _PREC_UNARY
        import pymbolic.primitives as primitives

        pstate.expect_not_end()

        if pstate.is_next(_not):
            pstate.advance()
            return primitives.LogicalNot(
                    self.parse_expression(pstate, _PREC_UNARY))
        else:
            return ExpressionParserBase.parse_prefix(self, pstate)

    def parse_postfix(self, pstate, min_precedence, left_exp):
        from pymbolic.parser import (
                _PREC_CALL, _PREC_COMPARISON, _openpar,
                _PREC_LOGICAL_OR, _PREC_LOGICAL_AND)
        from pymbolic.primitives import (
                Comparison, LogicalAnd, LogicalOr)

        next_tag = pstate.next_tag()
        if next_tag is _openpar and _PREC_CALL > min_precedence:
            raise TranslationError("parenthesis operator only works on names")
        elif next_tag in self.COMP_MAP and _PREC_COMPARISON > min_precedence:
            pstate.advance()
            left_exp = Comparison(
                    left_exp,
                    self.COMP_MAP[next_tag],
                    self.parse_expression(pstate, _PREC_COMPARISON))
            did_something = True
        elif next_tag is _and and _PREC_LOGICAL_AND > min_precedence:
            pstate.advance()
            left_exp = LogicalAnd((left_exp,
                    self.parse_expression(pstate, _PREC_LOGICAL_AND)))
            did_something = True
        elif next_tag is _or and _PREC_LOGICAL_OR > min_precedence:
            pstate.advance()
            left_exp = LogicalOr((left_exp,
                    self.parse_expression(pstate, _PREC_LOGICAL_OR)))
            did_something = True
        else:
            left_exp, did_something = ExpressionParserBase.parse_postfix(
                    self, pstate, min_precedence, left_exp)

            if isinstance(left_exp, tuple) and min_precedence < self._PREC_FUNC_ARGS:
                # this must be a complex literal
                assert len(left_exp) == 2
                r, i = left_exp

                r = simplify_typed_literal(r)
                i = simplify_typed_literal(i)

                dtype = (r.dtype.type(0) + i.dtype.type(0)).dtype
                if dtype == np.float32:
                    dtype = np.complex64
                else:
                    dtype = np.complex128

                left_exp = TypedLiteral(left_exp, dtype)

        return left_exp, did_something

# }}}


# {{{ expression generator

class TypeInferenceMapper(CombineMapper):
    def __init__(self, scope):
        self.scope = scope

    def combine(self, dtypes):
        return sum(dtype.type(1) for dtype in dtypes).dtype

    def map_literal(self, expr):
        return expr.dtype

    def map_constant(self, expr):
        return np.asarray(expr).dtype

    def map_variable(self, expr):
        return self.scope.get_type(expr.name)

    def map_call(self, expr):
        name = expr.function.name
        if name == "fromreal":
            arg, = expr.parameters
            base_dtype = self.rec(arg)
            tgt_real_dtype = (np.float32(0)+base_dtype.type(0)).dtype
            assert tgt_real_dtype.kind == "f"
            if tgt_real_dtype == np.float32:
                return np.dtype(np.complex64)
            elif tgt_real_dtype == np.float64:
                return np.dtype(np.complex128)
            else:
                raise RuntimeError("unexpected complex type")

        elif name in ["imag", "real", "abs", "dble"]:
            arg, = expr.parameters
            base_dtype = self.rec(arg)

            if base_dtype == np.complex128:
                return np.dtype(np.float64)
            elif base_dtype == np.complex64:
                return np.dtype(np.float32)
            else:
                return base_dtype

        else:
            return CombineMapper.map_call(self, expr)


class ComplexCCodeMapper(CCodeMapperBase):
    def __init__(self, infer_type):
        CCodeMapperBase.__init__(self)
        self.infer_type = infer_type

    def map_sum(self, expr, enclosing_prec):
        tgt_dtype = self.infer_type(expr)
        is_complex = tgt_dtype.kind == 'c'

        if not is_complex:
            return CCodeMapperBase.map_sum(self, expr, enclosing_prec)
        else:
            tgt_name = complex_type_name(tgt_dtype)

            reals = [child for child in expr.children
                    if 'c' != self.infer_type(child).kind]
            complexes = [child for child in expr.children
                    if 'c' == self.infer_type(child).kind]

            from pymbolic.mapper.stringifier import PREC_SUM, PREC_NONE
            real_sum = self.join_rec(" + ", reals, PREC_SUM)

            if len(complexes) == 1:
                myprec = PREC_SUM
            else:
                myprec = PREC_NONE

            complex_sum = self.rec(complexes[0], myprec)
            for child in complexes[1:]:
                complex_sum = "%s_add(%s, %s)" % (
                        tgt_name, complex_sum,
                        self.rec(child, PREC_NONE))

            if real_sum:
                result = "%s_add(%s_fromreal(%s), %s)" % (
                        tgt_name, tgt_name, real_sum, complex_sum)
            else:
                result = complex_sum

            return self.parenthesize_if_needed(result, enclosing_prec, PREC_SUM)

    def map_product(self, expr, enclosing_prec):
        tgt_dtype = self.infer_type(expr)
        is_complex = 'c' == tgt_dtype.kind

        if not is_complex:
            return CCodeMapperBase.map_product(self, expr, enclosing_prec)
        else:
            tgt_name = complex_type_name(tgt_dtype)

            reals = [child for child in expr.children
                    if 'c' != self.infer_type(child).kind]
            complexes = [child for child in expr.children
                    if 'c' == self.infer_type(child).kind]

            from pymbolic.mapper.stringifier import PREC_PRODUCT, PREC_NONE
            real_prd = self.join_rec("*", reals, PREC_PRODUCT)

            if len(complexes) == 1:
                myprec = PREC_PRODUCT
            else:
                myprec = PREC_NONE

            complex_prd = self.rec(complexes[0], myprec)
            for child in complexes[1:]:
                complex_prd = "%s_mul(%s, %s)" % (
                        tgt_name, complex_prd,
                        self.rec(child, PREC_NONE))

            if real_prd:
                result = "%s_rmul(%s, %s)" % (tgt_name, real_prd, complex_prd)
            else:
                result = complex_prd

            return self.parenthesize_if_needed(result, enclosing_prec, PREC_PRODUCT)

    def map_quotient(self, expr, enclosing_prec):
        from pymbolic.mapper.stringifier import PREC_NONE
        n_complex = 'c' == self.infer_type(expr.numerator).kind
        d_complex = 'c' == self.infer_type(expr.denominator).kind

        tgt_dtype = self.infer_type(expr)

        if not (n_complex or d_complex):
            return CCodeMapperBase.map_quotient(self, expr, enclosing_prec)
        elif n_complex and not d_complex:
            return "%s_divider(%s, %s)" % (
                    complex_type_name(tgt_dtype),
                    self.rec(expr.numerator, PREC_NONE),
                    self.rec(expr.denominator, PREC_NONE))
        elif not n_complex and d_complex:
            return "%s_rdivide(%s, %s)" % (
                    complex_type_name(tgt_dtype),
                    self.rec(expr.numerator, PREC_NONE),
                    self.rec(expr.denominator, PREC_NONE))
        else:
            return "%s_divide(%s, %s)" % (
                    complex_type_name(tgt_dtype),
                    self.rec(expr.numerator, PREC_NONE),
                    self.rec(expr.denominator, PREC_NONE))

    def map_remainder(self, expr, enclosing_prec):
        tgt_dtype = self.infer_type(expr)
        if 'c' == tgt_dtype.kind:
            raise RuntimeError("complex remainder not defined")

        return CCodeMapperBase.map_remainder(self, expr, enclosing_prec)

    def map_power(self, expr, enclosing_prec):
        from pymbolic.mapper.stringifier import PREC_NONE

        tgt_dtype = self.infer_type(expr)
        if 'c' == tgt_dtype.kind:
            if expr.exponent in [2, 3, 4]:
                value = expr.base
                for i in range(expr.exponent-1):
                    value = value * expr.base
                return self.rec(value, enclosing_prec)
            else:
                b_complex = 'c' == self.infer_type(expr.base).kind
                e_complex = 'c' == self.infer_type(expr.exponent).kind

                if b_complex and not e_complex:
                    return "%s_powr(%s, %s)" % (
                            complex_type_name(tgt_dtype),
                            self.rec(expr.base, PREC_NONE),
                            self.rec(expr.exponent, PREC_NONE))
                else:
                    return "%s_pow(%s, %s)" % (
                            complex_type_name(tgt_dtype),
                            self.rec(expr.base, PREC_NONE),
                            self.rec(expr.exponent, PREC_NONE))

        return CCodeMapperBase.map_power(self, expr, enclosing_prec)


class CCodeMapper(ComplexCCodeMapper):
    # Whatever is needed to mop up after Fortran goes here.
    # Stuff that deals with generating real-valued code
    # from complex code goes above.

    def __init__(self, translator, scope):
        ComplexCCodeMapper.__init__(self, scope.get_type_inference_mapper())
        self.translator = translator
        self.scope = scope

    def map_subscript(self, expr, enclosing_prec):
        idx_dtype = self.infer_type(expr.index)
        if not 'i' == idx_dtype.kind or 'u' == idx_dtype.kind:
            ind_prefix = "(int) "
        else:
            ind_prefix = ""

        idx = expr.index
        if isinstance(idx, tuple) and len(idx) == 1:
            idx, = idx

        from pymbolic.mapper.stringifier import PREC_NONE, PREC_CALL
        return self.parenthesize_if_needed(
                self.format("%s[%s%s]",
                    self.scope.translate_var_name(expr.aggregate.name),
                    ind_prefix,
                    self.rec(idx, PREC_NONE)),
                enclosing_prec, PREC_CALL)

    def map_call(self, expr, enclosing_prec):
        from pymbolic.mapper.stringifier import PREC_NONE

        tgt_dtype = self.infer_type(expr)
        arg_dtypes = [self.infer_type(par) for par in expr.parameters]

        name = expr.function.name
        if 'f' == tgt_dtype.kind and name == "abs":
            name = "fabs"

        elif 'c' == tgt_dtype.kind:
            if name in ["conjg", "dconjg"]:
                name = "conj"

            if name[:2] == "cd" and name[2:] in ["log", "exp", "sqrt"]:
                name = name[2:]

            if name == "dble":
                name = "real"

            name = "%s_%s" % (
                    complex_type_name(tgt_dtype),
                    name)

        elif name in ["aimag", "real", "imag"] and tgt_dtype.kind == "f":
            arg_dtype, = arg_dtypes

            if name == "aimag":
                name = "imag"

            name = "%s_%s" % (
                    complex_type_name(arg_dtype),
                    name)

        elif 'c' == tgt_dtype.kind and name == "abs":
            arg_dtype, = arg_dtypes

            name = "%s_abs" % (
                    complex_type_name(arg_dtype))

        return self.format("%s(%s)",
                name,
                self.join_rec(", ", expr.parameters, PREC_NONE))

    def map_variable(self, expr, enclosing_prec):
        # guaranteed to not be a subscript or a call

        name = expr.name
        shape = self.scope.get_shape(name)
        name = self.scope.translate_var_name(name)
        if expr.name in self.scope.arg_names:
            arg_idx = self.scope.arg_names.index(name)
            if self.translator.arg_needs_pointer(
                    self.scope.subprogram_name, arg_idx):
                return "*"+name
            else:
                return name
        elif shape not in [(), None]:
            return "*"+name
        else:
            return name

    def map_literal(self, expr, enclosing_prec):
        from pymbolic.mapper.stringifier import PREC_NONE
        if expr.dtype.kind == "c":
            r, i = expr.value
            return "%s_new(%s, %s)" % (
                    complex_type_name(expr.dtype),
                    self.rec(r, PREC_NONE),
                    self.rec(i, PREC_NONE))
        else:
            return expr.value

    def map_wildcard(self, expr, enclosing_prec):
        return ":"


# }}}

class Scope(object):
    def __init__(self, subprogram_name, arg_names=set()):
        self.subprogram_name = subprogram_name

        # map name to data
        self.data_statements = {}

        # map first letter to type
        self.implicit_types = {}

        # map name to dim tuple
        self.dim_map = {}

        # map name to dim tuple
        self.type_map = {}

        # map name to data
        self.data = {}

        self.arg_names = arg_names

        self.used_names = set()

        self.type_inf_mapper = None

    def known_names(self):
        return (self.used_names
                | set(six.iterkeys(self.dim_map))
                | set(six.iterkeys(self.type_map)))

    def is_known(self, name):
        return (name in self.used_names
                or name in self.dim_map
                or name in self.type_map)

    def use_name(self, name):
        self.used_names.add(name)

    def get_type(self, name):
        try:
            return self.type_map[name]
        except KeyError:

            if self.implicit_types is None:
                raise TranslationError(
                        "no type for '%s' found in implict none routine"
                        % name)

            return self.implicit_types.get(name[0], np.dtype(np.int32))

    def get_shape(self, name):
        return self.dim_map.get(name, ())

    def get_type_inference_mapper(self):
        if self.type_inf_mapper is None:
            self.type_inf_mapper = TypeInferenceMapper(self)

        return self.type_inf_mapper

    def translate_var_name(self, name):
        shape = self.dim_map.get(name)
        if name in self.data and shape is not None:
            return "%s_%s" % (self.subprogram_name, name)
        else:
            return name


class FTreeWalkerBase(object):
    def __init__(self):
        self.scope_stack = []

        self.expr_parser = FortranExpressionParser(self)

    def rec(self, expr, *args, **kwargs):
        mro = list(type(expr).__mro__)
        dispatch_class = kwargs.pop("dispatch_class", type(self))

        while mro:
            method_name = "map_"+mro.pop(0).__name__

            try:
                method = getattr(dispatch_class, method_name)
            except AttributeError:
                pass
            else:
                return method(self, expr, *args, **kwargs)

        raise NotImplementedError(
                "%s does not know how to map type '%s'"
                % (type(self).__name__,
                    type(expr)))

    ENTITY_RE = re.compile(
            r"^(?P<name>[_0-9a-zA-Z]+)"
            "(\((?P<shape>[-+*0-9:a-zA-Z,]+)\))?$")

    def parse_dimension_specs(self, dim_decls):
        def parse_bounds(bounds_str):
            start_end = bounds_str.split(":")

            assert 1 <= len(start_end) <= 2

            return tuple(self.parse_expr(s) for s in start_end)

        for decl in dim_decls:
            entity_match = self.ENTITY_RE.match(decl)
            assert entity_match

            groups = entity_match.groupdict()
            name = groups["name"]
            assert name

            if groups["shape"]:
                shape = [parse_bounds(s) for s in groups["shape"].split(",")]
            else:
                shape = None

            yield name, shape

    def __call__(self, expr, *args, **kwargs):
        return self.rec(expr, *args, **kwargs)

    # {{{ expressions

    def parse_expr(self, expr_str):
        return self.expr_parser(expr_str)

    # }}}


class ArgumentAnalayzer(FTreeWalkerBase):
    def __init__(self):
        FTreeWalkerBase.__init__(self)

        # map (func, arg_nr) to
        # 'w' for 'needs pointer'
        # [] for no obstacle to de-pointerification known
        # [(func_name, arg_nr), ...] # depends on how this arg is used

        self.arg_usage_info = {}

    def arg_needs_pointer(self, func, arg_nr):
        data = self.arg_usage_info.get((func, arg_nr), [])

        if isinstance(data, list):
            return any(
                    self.arg_needs_pointer(sub_func, sub_arg_nr)
                    for sub_func, sub_arg_nr in data)

        return True

    # {{{ map_XXX functions

    def map_BeginSource(self, node):
        scope = Scope(None)
        self.scope_stack.append(scope)

        for c in node.content:
            self.rec(c)

    def map_Subroutine(self, node):
        scope = Scope(node.name, list(node.args))
        self.scope_stack.append(scope)

        for c in node.content:
            self.rec(c)

        self.scope_stack.pop()

    def map_EndSubroutine(self, node):
        pass

    def map_Implicit(self, node):
        pass

    # {{{ types, declarations

    def map_Equivalence(self, node):
        raise NotImplementedError("equivalence")

    def map_Dimension(self, node):
        scope = self.scope_stack[-1]

        for name, shape in self.parse_dimension_specs(node.items):
            if name in scope.arg_names:
                arg_idx = scope.arg_names.index(name)
                self.arg_usage_info[scope.subprogram_name, arg_idx] = "w"

    def map_External(self, node):
        pass

    def map_type_decl(self, node):
        scope = self.scope_stack[-1]

        for name, shape in self.parse_dimension_specs(node.entity_decls):
            if shape is not None and name in scope.arg_names:
                arg_idx = scope.arg_names.index(name)
                self.arg_usage_info[scope.subprogram_name, arg_idx] = "w"

    map_Logical = map_type_decl
    map_Integer = map_type_decl
    map_Real = map_type_decl
    map_Complex = map_type_decl

    # }}}

    def map_Data(self, node):
        pass

    def map_Parameter(self, node):
        raise NotImplementedError("parameter")

    # {{{ I/O

    def map_Open(self, node):
        pass

    def map_Format(self, node):
        pass

    def map_Write(self, node):
        pass

    def map_Print(self, node):
        pass

    def map_Read1(self, node):
        pass

    # }}}

    def map_Assignment(self, node):
        scope = self.scope_stack[-1]

        lhs = self.parse_expr(node.variable)

        if isinstance(lhs, p.Subscript):
            lhs_name = lhs.aggregate.name
        elif isinstance(lhs, p.Call):
            # in absence of dim info, subscripts get parsed as calls
            lhs_name = lhs.function.name
        else:
            lhs_name = lhs.name

        if lhs_name in scope.arg_names:
            arg_idx = scope.arg_names.index(lhs_name)
            self.arg_usage_info[scope.subprogram_name, arg_idx] = "w"

    def map_Allocate(self, node):
        raise NotImplementedError("allocate")

    def map_Deallocate(self, node):
        raise NotImplementedError("deallocate")

    def map_Save(self, node):
        raise NotImplementedError("save")

    def map_Line(self, node):
        raise NotImplementedError

    def map_Program(self, node):
        raise NotImplementedError

    def map_Entry(self, node):
        raise NotImplementedError

    # {{{ control flow

    def map_Goto(self, node):
        pass

    def map_Call(self, node):
        scope = self.scope_stack[-1]

        for i, arg_str in enumerate(node.items):
            arg = self.parse_expr(arg_str)
            if isinstance(arg, (p.Variable, p.Subscript)):
                if isinstance(arg, p.Subscript):
                    arg_name = arg.aggregate.name
                else:
                    arg_name = arg.name

                if arg_name in scope.arg_names:
                    arg_idx = scope.arg_names.index(arg_name)
                    arg_usage = self.arg_usage_info.setdefault(
                            (scope.subprogram_name, arg_idx),
                            [])
                    if isinstance(arg_usage, list):
                        arg_usage.append((node.designator, i))

    def map_Return(self, node):
        pass

    def map_ArithmeticIf(self, node):
        pass

    def map_If(self, node):
        for c in node.content:
            self.rec(c)

    def map_IfThen(self, node):
        for c in node.content:
            self.rec(c)

    def map_ElseIf(self, node):
        pass

    def map_Else(self, node):
        pass

    def map_EndIfThen(self, node):
        pass

    def map_Do(self, node):
        for c in node.content:
            self.rec(c)

    def map_EndDo(self, node):
        pass

    def map_Continue(self, node):
        pass

    def map_Stop(self, node):
        pass

    def map_Comment(self, node):
        pass

    # }}}

    # }}}


# {{{ translator

class F2CLTranslator(FTreeWalkerBase):
    def __init__(self, addr_space_hints, force_casts, arg_info,
            use_restrict_pointers):
        FTreeWalkerBase.__init__(self)
        self.addr_space_hints = addr_space_hints
        self.force_casts = force_casts
        self.arg_info = arg_info
        self.use_restrict_pointers = use_restrict_pointers

    def arg_needs_pointer(self, subprogram_name, arg_index):
        return self.arg_info.arg_needs_pointer(subprogram_name, arg_index)

    # {{{ declaration helpers

    def get_declarator(self, name):
        scope = self.scope_stack[-1]
        return POD(scope.get_type(name), name)

    def get_declarations(self):
        scope = self.scope_stack[-1]

        result = []
        pre_func_decl = []

        def gen_shape(start_end):
            return ":".join(self.gen_expr(s) for s in start_end)

        for name in sorted(scope.known_names()):
            shape = scope.dim_map.get(name)

            if shape is not None:
                dim_stmt = cgen.Statement(
                    "dimension \"fortran\" %s[%s]" % (
                        scope.translate_var_name(name),
                        ", ".join(gen_shape(s) for s in shape)
                        ))

                # cannot omit 'dimension' decl even for rank-1 args:
                result.append(dim_stmt)

            if name in scope.data:
                assert name not in scope.arg_names

                data = scope.data[name]

                if shape is None:
                    assert len(data) == 1
                    result.append(
                            cgen.Initializer(
                                self.get_declarator(name),
                                self.gen_expr(data[0])
                                ))
                else:
                    from cgen.opencl import CLConstant
                    pre_func_decl.append(
                            cgen.Initializer(
                                CLConstant(
                                    cgen.ArrayOf(self.get_declarator(
                                        "%s_%s" % (scope.subprogram_name, name)))),
                                "{ %s }" % ",\n".join(self.gen_expr(x) for x in data)
                                ))
            else:
                if name not in scope.arg_names:
                    if shape is not None:
                        result.append(cgen.Statement(
                            "%s %s[nitemsof(%s)]"
                            % (
                                dtype_to_ctype(scope.get_type(name)),
                                name, name)))
                    else:
                        result.append(self.get_declarator(name))

        return pre_func_decl, result

    def map_statement_list(self, content):
        body = []

        for c in content:
            mapped = self.rec(c)
            if mapped is None:
                warn("mapping '%s' returned None" % type(c))
            elif isinstance(mapped, list):
                body.extend(mapped)
            else:
                body.append(mapped)

        return body

    # }}}

    # {{{ map_XXX functions

    def map_BeginSource(self, node):
        scope = Scope(None)
        self.scope_stack.append(scope)

        return self.map_statement_list(node.content)

    def map_Subroutine(self, node):
        assert not node.prefix
        assert not hasattr(node, "suffix")

        scope = Scope(node.name, list(node.args))
        self.scope_stack.append(scope)

        body = self.map_statement_list(node.content)

        pre_func_decl, in_func_decl = self.get_declarations()
        body = in_func_decl + [cgen.Line()] + body

        if isinstance(body[-1], cgen.Statement) and body[-1].text == "return":
            body.pop()

        def get_arg_decl(arg_idx, arg_name):
            decl = self.get_declarator(arg_name)

            if self.arg_needs_pointer(node.name, arg_idx):
                hint = self.addr_space_hints.get((node.name, arg_name))
                if hint:
                    decl = hint(cgen.Pointer(decl))
                else:
                    if self.use_restrict_pointers:
                        decl = cgen.RestrictPointer(decl)
                    else:
                        decl = cgen.Pointer(decl)

            return decl

        result = cgen.FunctionBody(
                cgen.FunctionDeclaration(
                    cgen.Value("void", node.name),
                    [get_arg_decl(i, arg) for i, arg in enumerate(node.args)]
                    ),
                cgen.Block(body))

        self.scope_stack.pop()
        if pre_func_decl:
            return pre_func_decl + [cgen.Line(), result]
        else:
            return result

    def map_EndSubroutine(self, node):
        return []

    def map_Implicit(self, node):
        scope = self.scope_stack[-1]

        if not node.items:
            assert not scope.implicit_types
            scope.implicit_types = None

        for stmt, specs in node.items:
            tp = self.dtype_from_stmt(stmt)
            for start, end in specs:
                for char_code in range(ord(start), ord(end)+1):
                    scope.implicit_types[chr(char_code)] = tp

        return []

    # {{{ types, declarations

    def map_Equivalence(self, node):
        raise NotImplementedError("equivalence")

    TYPE_MAP = {
            ("real", "4"): np.float32,
            ("real", "8"): np.float64,
            ("real", "16"): np.float128,

            ("complex", "8"): np.complex64,
            ("complex", "16"): np.complex128,
            ("complex", "32"): np.complex256,

            ("integer", ""): np.int32,
            ("integer", "4"): np.int32,
            ("complex", "8"): np.int64,
            }

    def dtype_from_stmt(self, stmt):
        length, kind = stmt.selector
        assert not kind
        return np.dtype(self.TYPE_MAP[(type(stmt).__name__.lower(), length)])

    def map_type_decl(self, node):
        scope = self.scope_stack[-1]

        tp = self.dtype_from_stmt(node)

        for name, shape in self.parse_dimension_specs(node.entity_decls):
            if shape is not None:
                assert name not in scope.dim_map
                scope.dim_map[name] = shape
                scope.use_name(name)

            assert name not in scope.type_map
            scope.type_map[name] = tp

        return []

    map_Logical = map_type_decl
    map_Integer = map_type_decl
    map_Real = map_type_decl
    map_Complex = map_type_decl

    def map_Dimension(self, node):
        scope = self.scope_stack[-1]

        for name, shape in self.parse_dimension_specs(node.items):
            if shape is not None:
                assert name not in scope.dim_map
                scope.dim_map[name] = shape
                scope.use_name(name)

        return []

    def map_External(self, node):
        raise NotImplementedError("external")

    # }}}

    def map_Data(self, node):
        scope = self.scope_stack[-1]

        for name, data in node.stmts:
            name, = name
            assert name not in scope.data
            scope.data[name] = [self.parse_expr(i) for i in data]

        return []

    def map_Parameter(self, node):
        raise NotImplementedError("parameter")

    # {{{ I/O

    def map_Open(self, node):
        raise NotImplementedError

    def map_Format(self, node):
        warn("'format' unsupported", TranslatorWarning)

    def map_Write(self, node):
        warn("'write' unsupported", TranslatorWarning)

    def map_Print(self, node):
        warn("'print' unsupported", TranslatorWarning)

    def map_Read1(self, node):
        warn("'read' unsupported", TranslatorWarning)

    # }}}

    def map_Assignment(self, node):
        lhs = self.parse_expr(node.variable)
        from pymbolic.primitives import Subscript
        if isinstance(lhs, Subscript):
            lhs_name = lhs.aggregate.name
        else:
            lhs_name = lhs.name

        scope = self.scope_stack[-1]
        scope.use_name(lhs_name)
        infer_type = scope.get_type_inference_mapper()

        rhs = self.parse_expr(node.expr)
        lhs_dtype = infer_type(lhs)
        rhs_dtype = infer_type(rhs)

        # check for silent truncation of complex
        if lhs_dtype.kind != 'c' and rhs_dtype.kind == 'c':
            from pymbolic import var
            rhs = var("real")(rhs)
        # check for silent widening of real
        if lhs_dtype.kind == 'c' and rhs_dtype.kind != 'c':
            from pymbolic import var
            rhs = var("fromreal")(rhs)

        return cgen.Assign(self.gen_expr(lhs), self.gen_expr(rhs))

    def map_Allocate(self, node):
        raise NotImplementedError("allocate")

    def map_Deallocate(self, node):
        raise NotImplementedError("deallocate")

    def map_Save(self, node):
        raise NotImplementedError("save")

    def map_Line(self, node):
        #from warnings import warn
        #warn("Encountered a 'line': %s" % node)
        raise NotImplementedError

    def map_Program(self, node):
        raise NotImplementedError

    def map_Entry(self, node):
        raise NotImplementedError

    # {{{ control flow

    def map_Goto(self, node):
        return cgen.Statement("goto label_%s" % node.label)

    def map_Call(self, node):
        def transform_arg(i, arg_str):
            expr = self.parse_expr(arg_str)
            result = self.gen_expr(expr)
            if self.arg_needs_pointer(node.designator, i):
                result = "&"+result

            cast = self.force_casts.get(
                    (node.designator, i))
            if cast is not None:
                result = "(%s) (%s)" % (cast, result)

            return result

        return cgen.Statement("%s(%s)" % (
            node.designator,
            ", ".join(transform_arg(i, arg_str)
                for i, arg_str in enumerate(node.items))))

    def map_Return(self, node):
        return cgen.Statement("return")

    def map_ArithmeticIf(self, node):
        raise NotImplementedError

    def map_If(self, node):
        return cgen.If(self.transform_expr(node.expr),
                self.rec(node.content[0]))

    def map_IfThen(self, node):
        current_cond = self.transform_expr(node.expr)

        blocks_and_conds = []
        else_block = []

        def end_block():
            if current_body:
                if current_cond is None:
                    else_block[:] = self.map_statement_list(current_body)
                else:
                    blocks_and_conds.append(
                            (current_cond, cgen.block_if_necessary(
                                self.map_statement_list(current_body))))

            del current_body[:]

        from fparser.statements import Else, ElseIf
        i = 0
        current_body = []
        while i < len(node.content):
            c = node.content[i]
            if isinstance(c, ElseIf):
                end_block()
                current_cond = self.transform_expr(c.expr)
            elif isinstance(c, Else):
                end_block()
                current_cond = None
            else:
                current_body.append(c)

            i += 1
        end_block()

        def block_or_none(body):
            if not body:
                return None
            else:
                return cgen.block_if_necessary(body)

        return cgen.make_multiple_ifs(
                blocks_and_conds,
                block_or_none(else_block))

    def map_EndIfThen(self, node):
        return []

    def map_Do(self, node):
        scope = self.scope_stack[-1]

        body = self.map_statement_list(node.content)

        if node.loopcontrol:
            loop_var, loop_bounds = node.loopcontrol.split("=")
            loop_var = loop_var.strip()
            scope.use_name(loop_var)
            loop_bounds = [self.parse_expr(s) for s in loop_bounds.split(",")]

            if len(loop_bounds) == 2:
                start, stop = loop_bounds
                step = 1
            elif len(loop_bounds) == 3:
                start, stop, step = loop_bounds
            else:
                raise RuntimeError("loop bounds not understood: %s"
                        % node.loopcontrol)

            if not isinstance(step, int):
                print(type(step))
                raise TranslationError(
                        "non-constant steps not yet supported: %s" % step)

            if step < 0:
                comp_op = ">="
            else:
                comp_op = "<="

            return cgen.For(
                    "%s = %s" % (loop_var, self.gen_expr(start)),
                    "%s %s %s" % (loop_var, comp_op, self.gen_expr(stop)),
                    "%s += %s" % (loop_var, self.gen_expr(step)),
                    cgen.block_if_necessary(body))

        else:
            raise NotImplementedError("unbounded do loop")

    def map_EndDo(self, node):
        return []

    def map_Continue(self, node):
        return cgen.Statement("label_%s:" % node.label)

    def map_Stop(self, node):
        raise NotImplementedError("stop")

    def map_Comment(self, node):
        if node.content:
            return cgen.LineComment(node.content.strip())
        else:
            return []

    # }}}

    # }}}

    # {{{ expressions

    def gen_expr(self, expr):
        scope = self.scope_stack[-1]
        return CCodeMapper(self, scope)(expr)

    def transform_expr(self, expr_str):
        return self.gen_expr(self.expr_parser(expr_str))

    # }}}

# }}}


def f2cl(source, free_form=False, strict=True,
        addr_space_hints={}, force_casts={},
        do_arg_analysis=True,
        use_restrict_pointers=False,
        try_compile=False):
    from fparser import api
    tree = api.parse(source, isfree=free_form, isstrict=strict,
            analyze=False, ignore_comments=False)

    arg_info = ArgumentAnalayzer()
    if do_arg_analysis:
        arg_info(tree)

    source = F2CLTranslator(addr_space_hints, force_casts,
            arg_info, use_restrict_pointers=use_restrict_pointers)(tree)

    func_decls = []
    for entry in source:
        if isinstance(entry, cgen.FunctionBody):
            func_decls.append(entry.fdecl)

    mod = cgen.Module(func_decls + [cgen.Line()] + source)

    #open("pre-cnd.cl", "w").write(str(mod))

    from cnd import transform_cl
    str_mod = transform_cl(str(mod))

    if try_compile:
        import pyopencl as cl
        ctx = cl.create_some_context()
        cl.Program(ctx, """
            #if __OPENCL_VERSION__ <= CL_VERSION_1_1
            #pragma OPENCL EXTENSION cl_khr_fp64: enable
            #endif
            #include <pyopencl-complex.h>
            """).build()
    return str_mod


def f2cl_files(source_file, target_file, **kwargs):
    mod = f2cl(open(source_file).read(), **kwargs)
    open(target_file, "w").write(mod)


if __name__ == "__main__":
    import logging
    console = logging.StreamHandler()
    console.setLevel(logging.DEBUG)
    formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
    console.setFormatter(formatter)
    logging.getLogger('fparser').addHandler(console)

    from cgen.opencl import CLConstant

    if 0:
        f2cl_files("hank107.f", "hank107.cl",
                addr_space_hints={
                    ("hank107p", "p"): CLConstant,
                    ("hank107pc", "p"): CLConstant,
                    },
                force_casts={
                    ("hank107p", 0): "__constant cdouble_t *",
                    })

        f2cl_files("cdjseval2d.f", "cdjseval2d.cl")

    f2cl_files("hank103.f", "hank103.cl",
            addr_space_hints={
                ("hank103p", "p"): CLConstant,
                ("hank103pc", "p"): CLConstant,
                },
            force_casts={
                ("hank103p", 0): "__constant cdouble_t *",
                },
            try_compile=True)

# vim: foldmethod=marker