1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
|
from __future__ import division, with_statement
from __future__ import absolute_import
from __future__ import print_function
import six
from six.moves import range
__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import cgen
import numpy as np
import re
from pymbolic.parser import Parser as ExpressionParserBase
from pymbolic.mapper import CombineMapper
import pymbolic.primitives as p
from pymbolic.mapper.c_code import CCodeMapper as CCodeMapperBase
from warnings import warn
import pytools.lex
class TranslatorWarning(UserWarning):
pass
class TranslationError(RuntimeError):
pass
def complex_type_name(dtype):
if dtype == np.complex64:
return "cfloat"
if dtype == np.complex128:
return "cdouble"
else:
raise RuntimeError
# {{{ AST components
def dtype_to_ctype(dtype):
if dtype is None:
raise ValueError("dtype may not be None")
dtype = np.dtype(dtype)
if dtype == np.int64:
return "long"
elif dtype == np.uint64:
return "unsigned long"
elif dtype == np.int32:
return "int"
elif dtype == np.uint32:
return "unsigned int"
elif dtype == np.int16:
return "short int"
elif dtype == np.uint16:
return "short unsigned int"
elif dtype == np.int8:
return "signed char"
elif dtype == np.uint8:
return "unsigned char"
elif dtype == np.float32:
return "float"
elif dtype == np.float64:
return "double"
elif dtype == np.complex64:
return "cfloat_t"
elif dtype == np.complex128:
return "cdouble_t"
else:
raise ValueError("unable to map dtype '%s'" % dtype)
class POD(cgen.POD):
def get_decl_pair(self):
return [dtype_to_ctype(self.dtype)], self.name
# }}}
# {{{ expression parser
_less_than = intern("less_than")
_greater_than = intern("greater_than")
_less_equal = intern("less_equal")
_greater_equal = intern("greater_equal")
_equal = intern("equal")
_not_equal = intern("not_equal")
_not = intern("not")
_and = intern("and")
_or = intern("or")
class TypedLiteral(p.Leaf):
def __init__(self, value, dtype):
self.value = value
self.dtype = np.dtype(dtype)
def __getinitargs__(self):
return self.value, self.dtype
mapper_method = intern("map_literal")
def simplify_typed_literal(expr):
if (isinstance(expr, p.Product)
and len(expr.children) == 2
and isinstance(expr.children[1], TypedLiteral)
and p.is_constant(expr.children[0])
and expr.children[0] == -1):
tl = expr.children[1]
return TypedLiteral("-"+tl.value, tl.dtype)
else:
return expr
class FortranExpressionParser(ExpressionParserBase):
# FIXME double/single prec literals
lex_table = [
(_less_than, pytools.lex.RE(r"\.lt\.", re.I)),
(_greater_than, pytools.lex.RE(r"\.gt\.", re.I)),
(_less_equal, pytools.lex.RE(r"\.le\.", re.I)),
(_greater_equal, pytools.lex.RE(r"\.ge\.", re.I)),
(_equal, pytools.lex.RE(r"\.eq\.", re.I)),
(_not_equal, pytools.lex.RE(r"\.ne\.", re.I)),
(_not, pytools.lex.RE(r"\.not\.", re.I)),
(_and, pytools.lex.RE(r"\.and\.", re.I)),
(_or, pytools.lex.RE(r"\.or\.", re.I)),
] + ExpressionParserBase.lex_table
def __init__(self, tree_walker):
self.tree_walker = tree_walker
_PREC_FUNC_ARGS = 1
def parse_terminal(self, pstate):
scope = self.tree_walker.scope_stack[-1]
from pymbolic.parser import (
_identifier, _openpar, _closepar, _float)
next_tag = pstate.next_tag()
if next_tag is _float:
value = pstate.next_str_and_advance().lower()
if "d" in value:
dtype = np.float64
else:
dtype = np.float32
value = value.replace("d", "e")
if value.startswith("."):
prev_value = value
value = "0"+value
print(value, prev_value)
elif value.startswith("-."):
prev_value = value
value = "-0"+value[1:]
print(value, prev_value)
return TypedLiteral(value, dtype)
elif next_tag is _identifier:
name = pstate.next_str_and_advance()
if pstate.is_at_end() or pstate.next_tag() is not _openpar:
# not a subscript
scope.use_name(name)
return p.Variable(name)
left_exp = p.Variable(name)
pstate.advance()
pstate.expect_not_end()
if scope.is_known(name):
cls = p.Subscript
else:
cls = p.Call
if pstate.next_tag is _closepar:
pstate.advance()
left_exp = cls(left_exp, ())
else:
args = self.parse_expression(pstate, self._PREC_FUNC_ARGS)
if not isinstance(args, tuple):
args = (args,)
left_exp = cls(left_exp, args)
pstate.expect(_closepar)
pstate.advance()
return left_exp
else:
return ExpressionParserBase.parse_terminal(
self, pstate)
COMP_MAP = {
_less_than: "<",
_less_equal: "<=",
_greater_than: ">",
_greater_equal: ">=",
_equal: "==",
_not_equal: "!=",
}
def parse_prefix(self, pstate, min_precedence=0):
from pymbolic.parser import _PREC_UNARY
import pymbolic.primitives as primitives
pstate.expect_not_end()
if pstate.is_next(_not):
pstate.advance()
return primitives.LogicalNot(
self.parse_expression(pstate, _PREC_UNARY))
else:
return ExpressionParserBase.parse_prefix(self, pstate)
def parse_postfix(self, pstate, min_precedence, left_exp):
from pymbolic.parser import (
_PREC_CALL, _PREC_COMPARISON, _openpar,
_PREC_LOGICAL_OR, _PREC_LOGICAL_AND)
from pymbolic.primitives import (
Comparison, LogicalAnd, LogicalOr)
next_tag = pstate.next_tag()
if next_tag is _openpar and _PREC_CALL > min_precedence:
raise TranslationError("parenthesis operator only works on names")
elif next_tag in self.COMP_MAP and _PREC_COMPARISON > min_precedence:
pstate.advance()
left_exp = Comparison(
left_exp,
self.COMP_MAP[next_tag],
self.parse_expression(pstate, _PREC_COMPARISON))
did_something = True
elif next_tag is _and and _PREC_LOGICAL_AND > min_precedence:
pstate.advance()
left_exp = LogicalAnd((left_exp,
self.parse_expression(pstate, _PREC_LOGICAL_AND)))
did_something = True
elif next_tag is _or and _PREC_LOGICAL_OR > min_precedence:
pstate.advance()
left_exp = LogicalOr((left_exp,
self.parse_expression(pstate, _PREC_LOGICAL_OR)))
did_something = True
else:
left_exp, did_something = ExpressionParserBase.parse_postfix(
self, pstate, min_precedence, left_exp)
if isinstance(left_exp, tuple) and min_precedence < self._PREC_FUNC_ARGS:
# this must be a complex literal
assert len(left_exp) == 2
r, i = left_exp
r = simplify_typed_literal(r)
i = simplify_typed_literal(i)
dtype = (r.dtype.type(0) + i.dtype.type(0)).dtype
if dtype == np.float32:
dtype = np.complex64
else:
dtype = np.complex128
left_exp = TypedLiteral(left_exp, dtype)
return left_exp, did_something
# }}}
# {{{ expression generator
class TypeInferenceMapper(CombineMapper):
def __init__(self, scope):
self.scope = scope
def combine(self, dtypes):
return sum(dtype.type(1) for dtype in dtypes).dtype
def map_literal(self, expr):
return expr.dtype
def map_constant(self, expr):
return np.asarray(expr).dtype
def map_variable(self, expr):
return self.scope.get_type(expr.name)
def map_call(self, expr):
name = expr.function.name
if name == "fromreal":
arg, = expr.parameters
base_dtype = self.rec(arg)
tgt_real_dtype = (np.float32(0)+base_dtype.type(0)).dtype
assert tgt_real_dtype.kind == "f"
if tgt_real_dtype == np.float32:
return np.dtype(np.complex64)
elif tgt_real_dtype == np.float64:
return np.dtype(np.complex128)
else:
raise RuntimeError("unexpected complex type")
elif name in ["imag", "real", "abs", "dble"]:
arg, = expr.parameters
base_dtype = self.rec(arg)
if base_dtype == np.complex128:
return np.dtype(np.float64)
elif base_dtype == np.complex64:
return np.dtype(np.float32)
else:
return base_dtype
else:
return CombineMapper.map_call(self, expr)
class ComplexCCodeMapper(CCodeMapperBase):
def __init__(self, infer_type):
CCodeMapperBase.__init__(self)
self.infer_type = infer_type
def map_sum(self, expr, enclosing_prec):
tgt_dtype = self.infer_type(expr)
is_complex = tgt_dtype.kind == 'c'
if not is_complex:
return CCodeMapperBase.map_sum(self, expr, enclosing_prec)
else:
tgt_name = complex_type_name(tgt_dtype)
reals = [child for child in expr.children
if 'c' != self.infer_type(child).kind]
complexes = [child for child in expr.children
if 'c' == self.infer_type(child).kind]
from pymbolic.mapper.stringifier import PREC_SUM, PREC_NONE
real_sum = self.join_rec(" + ", reals, PREC_SUM)
if len(complexes) == 1:
myprec = PREC_SUM
else:
myprec = PREC_NONE
complex_sum = self.rec(complexes[0], myprec)
for child in complexes[1:]:
complex_sum = "%s_add(%s, %s)" % (
tgt_name, complex_sum,
self.rec(child, PREC_NONE))
if real_sum:
result = "%s_add(%s_fromreal(%s), %s)" % (
tgt_name, tgt_name, real_sum, complex_sum)
else:
result = complex_sum
return self.parenthesize_if_needed(result, enclosing_prec, PREC_SUM)
def map_product(self, expr, enclosing_prec):
tgt_dtype = self.infer_type(expr)
is_complex = 'c' == tgt_dtype.kind
if not is_complex:
return CCodeMapperBase.map_product(self, expr, enclosing_prec)
else:
tgt_name = complex_type_name(tgt_dtype)
reals = [child for child in expr.children
if 'c' != self.infer_type(child).kind]
complexes = [child for child in expr.children
if 'c' == self.infer_type(child).kind]
from pymbolic.mapper.stringifier import PREC_PRODUCT, PREC_NONE
real_prd = self.join_rec("*", reals, PREC_PRODUCT)
if len(complexes) == 1:
myprec = PREC_PRODUCT
else:
myprec = PREC_NONE
complex_prd = self.rec(complexes[0], myprec)
for child in complexes[1:]:
complex_prd = "%s_mul(%s, %s)" % (
tgt_name, complex_prd,
self.rec(child, PREC_NONE))
if real_prd:
result = "%s_rmul(%s, %s)" % (tgt_name, real_prd, complex_prd)
else:
result = complex_prd
return self.parenthesize_if_needed(result, enclosing_prec, PREC_PRODUCT)
def map_quotient(self, expr, enclosing_prec):
from pymbolic.mapper.stringifier import PREC_NONE
n_complex = 'c' == self.infer_type(expr.numerator).kind
d_complex = 'c' == self.infer_type(expr.denominator).kind
tgt_dtype = self.infer_type(expr)
if not (n_complex or d_complex):
return CCodeMapperBase.map_quotient(self, expr, enclosing_prec)
elif n_complex and not d_complex:
return "%s_divider(%s, %s)" % (
complex_type_name(tgt_dtype),
self.rec(expr.numerator, PREC_NONE),
self.rec(expr.denominator, PREC_NONE))
elif not n_complex and d_complex:
return "%s_rdivide(%s, %s)" % (
complex_type_name(tgt_dtype),
self.rec(expr.numerator, PREC_NONE),
self.rec(expr.denominator, PREC_NONE))
else:
return "%s_divide(%s, %s)" % (
complex_type_name(tgt_dtype),
self.rec(expr.numerator, PREC_NONE),
self.rec(expr.denominator, PREC_NONE))
def map_remainder(self, expr, enclosing_prec):
tgt_dtype = self.infer_type(expr)
if 'c' == tgt_dtype.kind:
raise RuntimeError("complex remainder not defined")
return CCodeMapperBase.map_remainder(self, expr, enclosing_prec)
def map_power(self, expr, enclosing_prec):
from pymbolic.mapper.stringifier import PREC_NONE
tgt_dtype = self.infer_type(expr)
if 'c' == tgt_dtype.kind:
if expr.exponent in [2, 3, 4]:
value = expr.base
for i in range(expr.exponent-1):
value = value * expr.base
return self.rec(value, enclosing_prec)
else:
b_complex = 'c' == self.infer_type(expr.base).kind
e_complex = 'c' == self.infer_type(expr.exponent).kind
if b_complex and not e_complex:
return "%s_powr(%s, %s)" % (
complex_type_name(tgt_dtype),
self.rec(expr.base, PREC_NONE),
self.rec(expr.exponent, PREC_NONE))
else:
return "%s_pow(%s, %s)" % (
complex_type_name(tgt_dtype),
self.rec(expr.base, PREC_NONE),
self.rec(expr.exponent, PREC_NONE))
return CCodeMapperBase.map_power(self, expr, enclosing_prec)
class CCodeMapper(ComplexCCodeMapper):
# Whatever is needed to mop up after Fortran goes here.
# Stuff that deals with generating real-valued code
# from complex code goes above.
def __init__(self, translator, scope):
ComplexCCodeMapper.__init__(self, scope.get_type_inference_mapper())
self.translator = translator
self.scope = scope
def map_subscript(self, expr, enclosing_prec):
idx_dtype = self.infer_type(expr.index)
if not 'i' == idx_dtype.kind or 'u' == idx_dtype.kind:
ind_prefix = "(int) "
else:
ind_prefix = ""
idx = expr.index
if isinstance(idx, tuple) and len(idx) == 1:
idx, = idx
from pymbolic.mapper.stringifier import PREC_NONE, PREC_CALL
return self.parenthesize_if_needed(
self.format("%s[%s%s]",
self.scope.translate_var_name(expr.aggregate.name),
ind_prefix,
self.rec(idx, PREC_NONE)),
enclosing_prec, PREC_CALL)
def map_call(self, expr, enclosing_prec):
from pymbolic.mapper.stringifier import PREC_NONE
tgt_dtype = self.infer_type(expr)
arg_dtypes = [self.infer_type(par) for par in expr.parameters]
name = expr.function.name
if 'f' == tgt_dtype.kind and name == "abs":
name = "fabs"
elif 'c' == tgt_dtype.kind:
if name in ["conjg", "dconjg"]:
name = "conj"
if name[:2] == "cd" and name[2:] in ["log", "exp", "sqrt"]:
name = name[2:]
if name == "dble":
name = "real"
name = "%s_%s" % (
complex_type_name(tgt_dtype),
name)
elif name in ["aimag", "real", "imag"] and tgt_dtype.kind == "f":
arg_dtype, = arg_dtypes
if name == "aimag":
name = "imag"
name = "%s_%s" % (
complex_type_name(arg_dtype),
name)
elif 'c' == tgt_dtype.kind and name == "abs":
arg_dtype, = arg_dtypes
name = "%s_abs" % (
complex_type_name(arg_dtype))
return self.format("%s(%s)",
name,
self.join_rec(", ", expr.parameters, PREC_NONE))
def map_variable(self, expr, enclosing_prec):
# guaranteed to not be a subscript or a call
name = expr.name
shape = self.scope.get_shape(name)
name = self.scope.translate_var_name(name)
if expr.name in self.scope.arg_names:
arg_idx = self.scope.arg_names.index(name)
if self.translator.arg_needs_pointer(
self.scope.subprogram_name, arg_idx):
return "*"+name
else:
return name
elif shape not in [(), None]:
return "*"+name
else:
return name
def map_literal(self, expr, enclosing_prec):
from pymbolic.mapper.stringifier import PREC_NONE
if expr.dtype.kind == "c":
r, i = expr.value
return "%s_new(%s, %s)" % (
complex_type_name(expr.dtype),
self.rec(r, PREC_NONE),
self.rec(i, PREC_NONE))
else:
return expr.value
def map_wildcard(self, expr, enclosing_prec):
return ":"
# }}}
class Scope(object):
def __init__(self, subprogram_name, arg_names=set()):
self.subprogram_name = subprogram_name
# map name to data
self.data_statements = {}
# map first letter to type
self.implicit_types = {}
# map name to dim tuple
self.dim_map = {}
# map name to dim tuple
self.type_map = {}
# map name to data
self.data = {}
self.arg_names = arg_names
self.used_names = set()
self.type_inf_mapper = None
def known_names(self):
return (self.used_names
| set(six.iterkeys(self.dim_map))
| set(six.iterkeys(self.type_map)))
def is_known(self, name):
return (name in self.used_names
or name in self.dim_map
or name in self.type_map)
def use_name(self, name):
self.used_names.add(name)
def get_type(self, name):
try:
return self.type_map[name]
except KeyError:
if self.implicit_types is None:
raise TranslationError(
"no type for '%s' found in implict none routine"
% name)
return self.implicit_types.get(name[0], np.dtype(np.int32))
def get_shape(self, name):
return self.dim_map.get(name, ())
def get_type_inference_mapper(self):
if self.type_inf_mapper is None:
self.type_inf_mapper = TypeInferenceMapper(self)
return self.type_inf_mapper
def translate_var_name(self, name):
shape = self.dim_map.get(name)
if name in self.data and shape is not None:
return "%s_%s" % (self.subprogram_name, name)
else:
return name
class FTreeWalkerBase(object):
def __init__(self):
self.scope_stack = []
self.expr_parser = FortranExpressionParser(self)
def rec(self, expr, *args, **kwargs):
mro = list(type(expr).__mro__)
dispatch_class = kwargs.pop("dispatch_class", type(self))
while mro:
method_name = "map_"+mro.pop(0).__name__
try:
method = getattr(dispatch_class, method_name)
except AttributeError:
pass
else:
return method(self, expr, *args, **kwargs)
raise NotImplementedError(
"%s does not know how to map type '%s'"
% (type(self).__name__,
type(expr)))
ENTITY_RE = re.compile(
r"^(?P<name>[_0-9a-zA-Z]+)"
"(\((?P<shape>[-+*0-9:a-zA-Z,]+)\))?$")
def parse_dimension_specs(self, dim_decls):
def parse_bounds(bounds_str):
start_end = bounds_str.split(":")
assert 1 <= len(start_end) <= 2
return tuple(self.parse_expr(s) for s in start_end)
for decl in dim_decls:
entity_match = self.ENTITY_RE.match(decl)
assert entity_match
groups = entity_match.groupdict()
name = groups["name"]
assert name
if groups["shape"]:
shape = [parse_bounds(s) for s in groups["shape"].split(",")]
else:
shape = None
yield name, shape
def __call__(self, expr, *args, **kwargs):
return self.rec(expr, *args, **kwargs)
# {{{ expressions
def parse_expr(self, expr_str):
return self.expr_parser(expr_str)
# }}}
class ArgumentAnalayzer(FTreeWalkerBase):
def __init__(self):
FTreeWalkerBase.__init__(self)
# map (func, arg_nr) to
# 'w' for 'needs pointer'
# [] for no obstacle to de-pointerification known
# [(func_name, arg_nr), ...] # depends on how this arg is used
self.arg_usage_info = {}
def arg_needs_pointer(self, func, arg_nr):
data = self.arg_usage_info.get((func, arg_nr), [])
if isinstance(data, list):
return any(
self.arg_needs_pointer(sub_func, sub_arg_nr)
for sub_func, sub_arg_nr in data)
return True
# {{{ map_XXX functions
def map_BeginSource(self, node):
scope = Scope(None)
self.scope_stack.append(scope)
for c in node.content:
self.rec(c)
def map_Subroutine(self, node):
scope = Scope(node.name, list(node.args))
self.scope_stack.append(scope)
for c in node.content:
self.rec(c)
self.scope_stack.pop()
def map_EndSubroutine(self, node):
pass
def map_Implicit(self, node):
pass
# {{{ types, declarations
def map_Equivalence(self, node):
raise NotImplementedError("equivalence")
def map_Dimension(self, node):
scope = self.scope_stack[-1]
for name, shape in self.parse_dimension_specs(node.items):
if name in scope.arg_names:
arg_idx = scope.arg_names.index(name)
self.arg_usage_info[scope.subprogram_name, arg_idx] = "w"
def map_External(self, node):
pass
def map_type_decl(self, node):
scope = self.scope_stack[-1]
for name, shape in self.parse_dimension_specs(node.entity_decls):
if shape is not None and name in scope.arg_names:
arg_idx = scope.arg_names.index(name)
self.arg_usage_info[scope.subprogram_name, arg_idx] = "w"
map_Logical = map_type_decl
map_Integer = map_type_decl
map_Real = map_type_decl
map_Complex = map_type_decl
# }}}
def map_Data(self, node):
pass
def map_Parameter(self, node):
raise NotImplementedError("parameter")
# {{{ I/O
def map_Open(self, node):
pass
def map_Format(self, node):
pass
def map_Write(self, node):
pass
def map_Print(self, node):
pass
def map_Read1(self, node):
pass
# }}}
def map_Assignment(self, node):
scope = self.scope_stack[-1]
lhs = self.parse_expr(node.variable)
if isinstance(lhs, p.Subscript):
lhs_name = lhs.aggregate.name
elif isinstance(lhs, p.Call):
# in absence of dim info, subscripts get parsed as calls
lhs_name = lhs.function.name
else:
lhs_name = lhs.name
if lhs_name in scope.arg_names:
arg_idx = scope.arg_names.index(lhs_name)
self.arg_usage_info[scope.subprogram_name, arg_idx] = "w"
def map_Allocate(self, node):
raise NotImplementedError("allocate")
def map_Deallocate(self, node):
raise NotImplementedError("deallocate")
def map_Save(self, node):
raise NotImplementedError("save")
def map_Line(self, node):
raise NotImplementedError
def map_Program(self, node):
raise NotImplementedError
def map_Entry(self, node):
raise NotImplementedError
# {{{ control flow
def map_Goto(self, node):
pass
def map_Call(self, node):
scope = self.scope_stack[-1]
for i, arg_str in enumerate(node.items):
arg = self.parse_expr(arg_str)
if isinstance(arg, (p.Variable, p.Subscript)):
if isinstance(arg, p.Subscript):
arg_name = arg.aggregate.name
else:
arg_name = arg.name
if arg_name in scope.arg_names:
arg_idx = scope.arg_names.index(arg_name)
arg_usage = self.arg_usage_info.setdefault(
(scope.subprogram_name, arg_idx),
[])
if isinstance(arg_usage, list):
arg_usage.append((node.designator, i))
def map_Return(self, node):
pass
def map_ArithmeticIf(self, node):
pass
def map_If(self, node):
for c in node.content:
self.rec(c)
def map_IfThen(self, node):
for c in node.content:
self.rec(c)
def map_ElseIf(self, node):
pass
def map_Else(self, node):
pass
def map_EndIfThen(self, node):
pass
def map_Do(self, node):
for c in node.content:
self.rec(c)
def map_EndDo(self, node):
pass
def map_Continue(self, node):
pass
def map_Stop(self, node):
pass
def map_Comment(self, node):
pass
# }}}
# }}}
# {{{ translator
class F2CLTranslator(FTreeWalkerBase):
def __init__(self, addr_space_hints, force_casts, arg_info,
use_restrict_pointers):
FTreeWalkerBase.__init__(self)
self.addr_space_hints = addr_space_hints
self.force_casts = force_casts
self.arg_info = arg_info
self.use_restrict_pointers = use_restrict_pointers
def arg_needs_pointer(self, subprogram_name, arg_index):
return self.arg_info.arg_needs_pointer(subprogram_name, arg_index)
# {{{ declaration helpers
def get_declarator(self, name):
scope = self.scope_stack[-1]
return POD(scope.get_type(name), name)
def get_declarations(self):
scope = self.scope_stack[-1]
result = []
pre_func_decl = []
def gen_shape(start_end):
return ":".join(self.gen_expr(s) for s in start_end)
for name in sorted(scope.known_names()):
shape = scope.dim_map.get(name)
if shape is not None:
dim_stmt = cgen.Statement(
"dimension \"fortran\" %s[%s]" % (
scope.translate_var_name(name),
", ".join(gen_shape(s) for s in shape)
))
# cannot omit 'dimension' decl even for rank-1 args:
result.append(dim_stmt)
if name in scope.data:
assert name not in scope.arg_names
data = scope.data[name]
if shape is None:
assert len(data) == 1
result.append(
cgen.Initializer(
self.get_declarator(name),
self.gen_expr(data[0])
))
else:
from cgen.opencl import CLConstant
pre_func_decl.append(
cgen.Initializer(
CLConstant(
cgen.ArrayOf(self.get_declarator(
"%s_%s" % (scope.subprogram_name, name)))),
"{ %s }" % ",\n".join(self.gen_expr(x) for x in data)
))
else:
if name not in scope.arg_names:
if shape is not None:
result.append(cgen.Statement(
"%s %s[nitemsof(%s)]"
% (
dtype_to_ctype(scope.get_type(name)),
name, name)))
else:
result.append(self.get_declarator(name))
return pre_func_decl, result
def map_statement_list(self, content):
body = []
for c in content:
mapped = self.rec(c)
if mapped is None:
warn("mapping '%s' returned None" % type(c))
elif isinstance(mapped, list):
body.extend(mapped)
else:
body.append(mapped)
return body
# }}}
# {{{ map_XXX functions
def map_BeginSource(self, node):
scope = Scope(None)
self.scope_stack.append(scope)
return self.map_statement_list(node.content)
def map_Subroutine(self, node):
assert not node.prefix
assert not hasattr(node, "suffix")
scope = Scope(node.name, list(node.args))
self.scope_stack.append(scope)
body = self.map_statement_list(node.content)
pre_func_decl, in_func_decl = self.get_declarations()
body = in_func_decl + [cgen.Line()] + body
if isinstance(body[-1], cgen.Statement) and body[-1].text == "return":
body.pop()
def get_arg_decl(arg_idx, arg_name):
decl = self.get_declarator(arg_name)
if self.arg_needs_pointer(node.name, arg_idx):
hint = self.addr_space_hints.get((node.name, arg_name))
if hint:
decl = hint(cgen.Pointer(decl))
else:
if self.use_restrict_pointers:
decl = cgen.RestrictPointer(decl)
else:
decl = cgen.Pointer(decl)
return decl
result = cgen.FunctionBody(
cgen.FunctionDeclaration(
cgen.Value("void", node.name),
[get_arg_decl(i, arg) for i, arg in enumerate(node.args)]
),
cgen.Block(body))
self.scope_stack.pop()
if pre_func_decl:
return pre_func_decl + [cgen.Line(), result]
else:
return result
def map_EndSubroutine(self, node):
return []
def map_Implicit(self, node):
scope = self.scope_stack[-1]
if not node.items:
assert not scope.implicit_types
scope.implicit_types = None
for stmt, specs in node.items:
tp = self.dtype_from_stmt(stmt)
for start, end in specs:
for char_code in range(ord(start), ord(end)+1):
scope.implicit_types[chr(char_code)] = tp
return []
# {{{ types, declarations
def map_Equivalence(self, node):
raise NotImplementedError("equivalence")
TYPE_MAP = {
("real", "4"): np.float32,
("real", "8"): np.float64,
("real", "16"): np.float128,
("complex", "8"): np.complex64,
("complex", "16"): np.complex128,
("complex", "32"): np.complex256,
("integer", ""): np.int32,
("integer", "4"): np.int32,
("complex", "8"): np.int64,
}
def dtype_from_stmt(self, stmt):
length, kind = stmt.selector
assert not kind
return np.dtype(self.TYPE_MAP[(type(stmt).__name__.lower(), length)])
def map_type_decl(self, node):
scope = self.scope_stack[-1]
tp = self.dtype_from_stmt(node)
for name, shape in self.parse_dimension_specs(node.entity_decls):
if shape is not None:
assert name not in scope.dim_map
scope.dim_map[name] = shape
scope.use_name(name)
assert name not in scope.type_map
scope.type_map[name] = tp
return []
map_Logical = map_type_decl
map_Integer = map_type_decl
map_Real = map_type_decl
map_Complex = map_type_decl
def map_Dimension(self, node):
scope = self.scope_stack[-1]
for name, shape in self.parse_dimension_specs(node.items):
if shape is not None:
assert name not in scope.dim_map
scope.dim_map[name] = shape
scope.use_name(name)
return []
def map_External(self, node):
raise NotImplementedError("external")
# }}}
def map_Data(self, node):
scope = self.scope_stack[-1]
for name, data in node.stmts:
name, = name
assert name not in scope.data
scope.data[name] = [self.parse_expr(i) for i in data]
return []
def map_Parameter(self, node):
raise NotImplementedError("parameter")
# {{{ I/O
def map_Open(self, node):
raise NotImplementedError
def map_Format(self, node):
warn("'format' unsupported", TranslatorWarning)
def map_Write(self, node):
warn("'write' unsupported", TranslatorWarning)
def map_Print(self, node):
warn("'print' unsupported", TranslatorWarning)
def map_Read1(self, node):
warn("'read' unsupported", TranslatorWarning)
# }}}
def map_Assignment(self, node):
lhs = self.parse_expr(node.variable)
from pymbolic.primitives import Subscript
if isinstance(lhs, Subscript):
lhs_name = lhs.aggregate.name
else:
lhs_name = lhs.name
scope = self.scope_stack[-1]
scope.use_name(lhs_name)
infer_type = scope.get_type_inference_mapper()
rhs = self.parse_expr(node.expr)
lhs_dtype = infer_type(lhs)
rhs_dtype = infer_type(rhs)
# check for silent truncation of complex
if lhs_dtype.kind != 'c' and rhs_dtype.kind == 'c':
from pymbolic import var
rhs = var("real")(rhs)
# check for silent widening of real
if lhs_dtype.kind == 'c' and rhs_dtype.kind != 'c':
from pymbolic import var
rhs = var("fromreal")(rhs)
return cgen.Assign(self.gen_expr(lhs), self.gen_expr(rhs))
def map_Allocate(self, node):
raise NotImplementedError("allocate")
def map_Deallocate(self, node):
raise NotImplementedError("deallocate")
def map_Save(self, node):
raise NotImplementedError("save")
def map_Line(self, node):
#from warnings import warn
#warn("Encountered a 'line': %s" % node)
raise NotImplementedError
def map_Program(self, node):
raise NotImplementedError
def map_Entry(self, node):
raise NotImplementedError
# {{{ control flow
def map_Goto(self, node):
return cgen.Statement("goto label_%s" % node.label)
def map_Call(self, node):
def transform_arg(i, arg_str):
expr = self.parse_expr(arg_str)
result = self.gen_expr(expr)
if self.arg_needs_pointer(node.designator, i):
result = "&"+result
cast = self.force_casts.get(
(node.designator, i))
if cast is not None:
result = "(%s) (%s)" % (cast, result)
return result
return cgen.Statement("%s(%s)" % (
node.designator,
", ".join(transform_arg(i, arg_str)
for i, arg_str in enumerate(node.items))))
def map_Return(self, node):
return cgen.Statement("return")
def map_ArithmeticIf(self, node):
raise NotImplementedError
def map_If(self, node):
return cgen.If(self.transform_expr(node.expr),
self.rec(node.content[0]))
def map_IfThen(self, node):
current_cond = self.transform_expr(node.expr)
blocks_and_conds = []
else_block = []
def end_block():
if current_body:
if current_cond is None:
else_block[:] = self.map_statement_list(current_body)
else:
blocks_and_conds.append(
(current_cond, cgen.block_if_necessary(
self.map_statement_list(current_body))))
del current_body[:]
from fparser.statements import Else, ElseIf
i = 0
current_body = []
while i < len(node.content):
c = node.content[i]
if isinstance(c, ElseIf):
end_block()
current_cond = self.transform_expr(c.expr)
elif isinstance(c, Else):
end_block()
current_cond = None
else:
current_body.append(c)
i += 1
end_block()
def block_or_none(body):
if not body:
return None
else:
return cgen.block_if_necessary(body)
return cgen.make_multiple_ifs(
blocks_and_conds,
block_or_none(else_block))
def map_EndIfThen(self, node):
return []
def map_Do(self, node):
scope = self.scope_stack[-1]
body = self.map_statement_list(node.content)
if node.loopcontrol:
loop_var, loop_bounds = node.loopcontrol.split("=")
loop_var = loop_var.strip()
scope.use_name(loop_var)
loop_bounds = [self.parse_expr(s) for s in loop_bounds.split(",")]
if len(loop_bounds) == 2:
start, stop = loop_bounds
step = 1
elif len(loop_bounds) == 3:
start, stop, step = loop_bounds
else:
raise RuntimeError("loop bounds not understood: %s"
% node.loopcontrol)
if not isinstance(step, int):
print(type(step))
raise TranslationError(
"non-constant steps not yet supported: %s" % step)
if step < 0:
comp_op = ">="
else:
comp_op = "<="
return cgen.For(
"%s = %s" % (loop_var, self.gen_expr(start)),
"%s %s %s" % (loop_var, comp_op, self.gen_expr(stop)),
"%s += %s" % (loop_var, self.gen_expr(step)),
cgen.block_if_necessary(body))
else:
raise NotImplementedError("unbounded do loop")
def map_EndDo(self, node):
return []
def map_Continue(self, node):
return cgen.Statement("label_%s:" % node.label)
def map_Stop(self, node):
raise NotImplementedError("stop")
def map_Comment(self, node):
if node.content:
return cgen.LineComment(node.content.strip())
else:
return []
# }}}
# }}}
# {{{ expressions
def gen_expr(self, expr):
scope = self.scope_stack[-1]
return CCodeMapper(self, scope)(expr)
def transform_expr(self, expr_str):
return self.gen_expr(self.expr_parser(expr_str))
# }}}
# }}}
def f2cl(source, free_form=False, strict=True,
addr_space_hints={}, force_casts={},
do_arg_analysis=True,
use_restrict_pointers=False,
try_compile=False):
from fparser import api
tree = api.parse(source, isfree=free_form, isstrict=strict,
analyze=False, ignore_comments=False)
arg_info = ArgumentAnalayzer()
if do_arg_analysis:
arg_info(tree)
source = F2CLTranslator(addr_space_hints, force_casts,
arg_info, use_restrict_pointers=use_restrict_pointers)(tree)
func_decls = []
for entry in source:
if isinstance(entry, cgen.FunctionBody):
func_decls.append(entry.fdecl)
mod = cgen.Module(func_decls + [cgen.Line()] + source)
#open("pre-cnd.cl", "w").write(str(mod))
from cnd import transform_cl
str_mod = transform_cl(str(mod))
if try_compile:
import pyopencl as cl
ctx = cl.create_some_context()
cl.Program(ctx, """
#if __OPENCL_VERSION__ <= CL_VERSION_1_1
#pragma OPENCL EXTENSION cl_khr_fp64: enable
#endif
#include <pyopencl-complex.h>
""").build()
return str_mod
def f2cl_files(source_file, target_file, **kwargs):
mod = f2cl(open(source_file).read(), **kwargs)
open(target_file, "w").write(mod)
if __name__ == "__main__":
import logging
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
console.setFormatter(formatter)
logging.getLogger('fparser').addHandler(console)
from cgen.opencl import CLConstant
if 0:
f2cl_files("hank107.f", "hank107.cl",
addr_space_hints={
("hank107p", "p"): CLConstant,
("hank107pc", "p"): CLConstant,
},
force_casts={
("hank107p", 0): "__constant cdouble_t *",
})
f2cl_files("cdjseval2d.f", "cdjseval2d.cl")
f2cl_files("hank103.f", "hank103.cl",
addr_space_hints={
("hank103p", "p"): CLConstant,
("hank103pc", "p"): CLConstant,
},
force_casts={
("hank103p", 0): "__constant cdouble_t *",
},
try_compile=True)
# vim: foldmethod=marker
|