1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
Multi-dimensional arrays
========================
.. module:: pyopencl.array
The functionality in this module provides something of a work-alike for
:mod:`numpy` arrays, but with all operations executed on the CL compute device.
Data Types
----------
PyOpenCL provides some amount of integration between the :mod:`numpy`
type system, as represented by :class:`numpy.dtype`, and the types
available in OpenCL. All the simple scalar types map straightforwardly
to their CL counterparts.
.. _vector-types:
Vector Types
^^^^^^^^^^^^
.. class :: vec
All of OpenCL's supported vector types, such as `float3` and `long4` are
available as :mod:`numpy` data types within this class. These
:class:`numpy.dtype` instances have field names of `x`, `y`, `z`, and `w`
just like their OpenCL counterparts. They will work both for parameter passing
to kernels as well as for passing data back and forth between kernels and
Python code. For each type, a `make_type` function is also provided (e.g.
`make_float3(x,y,z)`).
If you want to construct a pre-initialized vector type you have three new
functions to choose from:
* `zeros_type()`
* `ones_type()`
* `filled_type(fill_value)`
.. versionadded:: 2014.1
.. versionchanged:: 2014.1
The `make_type` functions have a default value (0) for each component.
Relying on the default values has been deprecated. Either specify all
components or use one of th new flavors mentioned above for constructing
a vector.
Custom data types
^^^^^^^^^^^^^^^^^
If you would like to use your own (struct/union/whatever) data types in array
operations where you supply operation source code, define those types in the
*preamble* passed to :class:`pyopencl.elementwise.ElementwiseKernel`,
:class:`pyopencl.reduction.ReductionKernel` (or similar), and let PyOpenCL know
about them using this function:
.. currentmodule:: pyopencl.tools
.. autofunction:: get_or_register_dtype
.. exception:: TypeNameNotKnown
.. versionadded:: 2013.1
.. function:: register_dtype(dtype, name)
.. versionchanged:: 2013.1
This function has been deprecated. It is recommended that you develop
against the new interface, :func:`get_or_register_dtype`.
.. function:: dtype_to_ctype(dtype)
Returns a C name registered for *dtype*.
.. versionadded: 2013.1
This function helps with producing C/OpenCL declarations for structured
:class:`numpy.dtype` instances:
.. autofunction:: match_dtype_to_c_struct
A more complete example of how to use custom structured types can be
found in :file:`examples/demo-struct-reduce.py` in the PyOpenCL
distribution.
.. currentmodule:: pyopencl.array
Complex Numbers
^^^^^^^^^^^^^^^
PyOpenCL's :class:`Array` type supports complex numbers out of the box, by
simply using the corresponding :mod:`numpy` types.
If you would like to use this support in your own kernels, here's how to
proceed: Since OpenCL 1.2 (and earlier) do not specify native complex number
support, PyOpenCL works around that deficiency. By saying::
#include <pyopencl-complex.h>
in your kernel, you get complex types `cfloat_t` and `cdouble_t`, along with
functions defined on them such as `cfloat_mul(a, b)` or `cdouble_log(z)`.
Elementwise kernels automatically include the header if your kernel has
complex input or output.
See the `source file
<https://github.com/pyopencl/pyopencl/blob/master/src/cl/pyopencl-complex.h>`_
for a precise list of what's available.
If you need double precision support, please::
#define PYOPENCL_DEFINE_CDOUBLE
before including the header, as DP support apparently cannot be reliably
autodetected.
Under the hood, the complex types are struct types as defined in the header.
Ideally, you should only access the structs through the provided functions,
never directly.
.. versionadded:: 2012.1
.. versionchanged:: 2015.2
**[INCOMPATIBLE]** Changed PyOpenCL's complex numbers from ``float2`` and
``double2`` OpenCL vector types to custom ``struct``. This was changed
because it very easily introduced bugs where
* complex*complex
* real+complex
*look* like they may do the right thing, but sliently do the wrong thing.
The :class:`Array` Class
------------------------
.. autoclass:: Array
.. autoexception:: ArrayHasOffsetError
Constructing :class:`Array` Instances
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: to_device
.. function:: empty(queue, shape, dtype, order="C", allocator=None, data=None)
A synonym for the :class:`Array` constructor.
.. autofunction:: zeros
.. autofunction:: empty_like
.. autofunction:: zeros_like
.. autofunction:: arange
.. autofunction:: take
.. autofunction:: concatenate
Manipulating :class:`Array` instances
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: transpose
.. autofunction:: reshape
Conditionals
^^^^^^^^^^^^
.. autofunction:: if_positive
.. autofunction:: maximum
.. autofunction:: minimum
.. _reductions:
Reductions
^^^^^^^^^^
.. autofunction:: sum
.. autofunction:: dot
.. autofunction:: vdot
.. autofunction:: subset_dot
.. autofunction:: max
.. autofunction:: min
.. autofunction:: subset_max
.. autofunction:: subset_min
See also :ref:`custom-reductions`.
Elementwise Functions on :class:`Arrray` Instances
--------------------------------------------------
.. module:: pyopencl.clmath
The :mod:`pyopencl.clmath` module contains exposes array versions of the C
functions available in the OpenCL standard. (See table 6.8 in the spec.)
.. function:: acos(array, queue=None)
.. function:: acosh(array, queue=None)
.. function:: acospi(array, queue=None)
.. function:: asin(array, queue=None)
.. function:: asinh(array, queue=None)
.. function:: asinpi(array, queue=None)
.. function:: atan(array, queue=None)
.. autofunction:: atan2
.. function:: atanh(array, queue=None)
.. function:: atanpi(array, queue=None)
.. autofunction:: atan2pi
.. function:: cbrt(array, queue=None)
.. function:: ceil(array, queue=None)
.. TODO: copysign
.. function:: cos(array, queue=None)
.. function:: cosh(array, queue=None)
.. function:: cospi(array, queue=None)
.. function:: erfc(array, queue=None)
.. function:: erf(array, queue=None)
.. function:: exp(array, queue=None)
.. function:: exp2(array, queue=None)
.. function:: exp10(array, queue=None)
.. function:: expm1(array, queue=None)
.. function:: fabs(array, queue=None)
.. TODO: fdim
.. function:: floor(array, queue=None)
.. TODO: fma
.. TODO: fmax
.. TODO: fmin
.. function:: fmod(arg, mod, queue=None)
Return the floating point remainder of the division `arg/mod`,
for each element in `arg` and `mod`.
.. TODO: fract
.. function:: frexp(arg, queue=None)
Return a tuple `(significands, exponents)` such that
`arg == significand * 2**exponent`.
.. TODO: hypot
.. function:: ilogb(array, queue=None)
.. function:: ldexp(significand, exponent, queue=None)
Return a new array of floating point values composed from the
entries of `significand` and `exponent`, paired together as
`result = significand * 2**exponent`.
.. function:: lgamma(array, queue=None)
.. TODO: lgamma_r
.. function:: log(array, queue=None)
.. function:: log2(array, queue=None)
.. function:: log10(array, queue=None)
.. function:: log1p(array, queue=None)
.. function:: logb(array, queue=None)
.. TODO: mad
.. TODO: maxmag
.. TODO: minmag
.. function:: modf(arg, queue=None)
Return a tuple `(fracpart, intpart)` of arrays containing the
integer and fractional parts of `arg`.
.. function:: nan(array, queue=None)
.. TODO: nextafter
.. TODO: remainder
.. TODO: remquo
.. function:: rint(array, queue=None)
.. TODO: rootn
.. function:: round(array, queue=None)
.. function:: sin(array, queue=None)
.. TODO: sincos
.. function:: sinh(array, queue=None)
.. function:: sinpi(array, queue=None)
.. function:: sqrt(array, queue=None)
.. function:: tan(array, queue=None)
.. function:: tanh(array, queue=None)
.. function:: tanpi(array, queue=None)
.. function:: tgamma(array, queue=None)
.. function:: trunc(array, queue=None)
Generating Arrays of Random Numbers
-----------------------------------
.. automodule:: pyopencl.clrandom
|