File: runtime_program.rst

package info (click to toggle)
pyopencl 2016.1%2Bgit20161130-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 2,220 kB
  • ctags: 3,039
  • sloc: python: 20,232; cpp: 8,002; lisp: 4,361; makefile: 192; ansic: 103; sh: 1
file content (300 lines) | stat: -rw-r--r-- 10,840 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
.. include:: subst.rst

OpenCL Runtime: Programs and Kernels
====================================

.. currentmodule:: pyopencl

Program
-------

.. class:: Program(context, src)
           Program(context, devices, binaries)

    *binaries* must contain one binary for each entry in *devices*.
    If *src* is a :class:`bytes` object starting with a valid `SPIR-V
    <https://www.khronos.org/spir>`_ magic number, it will be handed
    off to the OpenCL implementation as such, rather than as OpenCL C source
    code. (SPIR-V support requires OpenCL 2.1.)

    .. versionchanged:: 2016.2

        Add support for SPIR-V.

    .. attribute:: info

        Lower case versions of the :class:`program_info` constants
        may be used as attributes on instances of this class
        to directly query info attributes.

    .. method:: get_info(param)

        See :class:`program_info` for values of *param*.

    .. method:: get_build_info(device, param)

        See :class:`program_build_info` for values of *param*.

    .. method:: build(options=[], devices=None, cache_dir=None)

        *options* is a string of compiler flags.
        Returns *self*.

        If *cache_dir* is not None - built binaries are cached in an on-disk cache
        with given path.
        If passed *cache_dir* is None, but context of this program was created with
        not-None cache_dir - it will be used as cache directory.
        If passed *cache_dir* is None and context was created with None cache_dir:
        built binaries will be cached in an on-disk cache called
        :file:`pyopencl-compiler-cache-vN-uidNAME-pyVERSION` in the directory
        returned by :func:`tempfile.gettempdir`.  By setting the environment
        variable :envvar:`PYOPENCL_NO_CACHE` to any non-empty value, this
        caching is suppressed.  Any options found in the environment variable
        :envvar:`PYOPENCL_BUILD_OPTIONS` will be appended to *options*.

        .. versionchanged:: 2011.1
            *options* may now also be a :class:`list` of :class:`str`.

        .. versionchanged:: 2013.1
            Added :envvar:`PYOPENCL_NO_CACHE`.
            Added :envvar:`PYOPENCL_BUILD_OPTIONS`.

    .. method:: compile(self, options=[], devices=None, headers=[])

        :param headers: a list of tuples *(name, program)*.

        Only available with CL 1.2.

        .. versionadded:: 2011.2

    .. attribute:: kernel_name

        You may use ``program.kernel_name`` to obtain a :class:`Kernel`
        objects from a program. Note that every lookup of this type
        produces a new kernel object, so that this **won't** work::

            prg.sum.set_args(a_g, b_g, res_g)
            ev = cl.enqueue_nd_range_kernel(queue, prg.sum, a_np.shape, None)

        Instead, either use the (recommended, stateless) calling interface::

            prg.sum(queue, prg.sum, a_np.shape, None)

        or keep the kernel in a temporary variable::

            sum_knl = prg.sum
            sum_knl.set_args(a_g, b_g, res_g)
            ev = cl.enqueue_nd_range_kernel(queue, sum_knl, a_np.shape, None)

        Note that the :class:`Program` has to be built (see :meth:`build`) in
        order for this to work simply by attribute lookup.

        .. note::

            The :class:`program_info` attributes live
            in the same name space and take precedence over
            :class:`Kernel` names.

    .. method:: all_kernels()

        Returns a list of all :class:`Kernel` objects in the :class:`Program`.

    .. automethod:: from_int_ptr
    .. autoattribute:: int_ptr

    |comparable|

.. function:: create_program_with_built_in_kernels(context, devices, kernel_names)

    Only available with CL 1.2.

    .. versionadded:: 2011.2

.. function:: link_program(context, programs, options=[], devices=None)

    Only available with CL 1.2.

    .. versionadded:: 2011.2

.. function:: unload_platform_compiler(platform)

    Only available with CL 1.2.

    .. versionadded:: 2011.2

Kernel
------

.. class:: Kernel(program, name)

    .. attribute:: info

        Lower case versions of the :class:`kernel_info` constants
        may be used as attributes on instances of this class
        to directly query info attributes.

    .. method:: get_info(param)

        See :class:`kernel_info` for values of *param*.

    .. method:: get_work_group_info(param, device)

        See :class:`kernel_work_group_info` for values of *param*.

    .. method:: get_arg_info(arg_index, param)

        See :class:`kernel_arg_info` for values of *param*.

        Only available in OpenCL 1.2 and newer.

    .. method:: set_arg(self, index, arg)

        *arg* may be

        * `None`: This may be passed for `__global` memory references
          to pass a NULL pointer to the kernel.
        * Anything that satisfies the Python buffer interface,
          in particular :class:`numpy.ndarray`, :class:`str`,
          or :mod:`numpy`'s sized scalars, such as :class:`numpy.int32`
          or :class:`numpy.float64`.

          .. note::

              Note that Python's own :class:`int` or :class:`float`
              objects will not work out of the box. See
              :meth:`Kernel.set_scalar_arg_dtypes` for a way to make
              them work. Alternatively, the standard library module
              :mod:`struct` can be used to convert Python's native
              number types to binary data in a :class:`str`.

        * An instance of :class:`MemoryObject`. (e.g. :class:`Buffer`,
          :class:`Image`, etc.)
        * An instance of :class:`LocalMemory`.
        * An instance of :class:`Sampler`.

    .. method:: set_args(self, *args)

        Invoke :meth:`set_arg` on each element of *args* in turn.

        .. versionadded:: 0.92

    .. method:: set_scalar_arg_dtypes(arg_dtypes)

        Inform the wrapper about the sized types of scalar
        :class:`Kernel` arguments. For each argument,
        *arg_dtypes* contains an entry. For non-scalars,
        this must be *None*. For scalars, it must be an
        object acceptable to the :class:`numpy.dtype`
        constructor, indicating that the corresponding
        scalar argument is of that type.

        After invoking this function with the proper information,
        most suitable number types will automatically be
        cast to the right type for kernel invocation.

        .. note ::

            The information set by this rountine is attached to a single kernel
            instance. A new kernel instance is created every time you use
            `program.kernel` attribute access. The following will therefore not
            work::

               prg = cl.Program(...).build()
               prg.kernel.set_scalar_arg_dtypes(...)
               prg.kernel(queue, n_globals, None, args)


    .. method:: __call__(queue, global_size, local_size, *args, global_offset=None, wait_for=None, g_times_l=False)

        Use :func:`enqueue_nd_range_kernel` to enqueue a kernel execution, after using
        :meth:`set_args` to set each argument in turn. See the documentation for
        :meth:`set_arg` to see what argument types are allowed.
        |std-enqueue-blurb|

        *None* may be passed for local_size.

        If *g_times_l* is specified, the global size will be multiplied by the
        local size. (which makes the behavior more like Nvidia CUDA) In this case,
        *global_size* and *local_size* also do not have to have the same number
        of dimensions.

        .. note::

            :meth:`__call__` is *not* thread-safe. It sets the arguments using :meth:`set_args`
            and then runs :func:`enqueue_nd_range_kernel`. Another thread could race it
            in doing the same things, with undefined outcome. This issue is inherited
            from the C-level OpenCL API. The recommended solution is to make a kernel
            (i.e. access `prg.kernel_name`, which corresponds to making a new kernel)
            for every thread that may enqueue calls to the kernel.

            A solution involving implicit locks was discussed and decided against on the
            mailing list in `October 2012
            <http://lists.tiker.net/pipermail/pyopencl/2012-October/001311.html>`_.

        .. versionchanged:: 0.92
            *local_size* was promoted to third positional argument from being a
            keyword argument. The old keyword argument usage will continue to
            be accepted with a warning throughout the 0.92 release cycle.
            This is a backward-compatible change (just barely!) because
            *local_size* as third positional argument can only be a
            :class:`tuple` or *None*.  :class:`tuple` instances are never valid
            :class:`Kernel` arguments, and *None* is valid as an argument, but
            its treatment in the wrapper had a bug (now fixed) that prevented
            it from working.

        .. versionchanged:: 2011.1
            Added the *g_times_l* keyword arg.

    .. method:: capture_call(filename, queue, global_size, local_size, *args, global_offset=None, wait_for=None, g_times_l=False)

        This method supports the exact same interface as :meth:`__call__`, but
        instead of invoking the kernel, it writes a self-contained PyOpenCL program
        to *filename* that reproduces this invocation. Data and kernel source code
        will be packaged up in *filename*'s source code.

        This is mainly intended as a debugging aid. For example, it can be used
        to automate the task of creating a small, self-contained test case for
        an observed problem. It can also help separate a misbehaving kernel from
        a potentially large or time-consuming outer code.

        To use, simply change::

            evt = my_kernel(queue, gsize, lsize, arg1, arg2, ...)

        to::

            evt = my_kernel.capture_call("bug.py", queue, gsize, lsize, arg1, arg2, ...)

        .. versionadded:: 2013.1

    .. automethod:: from_int_ptr
    .. autoattribute:: int_ptr

    |comparable|

.. class:: LocalMemory(size)

    A helper class to pass `__local` memory arguments to kernels.

    .. versionadded:: 0.91.2

    .. attribute:: size

        The size of local buffer in bytes to be provided.

.. function:: enqueue_nd_range_kernel(queue, kernel, global_work_size, local_work_size, global_work_offset=None, wait_for=None, g_times_l=False)

    |std-enqueue-blurb|

    If *g_times_l* is specified, the global size will be multiplied by the
    local size. (which makes the behavior more like Nvidia CUDA) In this case,
    *global_size* and *local_size* also do not have to have the same number
    of dimensions.

    .. versionchanged:: 2011.1
        Added the *g_times_l* keyword arg.


.. function:: enqueue_task(queue, kernel, wait_for=None)

    |std-enqueue-blurb|