1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
# Transposition of a matrix
# originally for PyCUDA by Hendrik Riedmann <riedmann@dam.brown.edu>
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
import pyopencl as cl
import numpy
import numpy.linalg as la
from six.moves import range
block_size = 16
class NaiveTranspose:
def __init__(self, ctx):
self.kernel = cl.Program(ctx, """
__kernel
void transpose(
__global float *a_t, __global float *a,
unsigned a_width, unsigned a_height)
{
int read_idx = get_global_id(0) + get_global_id(1) * a_width;
int write_idx = get_global_id(1) + get_global_id(0) * a_height;
a_t[write_idx] = a[read_idx];
}
"""% {"block_size": block_size}).build().transpose
def __call__(self, queue, tgt, src, shape):
w, h = shape
assert w % block_size == 0
assert h % block_size == 0
return self.kernel(queue, (w, h), (block_size, block_size),
tgt, src, numpy.uint32(w), numpy.uint32(h))
class SillyTranspose(NaiveTranspose):
def __call__(self, queue, tgt, src, shape):
w, h = shape
assert w % block_size == 0
assert h % block_size == 0
return self.kernel(queue, (w, h), None,
tgt, src, numpy.uint32(w), numpy.uint32(h))
class TransposeWithLocal:
def __init__(self, ctx):
self.kernel = cl.Program(ctx, """
#define BLOCK_SIZE %(block_size)d
#define A_BLOCK_STRIDE (BLOCK_SIZE * a_width)
#define A_T_BLOCK_STRIDE (BLOCK_SIZE * a_height)
__kernel __attribute__((reqd_work_group_size(BLOCK_SIZE, BLOCK_SIZE, 1)))
void transpose(
__global float *a_t, __global float *a,
unsigned a_width, unsigned a_height,
__local float *a_local)
{
int base_idx_a =
get_group_id(0) * BLOCK_SIZE +
get_group_id(1) * A_BLOCK_STRIDE;
int base_idx_a_t =
get_group_id(1) * BLOCK_SIZE +
get_group_id(0) * A_T_BLOCK_STRIDE;
int glob_idx_a = base_idx_a + get_local_id(0) + a_width * get_local_id(1);
int glob_idx_a_t = base_idx_a_t + get_local_id(0) + a_height * get_local_id(1);
a_local[get_local_id(1)*BLOCK_SIZE+get_local_id(0)] = a[glob_idx_a];
barrier(CLK_LOCAL_MEM_FENCE);
a_t[glob_idx_a_t] = a_local[get_local_id(0)*BLOCK_SIZE+get_local_id(1)];
}
"""% {"block_size": block_size}).build().transpose
def __call__(self, queue, tgt, src, shape):
w, h = shape
assert w % block_size == 0
assert h % block_size == 0
return self.kernel(queue, (w, h), (block_size, block_size),
tgt, src, numpy.uint32(w), numpy.uint32(h),
cl.LocalMemory(4*block_size*(block_size+1)))
def transpose_using_cl(ctx, queue, cpu_src, cls):
mf = cl.mem_flags
a_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=cpu_src)
a_t_buf = cl.Buffer(ctx, mf.WRITE_ONLY, size=cpu_src.nbytes)
cls(ctx)(queue, a_t_buf, a_buf, cpu_src.shape)
w, h = cpu_src.shape
result = numpy.empty((h, w), dtype=cpu_src.dtype)
cl.enqueue_read_buffer(queue, a_t_buf, result).wait()
a_buf.release()
a_t_buf.release()
return result
def check_transpose():
for cls in [NaiveTranspose, SillyTranspose, TransposeWithLocal]:
print("checking", cls.__name__)
ctx = cl.create_some_context()
for dev in ctx.devices:
assert dev.local_mem_size > 0
queue = cl.CommandQueue(ctx)
for i in numpy.arange(10, 13, 0.125):
size = int(((2**i) // 32) * 32)
print(size)
source = numpy.random.rand(size, size).astype(numpy.float32)
result = transpose_using_cl(ctx, queue, source, NaiveTranspose)
err = source.T - result
err_norm = la.norm(err)
assert err_norm == 0, (size, err_norm)
def benchmark_transpose():
ctx = cl.create_some_context()
for dev in ctx.devices:
assert dev.local_mem_size > 0
queue = cl.CommandQueue(ctx,
properties=cl.command_queue_properties.PROFILING_ENABLE)
sizes = [int(((2**i) // 32) * 32)
for i in numpy.arange(10, 13, 0.125)]
#for i in numpy.arange(10, 10.5, 0.125)]
mem_bandwidths = {}
methods = [SillyTranspose, NaiveTranspose, TransposeWithLocal]
for cls in methods:
name = cls.__name__.replace("Transpose", "")
mem_bandwidths[cls] = meth_mem_bws = []
for size in sizes:
source = numpy.random.rand(size, size).astype(numpy.float32)
mf = cl.mem_flags
a_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=source)
a_t_buf = cl.Buffer(ctx, mf.WRITE_ONLY, size=source.nbytes)
method = cls(ctx)
for i in range(4):
method(queue, a_t_buf, a_buf, source.shape)
count = 12
events = []
for i in range(count):
events.append(method(queue, a_t_buf, a_buf, source.shape))
events[-1].wait()
time = sum(evt.profile.end - evt.profile.start for evt in events)
mem_bw = 2*source.nbytes*count/(time*1e-9)
print("benchmarking", name, size, mem_bw/1e9, "GB/s")
meth_mem_bws.append(mem_bw)
a_buf.release()
a_t_buf.release()
from matplotlib.pyplot import clf, plot, title, xlabel, ylabel, \
savefig, legend, grid
for i in range(len(methods)):
clf()
for j in range(i+1):
method = methods[j]
name = method.__name__.replace("Transpose", "")
plot(sizes, numpy.array(mem_bandwidths[method])/1e9, "o-", label=name)
xlabel("Matrix width/height $N$")
ylabel("Memory Bandwidth [GB/s]")
legend(loc="best")
grid()
savefig("transpose-benchmark-%d.pdf" % i)
#check_transpose()
benchmark_transpose()
|