File: test_algorithm.py

package info (click to toggle)
pyopencl 2016.1%2Bgit20161130-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 2,220 kB
  • ctags: 3,039
  • sloc: python: 20,232; cpp: 8,002; lisp: 4,361; makefile: 192; ansic: 103; sh: 1
file content (977 lines) | stat: -rw-r--r-- 28,345 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
#! /usr/bin/env python

from __future__ import division, with_statement, absolute_import, print_function

__copyright__ = "Copyright (C) 2013 Andreas Kloeckner"

__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""

from six.moves import range, zip
import numpy as np
import numpy.linalg as la
import sys
from pytools import memoize
from test_array import general_clrand

import pytest

import pyopencl as cl
import pyopencl.array as cl_array  # noqa
from pyopencl.tools import (  # noqa
        pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from pyopencl.characterize import has_double_support, has_struct_arg_count_bug
from pyopencl.scan import (InclusiveScanKernel, ExclusiveScanKernel,
        GenericScanKernel, GenericDebugScanKernel)


# {{{ elementwise

def test_elwise_kernel(ctx_factory):
    context = ctx_factory()
    queue = cl.CommandQueue(context)

    from pyopencl.clrandom import rand as clrand

    a_gpu = clrand(queue, (50,), np.float32)
    b_gpu = clrand(queue, (50,), np.float32)

    from pyopencl.elementwise import ElementwiseKernel
    lin_comb = ElementwiseKernel(context,
            "float a, float *x, float b, float *y, float *z",
            "z[i] = a*x[i] + b*y[i]",
            "linear_combination")

    c_gpu = cl_array.empty_like(a_gpu)
    lin_comb(5, a_gpu, 6, b_gpu, c_gpu)

    assert la.norm((c_gpu - (5 * a_gpu + 6 * b_gpu)).get()) < 1e-5


def test_elwise_kernel_with_options(ctx_factory):
    from pyopencl.clrandom import rand as clrand
    from pyopencl.elementwise import ElementwiseKernel

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    in_gpu = clrand(queue, (50,), np.float32)

    options = ['-D', 'ADD_ONE']
    add_one = ElementwiseKernel(
        context,
        "float* out, const float *in",
        """
        out[i] = in[i]
        #ifdef ADD_ONE
            +1
        #endif
        ;
        """,
        options=options,
        )

    out_gpu = cl_array.empty_like(in_gpu)
    add_one(out_gpu, in_gpu)

    gt = in_gpu.get() + 1
    gv = out_gpu.get()
    assert la.norm(gv - gt) < 1e-5


def test_ranged_elwise_kernel(ctx_factory):
    context = ctx_factory()
    queue = cl.CommandQueue(context)

    from pyopencl.elementwise import ElementwiseKernel
    set_to_seven = ElementwiseKernel(context,
            "float *z", "z[i] = 7", "set_to_seven")

    for i, slc in enumerate([
            slice(5, 20000),
            slice(5, 20000, 17),
            slice(3000, 5, -1),
            slice(1000, -1),
            ]):

        a_gpu = cl_array.zeros(queue, (50000,), dtype=np.float32)
        a_cpu = np.zeros(a_gpu.shape, a_gpu.dtype)

        a_cpu[slc] = 7
        set_to_seven(a_gpu, slice=slc)

        assert (a_cpu == a_gpu.get()).all()


def test_take(ctx_factory):
    context = ctx_factory()
    queue = cl.CommandQueue(context)

    idx = cl_array.arange(queue, 0, 200000, 2, dtype=np.uint32)
    a = cl_array.arange(queue, 0, 600000, 3, dtype=np.float32)
    result = cl_array.take(a, idx)
    assert ((3 * idx).get() == result.get()).all()


def test_arange(ctx_factory):
    context = ctx_factory()
    queue = cl.CommandQueue(context)

    n = 5000
    a = cl_array.arange(queue, n, dtype=np.float32)
    assert (np.arange(n, dtype=np.float32) == a.get()).all()


def test_reverse(ctx_factory):
    context = ctx_factory()
    queue = cl.CommandQueue(context)

    n = 5000
    a = np.arange(n).astype(np.float32)
    a_gpu = cl_array.to_device(queue, a)

    a_gpu = a_gpu.reverse()

    assert (a[::-1] == a_gpu.get()).all()


def test_if_positive(ctx_factory):
    context = ctx_factory()
    queue = cl.CommandQueue(context)

    from pyopencl.clrandom import rand as clrand

    l = 20000
    a_gpu = clrand(queue, (l,), np.float32)
    b_gpu = clrand(queue, (l,), np.float32)
    a = a_gpu.get()
    b = b_gpu.get()

    max_a_b_gpu = cl_array.maximum(a_gpu, b_gpu)
    min_a_b_gpu = cl_array.minimum(a_gpu, b_gpu)

    print(max_a_b_gpu)
    print(np.maximum(a, b))

    assert la.norm(max_a_b_gpu.get() - np.maximum(a, b)) == 0
    assert la.norm(min_a_b_gpu.get() - np.minimum(a, b)) == 0


def test_take_put(ctx_factory):
    context = ctx_factory()
    queue = cl.CommandQueue(context)

    for n in [5, 17, 333]:
        one_field_size = 8
        buf_gpu = cl_array.zeros(queue,
                n * one_field_size, dtype=np.float32)
        dest_indices = cl_array.to_device(queue,
                np.array([0, 1, 2,  3, 32, 33, 34, 35], dtype=np.uint32))
        read_map = cl_array.to_device(queue,
                np.array([7, 6, 5, 4, 3, 2, 1, 0], dtype=np.uint32))

        cl_array.multi_take_put(
                arrays=[buf_gpu for i in range(n)],
                dest_indices=dest_indices,
                src_indices=read_map,
                src_offsets=[i * one_field_size for i in range(n)],
                dest_shape=(96,))


def test_astype(ctx_factory):
    context = ctx_factory()
    queue = cl.CommandQueue(context)

    from pyopencl.clrandom import rand as clrand

    if not has_double_support(context.devices[0]):
        from pytest import skip
        skip("double precision not supported on %s" % context.devices[0])

    a_gpu = clrand(queue, (2000,), dtype=np.float32)

    a = a_gpu.get().astype(np.float64)
    a2 = a_gpu.astype(np.float64).get()

    assert a2.dtype == np.float64
    assert la.norm(a - a2) == 0, (a, a2)

    a_gpu = clrand(queue, (2000,), dtype=np.float64)

    a = a_gpu.get().astype(np.float32)
    a2 = a_gpu.astype(np.float32).get()

    assert a2.dtype == np.float32
    assert la.norm(a - a2) / la.norm(a) < 1e-7

# }}}


# {{{ reduction

def test_sum(ctx_factory):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    n = 200000
    for dtype in [np.float32, np.complex64]:
        a_gpu = general_clrand(queue, (n,), dtype)

        a = a_gpu.get()

        for slc in [
                slice(None),
                slice(1000, 3000),
                slice(1000, -3000),
                slice(1000, None),
                slice(1000, None, 3),
                ]:
            sum_a = np.sum(a[slc])

            if slc.step is None:
                sum_a_gpu = cl_array.sum(a_gpu[slc]).get()
                assert abs(sum_a_gpu - sum_a) / abs(sum_a) < 1e-4

            sum_a_gpu_2 = cl_array.sum(a_gpu, slice=slc).get()
            assert abs(sum_a_gpu_2 - sum_a) / abs(sum_a) < 1e-4


def test_sum_without_data(ctx_factory):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    n = 2000

    from pyopencl.reduction import ReductionKernel
    red = ReductionKernel(context, np.int32,
            neutral="0",
            reduce_expr="a+b", map_expr="i",
            arguments=[])

    result_dev = red(range=slice(n), queue=queue).get()
    result_ref = n*(n-1)//2

    assert result_dev == result_ref


def test_minmax(ctx_factory):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    from pyopencl.clrandom import rand as clrand

    if has_double_support(context.devices[0]):
        dtypes = [np.float64, np.float32, np.int32]
    else:
        dtypes = [np.float32, np.int32]

    for what in ["min", "max"]:
        for dtype in dtypes:
            a_gpu = clrand(queue, (200000,), dtype)
            a = a_gpu.get()

            op_a = getattr(np, what)(a)
            op_a_gpu = getattr(cl_array, what)(a_gpu).get()

            assert op_a_gpu == op_a, (op_a_gpu, op_a, dtype, what)


def test_subset_minmax(ctx_factory):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    from pyopencl.clrandom import rand as clrand

    l_a = 200000
    gran = 5
    l_m = l_a - l_a // gran + 1

    if has_double_support(context.devices[0]):
        dtypes = [np.float64, np.float32, np.int32]
    else:
        dtypes = [np.float32, np.int32]

    for dtype in dtypes:
        a_gpu = clrand(queue, (l_a,), dtype)
        a = a_gpu.get()

        meaningful_indices_gpu = cl_array.zeros(
                queue, l_m, dtype=np.int32)
        meaningful_indices = meaningful_indices_gpu.get()
        j = 0
        for i in range(len(meaningful_indices)):
            meaningful_indices[i] = j
            j = j + 1
            if j % gran == 0:
                j = j + 1

        meaningful_indices_gpu = cl_array.to_device(
                queue, meaningful_indices)
        b = a[meaningful_indices]

        min_a = np.min(b)
        min_a_gpu = cl_array.subset_min(meaningful_indices_gpu, a_gpu).get()

        assert min_a_gpu == min_a


def test_dot(ctx_factory):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    dev = context.devices[0]

    dtypes = [np.float32, np.complex64]
    if has_double_support(dev):
        if has_struct_arg_count_bug(dev) == "apple":
            dtypes.extend([np.float64])
        else:
            dtypes.extend([np.float64, np.complex128])

    for a_dtype in dtypes:
        for b_dtype in dtypes:
            print(a_dtype, b_dtype)
            a_gpu = general_clrand(queue, (200000,), a_dtype)
            a = a_gpu.get()
            b_gpu = general_clrand(queue, (200000,), b_dtype)
            b = b_gpu.get()

            dot_ab = np.dot(a, b)
            dot_ab_gpu = cl_array.dot(a_gpu, b_gpu).get()

            assert abs(dot_ab_gpu - dot_ab) / abs(dot_ab) < 1e-4

            try:
                vdot_ab = np.vdot(a, b)
            except NotImplementedError:
                import sys
                is_pypy = '__pypy__' in sys.builtin_module_names
                if is_pypy:
                    print("PYPY: VDOT UNIMPLEMENTED")
                    continue
                else:
                    raise

            vdot_ab_gpu = cl_array.vdot(a_gpu, b_gpu).get()

            assert abs(vdot_ab_gpu - vdot_ab) / abs(vdot_ab) < 1e-4


@memoize
def make_mmc_dtype(device):
    dtype = np.dtype([
        ("cur_min", np.int32),
        ("cur_max", np.int32),
        ("pad", np.int32),
        ])

    name = "minmax_collector"
    from pyopencl.tools import get_or_register_dtype, match_dtype_to_c_struct

    dtype, c_decl = match_dtype_to_c_struct(device, name, dtype)
    dtype = get_or_register_dtype(name, dtype)

    return dtype, c_decl


def test_struct_reduce(ctx_factory):
    pytest.importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    dev, = context.devices
    if (dev.vendor == "NVIDIA" and dev.platform.vendor == "Apple"
            and dev.driver_version == "8.12.47 310.40.00.05f01"):
        pytest.skip("causes a compiler hang on Apple/Nv GPU")

    mmc_dtype, mmc_c_decl = make_mmc_dtype(context.devices[0])

    preamble = mmc_c_decl + r"""//CL//

    minmax_collector mmc_neutral()
    {
        // FIXME: needs infinity literal in real use, ok here
        minmax_collector result;
        result.cur_min = 1<<30;
        result.cur_max = -(1<<30);
        return result;
    }

    minmax_collector mmc_from_scalar(float x)
    {
        minmax_collector result;
        result.cur_min = x;
        result.cur_max = x;
        return result;
    }

    minmax_collector agg_mmc(minmax_collector a, minmax_collector b)
    {
        minmax_collector result = a;
        if (b.cur_min < result.cur_min)
            result.cur_min = b.cur_min;
        if (b.cur_max > result.cur_max)
            result.cur_max = b.cur_max;
        return result;
    }

    """

    from pyopencl.clrandom import rand as clrand
    a_gpu = clrand(queue, (20000,), dtype=np.int32, a=0, b=10**6)
    a = a_gpu.get()

    from pyopencl.reduction import ReductionKernel
    red = ReductionKernel(context, mmc_dtype,
            neutral="mmc_neutral()",
            reduce_expr="agg_mmc(a, b)", map_expr="mmc_from_scalar(x[i])",
            arguments="__global int *x", preamble=preamble)

    minmax = red(a_gpu).get()
    #print minmax["cur_min"], minmax["cur_max"]
    #print np.min(a), np.max(a)

    assert abs(minmax["cur_min"] - np.min(a)) < 1e-5
    assert abs(minmax["cur_max"] - np.max(a)) < 1e-5

# }}}


# {{{ scan-related

def summarize_error(obtained, desired, orig, thresh=1e-5):
    from pytest import importorskip
    importorskip("mako")

    err = obtained - desired
    ok_count = 0
    bad_count = 0

    bad_limit = 200

    def summarize_counts():
        if ok_count:
            entries.append("<%d ok>" % ok_count)
        if bad_count >= bad_limit:
            entries.append("<%d more bad>" % (bad_count-bad_limit))

    entries = []
    for i, val in enumerate(err):
        if abs(val) > thresh:
            if ok_count:
                summarize_counts()
                ok_count = 0

            bad_count += 1

            if bad_count < bad_limit:
                entries.append("%r (want: %r, got: %r, orig: %r)" % (
                    obtained[i], desired[i], obtained[i], orig[i]))
        else:
            if bad_count:
                summarize_counts()
                bad_count = 0

            ok_count += 1

    summarize_counts()

    return " ".join(entries)


scan_test_counts = [
    10,
    2 ** 8 - 1,
    2 ** 8,
    2 ** 8 + 1,
    2 ** 10 - 5,
    2 ** 10,
    2 ** 10 + 5,
    2 ** 12 - 5,
    2 ** 12,
    2 ** 12 + 5,
    2 ** 20 - 2 ** 18,
    2 ** 20 - 2 ** 18 + 5,
    2 ** 20 + 1,
    2 ** 20,
    2 ** 23 + 3,
    # larger sizes cause out of memory on low-end AMD APUs
    ]


@pytest.mark.parametrize("dtype", [np.int32, np.int64])
@pytest.mark.parametrize("scan_cls", [InclusiveScanKernel, ExclusiveScanKernel])
def test_scan(ctx_factory, dtype, scan_cls):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    knl = scan_cls(context, dtype, "a+b", "0")

    for n in scan_test_counts:
        host_data = np.random.randint(0, 10, n).astype(dtype)
        dev_data = cl_array.to_device(queue, host_data)

        # /!\ fails on Nv GT2?? for some drivers
        assert (host_data == dev_data.get()).all()

        knl(dev_data)

        desired_result = np.cumsum(host_data, axis=0)
        if scan_cls is ExclusiveScanKernel:
            desired_result -= host_data

        is_ok = (dev_data.get() == desired_result).all()
        if 1 and not is_ok:
            print("something went wrong, summarizing error...")
            print(summarize_error(dev_data.get(), desired_result, host_data))

        print("dtype:%s n:%d %s worked:%s" % (dtype, n, scan_cls, is_ok))
        assert is_ok
        from gc import collect
        collect()


def test_copy_if(ctx_factory):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    from pyopencl.clrandom import rand as clrand
    for n in scan_test_counts:
        a_dev = clrand(queue, (n,), dtype=np.int32, a=0, b=1000)
        a = a_dev.get()

        from pyopencl.algorithm import copy_if

        crit = a_dev.dtype.type(300)
        selected = a[a > crit]
        selected_dev, count_dev, evt = copy_if(
                a_dev, "ary[i] > myval", [("myval", crit)])

        assert (selected_dev.get()[:count_dev.get()] == selected).all()
        from gc import collect
        collect()


def test_partition(ctx_factory):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    from pyopencl.clrandom import rand as clrand
    for n in scan_test_counts:
        print("part", n)

        a_dev = clrand(queue, (n,), dtype=np.int32, a=0, b=1000)
        a = a_dev.get()

        crit = a_dev.dtype.type(300)
        true_host = a[a > crit]
        false_host = a[a <= crit]

        from pyopencl.algorithm import partition
        true_dev, false_dev, count_true_dev, evt = partition(
                a_dev, "ary[i] > myval", [("myval", crit)])

        count_true_dev = count_true_dev.get()

        assert (true_dev.get()[:count_true_dev] == true_host).all()
        assert (false_dev.get()[:n-count_true_dev] == false_host).all()


def test_unique(ctx_factory):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    from pyopencl.clrandom import rand as clrand
    for n in scan_test_counts:
        a_dev = clrand(queue, (n,), dtype=np.int32, a=0, b=1000)
        a = a_dev.get()
        a = np.sort(a)
        a_dev = cl_array.to_device(queue, a)

        a_unique_host = np.unique(a)

        from pyopencl.algorithm import unique
        a_unique_dev, count_unique_dev, evt = unique(a_dev)

        count_unique_dev = count_unique_dev.get()

        assert (a_unique_dev.get()[:count_unique_dev] == a_unique_host).all()
        from gc import collect
        collect()


def test_index_preservation(ctx_factory):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    from pyopencl.scan import GenericScanKernel, GenericDebugScanKernel
    classes = [GenericScanKernel]

    dev = context.devices[0]
    if dev.type & cl.device_type.CPU:
        classes.append(GenericDebugScanKernel)

    for cls in classes:
        for n in scan_test_counts:
            knl = cls(
                    context, np.int32,
                    arguments="__global int *out",
                    input_expr="i",
                    scan_expr="b", neutral="0",
                    output_statement="""
                        out[i] = item;
                        """)

            out = cl_array.empty(queue, n, dtype=np.int32)
            knl(out)

            assert (out.get() == np.arange(n)).all()
            from gc import collect
            collect()


def test_segmented_scan(ctx_factory):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    from pyopencl.tools import dtype_to_ctype
    dtype = np.int32
    ctype = dtype_to_ctype(dtype)

    #for is_exclusive in [False, True]:
    for is_exclusive in [True, False]:
        if is_exclusive:
            output_statement = "out[i] = prev_item"
        else:
            output_statement = "out[i] = item"

        knl = GenericScanKernel(context, dtype,
                arguments="__global %s *ary, __global char *segflags, "
                    "__global %s *out" % (ctype, ctype),
                input_expr="ary[i]",
                scan_expr="across_seg_boundary ? b : (a+b)", neutral="0",
                is_segment_start_expr="segflags[i]",
                output_statement=output_statement,
                options=[])

        np.set_printoptions(threshold=2000)
        from random import randrange
        from pyopencl.clrandom import rand as clrand
        for n in scan_test_counts:
            a_dev = clrand(queue, (n,), dtype=dtype, a=0, b=10)
            a = a_dev.get()

            if 10 <= n < 20:
                seg_boundaries_values = [
                        [0, 9],
                        [0, 3],
                        [4, 6],
                        ]
            else:
                seg_boundaries_values = []
                for i in range(10):
                    seg_boundary_count = max(2, min(100, randrange(0, int(0.4*n))))
                    seg_boundaries = [
                            randrange(n) for i in range(seg_boundary_count)]
                    if n >= 1029:
                        seg_boundaries.insert(0, 1028)
                    seg_boundaries.sort()
                    seg_boundaries_values.append(seg_boundaries)

            for seg_boundaries in seg_boundaries_values:
                #print "BOUNDARIES", seg_boundaries
                #print a

                seg_boundary_flags = np.zeros(n, dtype=np.uint8)
                seg_boundary_flags[seg_boundaries] = 1
                seg_boundary_flags_dev = cl_array.to_device(
                        queue, seg_boundary_flags)

                seg_boundaries.insert(0, 0)

                result_host = a.copy()
                for i, seg_start in enumerate(seg_boundaries):
                    if i+1 < len(seg_boundaries):
                        seg_end = seg_boundaries[i+1]
                    else:
                        seg_end = None

                    if is_exclusive:
                        result_host[seg_start+1:seg_end] = np.cumsum(
                                a[seg_start:seg_end][:-1])
                        result_host[seg_start] = 0
                    else:
                        result_host[seg_start:seg_end] = np.cumsum(
                                a[seg_start:seg_end])

                #print "REF", result_host

                result_dev = cl_array.empty_like(a_dev)
                knl(a_dev, seg_boundary_flags_dev, result_dev)

                #print "RES", result_dev
                is_correct = (result_dev.get() == result_host).all()
                if not is_correct:
                    diff = result_dev.get() - result_host
                    print("RES-REF", diff)
                    print("ERRWHERE", np.where(diff))
                    print(n, list(seg_boundaries))

                assert is_correct
                from gc import collect
                collect()

            print("%d excl:%s done" % (n, is_exclusive))


@pytest.mark.parametrize("scan_kernel", [GenericScanKernel, GenericDebugScanKernel])
def test_sort(ctx_factory, scan_kernel):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    dtype = np.int32

    from pyopencl.algorithm import RadixSort
    sort = RadixSort(context, "int *ary", key_expr="ary[i]",
            sort_arg_names=["ary"], scan_kernel=scan_kernel)

    from pyopencl.clrandom import RanluxGenerator
    rng = RanluxGenerator(queue, seed=15)

    from time import time

    # intermediate arrays for largest size cause out-of-memory on low-end GPUs
    for n in scan_test_counts[:-1]:
        if n >= 2000 and isinstance(scan_kernel, GenericDebugScanKernel):
            continue

        print(n)

        print("  rng")
        a_dev = rng.uniform(queue, (n,), dtype=dtype, a=0, b=2**16)
        a = a_dev.get()

        dev_start = time()
        print("  device")
        (a_dev_sorted,), evt = sort(a_dev, key_bits=16)
        queue.finish()
        dev_end = time()
        print("  numpy")
        a_sorted = np.sort(a)
        numpy_end = time()

        numpy_elapsed = numpy_end-dev_end
        dev_elapsed = dev_end-dev_start
        print("  dev: %.2f MKeys/s numpy: %.2f MKeys/s ratio: %.2fx" % (
                1e-6*n/dev_elapsed, 1e-6*n/numpy_elapsed, numpy_elapsed/dev_elapsed))
        assert (a_dev_sorted.get() == a_sorted).all()


def test_list_builder(ctx_factory):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    from pyopencl.algorithm import ListOfListsBuilder
    builder = ListOfListsBuilder(context, [("mylist", np.int32)], """//CL//
            void generate(LIST_ARG_DECL USER_ARG_DECL index_type i)
            {
                int count = i % 4;
                for (int j = 0; j < count; ++j)
                {
                    APPEND_mylist(count);
                }
            }
            """, arg_decls=[])

    result, evt = builder(queue, 2000)

    inf = result["mylist"]
    assert inf.count == 3000
    assert (inf.lists.get()[-6:] == [1, 2, 2, 3, 3, 3]).all()


def test_key_value_sorter(ctx_factory):
    from pytest import importorskip
    importorskip("mako")

    context = ctx_factory()
    queue = cl.CommandQueue(context)

    n = 10**5
    nkeys = 2000
    from pyopencl.clrandom import rand as clrand
    keys = clrand(queue, n, np.int32, b=nkeys)
    values = clrand(queue, n, np.int32, b=n).astype(np.int64)

    assert np.max(keys.get()) < nkeys

    from pyopencl.algorithm import KeyValueSorter
    kvs = KeyValueSorter(context)
    starts, lists, evt = kvs(queue, keys, values, nkeys, starts_dtype=np.int32)

    starts = starts.get()
    lists = lists.get()

    mydict = dict()
    for k, v in zip(keys.get(), values.get()):
        mydict.setdefault(k, []).append(v)

    for i in range(nkeys):
        start, end = starts[i:i+2]
        assert sorted(mydict[i]) == sorted(lists[start:end])

# }}}


# {{{ bitonic sort

@pytest.mark.parametrize("size", [
    512,
    4,
    16
    ])
@pytest.mark.parametrize("dtype", [
    np.int32,
    np.float32,
    np.float64
    ])
@pytest.mark.bitonic
def test_bitonic_sort(ctx_factory, size, dtype):
    ctx = cl.create_some_context()
    queue = cl.CommandQueue(ctx)

    dev = ctx.devices[0]
    if (dev.platform.name == "Apple" and dev.type & cl.device_type.CPU):
        pytest.xfail("Bitonic sort won't work on Apple CPU: no workgroup "
            "parallelism")
    if (dev.platform.name == "Portable Computing Language"
            and dtype == np.float64):
        pytest.xfail("Double precision bitonic sort doesn't work on POCL")

    import pyopencl.clrandom as clrandom
    from pyopencl.bitonic_sort import BitonicSort

    s = clrandom.rand(queue, (2, size, 3,), dtype, luxury=None, a=0, b=239482333)
    sorter = BitonicSort(ctx)
    sgs, evt = sorter(s.copy(), axis=1)
    assert np.array_equal(np.sort(s.get(), axis=1), sgs.get())


@pytest.mark.parametrize("size", [
    0,
    4,
    2**14,
    2**18,
    ])
@pytest.mark.parametrize("dtype", [
    np.int32,
    np.float32,
    np.float64
    ])
@pytest.mark.bitonic
def test_bitonic_argsort(ctx_factory, size, dtype):
    import sys
    is_pypy = '__pypy__' in sys.builtin_module_names

    if not size and is_pypy:
        # https://bitbucket.org/pypy/numpy/issues/53/specifying-strides-on-zero-sized-array
        pytest.xfail("pypy doesn't seem to handle as_strided "
                "on zero-sized arrays very well")

    ctx = cl.create_some_context()
    queue = cl.CommandQueue(ctx)

    dev = ctx.devices[0]
    if (dev.platform.name == "Apple" and dev.type & cl.device_type.CPU):
        pytest.xfail("Bitonic sort won't work on Apple CPU: no workgroup "
            "parallelism")
    if (dev.platform.name == "Portable Computing Language"
            and dtype == np.float64):
        pytest.xfail("Double precision bitonic sort doesn't work on POCL")

    import pyopencl.clrandom as clrandom
    from pyopencl.bitonic_sort import BitonicSort

    index = cl_array.arange(queue, 0, size, 1, dtype=np.int32)
    m = clrandom.rand(queue, (size,), dtype, luxury=None, a=0, b=239432234)

    sorterm = BitonicSort(ctx)

    ms, evt = sorterm(m.copy(), idx=index, axis=0)

    assert np.array_equal(np.sort(m.get()), ms.get())

    # may be False because of identical values in array
    # assert np.array_equal(np.argsort(m.get()), index.get())

    # Check values by indices
    assert np.array_equal(m.get()[np.argsort(m.get())], m.get()[index.get()])

# }}}


if __name__ == "__main__":
    if len(sys.argv) > 1:
        exec(sys.argv[1])
    else:
        from py.test.cmdline import main
        main([__file__])

# vim: filetype=pyopencl:fdm=marker