File: runtime_memory.rst

package info (click to toggle)
pyopencl 2025.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,336 kB
  • sloc: python: 21,012; cpp: 7,986; lisp: 3,539; ansic: 523; makefile: 45; sh: 37
file content (508 lines) | stat: -rw-r--r-- 15,968 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
.. include:: subst.rst

OpenCL Runtime: Memory
======================

.. currentmodule:: pyopencl

.. class:: MemoryObject

    .. attribute:: info

        Lower case versions of the :class:`mem_info` constants
        may be used as attributes on instances of this class
        to directly query info attributes.

    .. attribute:: hostbuf

    .. method:: get_info(param)

        See :class:`mem_info` for values of *param*.

    .. method:: release()

    .. method:: get_host_array(shape, dtype, order="C")

        Return the memory object's associated host memory
        area as a :class:`numpy.ndarray` of the given *shape*,
        *dtype* and *order*.

    .. automethod:: from_int_ptr
    .. autoattribute:: int_ptr

    |comparable|

Memory Migration
----------------

.. function:: enqueue_migrate_mem_objects(queue, mem_objects, flags=0, wait_for=None)

    :param flags: from :class:`mem_migration_flags`

    .. versionadded:: 2011.2

    Only available with CL 1.2.

Buffer
------

.. class:: Buffer(context, flags, size=0, hostbuf=None)

    Create a :class:`Buffer`.
    See :class:`mem_flags` for values of *flags*.
    If *hostbuf* is specified, *size* defaults to the size of
    the specified buffer if it is passed as zero.

    :class:`Buffer` inherits from :class:`MemoryObject`.

    .. note::

        Python also defines a type of `buffer object
        <https://docs.python.org/3/c-api/buffer.html>`__,
        and PyOpenCL interacts with those, too, as the host-side
        target of :func:`enqueue_copy`. Make sure to always be
        clear on whether a :class:`Buffer` or a Python buffer
        object is needed.

    Note that actual memory allocation in OpenCL may be deferred.
    Buffers are attached to a :class:`Context` and are only
    moved to a device once the buffer is used on that device.
    That is also the point when out-of-memory errors will occur.
    If you'd like to be sure that there's enough memory for
    your allocation, either use :func:`enqueue_migrate_mem_objects`
    (if available) or simply perform a small transfer to the
    buffer. See also :class:`pyopencl.tools.ImmediateAllocator`.

    .. method:: get_sub_region(origin, size, flags=0)

        Only available in OpenCL 1.1 and newer.

    .. method:: __getitem__(slc)

        *slc* is a :class:`slice` object indicating from which byte index range
        a sub-buffer is to be created. The *flags* argument of
        :meth:`get_sub_region` is set to the same flags with which *self* was
        created.


.. function:: enqueue_fill_buffer(queue, mem, pattern, offset, size, wait_for=None)

    :arg mem: the on device :class:`Buffer`
    :arg pattern: a buffer object (likely a :class:`numpy.ndarray`, eg.
        ``np.uint32(0)``). The memory associated with *pattern* can be reused or
        freed once the function completes.
    :arg size: The size in bytes of the region to be filled. Must be a multiple of the
        size of the pattern.
    :arg offset: The location in bytes of the region being filled in *mem*.
        Must be a multiple of the size of the pattern.

    Fills a buffer with the provided pattern

    |std-enqueue-blurb|

    Only available with CL 1.2.

    .. versionadded:: 2011.2

.. _svm:

Shared Virtual Memory (SVM)
---------------------------

Shared virtual memory allows the host and the compute device to share
address space, so that pointers on the host and on the device may have
the same meaning. In addition, it allows the same memory to be accessed
by both the host and the device. *Coarse-grain* SVM requires that
buffers be mapped before being accessed on the host, *fine-grain* SVM
does away with that requirement.

.. warning::

    Compared to :class:`Buffer`\ s, SVM brings with it a new concern: the
    synchronization of memory deallocation. Unlike other objects in OpenCL,
    SVM is represented by a plain (C-language) pointer and thus has no ability for
    reference counting.

    As a result, it is perfectly legal to allocate a :class:`Buffer`, enqueue an
    operation on it, and release the buffer, without worrying about whether the
    operation has completed. The OpenCL implementation will keep the buffer alive
    until the operation has completed. This is *not* the case with SVM: Unless
    otherwise specified, memory deallocation is performed immediately when
    requested, and so SVM will be deallocated whenever the Python
    garbage collector sees fit, even if the operation has not completed,
    immediately leading to undefined behavior (i.e., typically, memory corruption and,
    before too long, a crash).

    Version 2022.2 of PyOpenCL offers substantially improved tools
    for dealing with this. In particular, all means for allocating SVM
    allow specifying a :class:`CommandQueue`, so that deallocation
    is enqueued and performed after previously-enqueued operations
    have completed.

SVM requires OpenCL 2.0.

.. _opaque-svm:

Opaque and "Wrapped-:mod:`numpy`" Styles of Referencing SVM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

When trying to pass SVM pointers to functionality in :mod:`pyopencl`,
two styles are supported:

- First, the opaque style. This style most closely resembles
  :class:`Buffer`-based allocation available in OpenCL 1.x.
  SVM pointers are held in opaque "handle" objects such as :class:`SVMAllocation`.

- Second, the wrapped-:mod:`numpy` style. In this case, a :class:`numpy.ndarray`
  (or another object implementing the  :c:func:`Python buffer protocol
  <PyObject_GetBuffer>`) serves as the reference to an area of SVM.
  This style permits using memory areas with :mod:`pyopencl`'s SVM
  interfaces even if they were allocated outside of :mod:`pyopencl`.

  Since passing a :class:`numpy.ndarray` (or another type of object obeying the
  buffer interface) already has existing semantics in most settings in
  :mod:`pyopencl` (such as when passing arguments to a kernel or calling
  :func:`enqueue_copy`), there exists a wrapper object, :class:`SVM`, that may
  be "wrapped around" these objects to mark them as SVM.

The commonality between the two styles is that both ultimately implement
the :class:`SVMPointer` interface, which :mod:`pyopencl` uses to obtain
the actual SVM pointer.

Note that it is easily possible to obtain a :class:`numpy.ndarray` view of SVM
areas held in the opaque style, see :attr:`SVMPointer.buf`, permitting
transitions from opaque to wrapped-:mod:`numpy` style. The opposite transition
(from wrapped-:mod:`numpy` to opaque) is not necessarily straightforward,
as it would require "fishing" the opaque SVM handle out of a chain of
:attr:`numpy.ndarray.base` attributes (or similar, depending on
the actual object serving as the main SVM reference).

See :ref:`numpy-svm-helpers` for helper functions that ease setting up the
wrapped-:mod:`numpy` structure.

Wrapped-:mod:`numpy` SVM tends to be a good fit for fine-grain SVM because of
the ease of direct host-side access, but the creation of the nested structure
that makes this possible is associated with a certain amount of cost.

By comparison, opaque SVM access tends to be a good fit for coarse-grain
SVM, because direct host access is not possible without mapping the array
anyway, and it has lower setup cost. It is of course entirely possible to use
opaque SVM access with fine-grain SVM.

.. versionchanged:: 2022.2

   This version adds the opaque style of SVM access.

Using SVM with Arrays
^^^^^^^^^^^^^^^^^^^^^

While all types of SVM can be used as the memory backing
:class:`pyopencl.array.Array` objects, ensuring that new arrays returned
by array operations (e.g. arithmetic) also use SVM is easiest to accomplish
by passing an :class:`~pyopencl.tools.SVMAllocator` (or
:class:`~pyopencl.tools.SVMPool`) as the *allocator* parameter in functions
returning new arrays.

SVM Pointers, Allocations, and Maps
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. autoclass:: SVMPointer

.. autoclass:: SVMAllocation

.. autoclass:: SVM

.. autoclass:: SVMMap


.. _numpy-svm-helpers:

Helper functions for :mod:`numpy`-based SVM allocation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. autofunction:: svm_empty
.. autofunction:: svm_empty_like
.. autofunction:: csvm_empty
.. autofunction:: csvm_empty_like
.. autofunction:: fsvm_empty
.. autofunction:: fsvm_empty_like

Operations on SVM
^^^^^^^^^^^^^^^^^

(See also :ref:`mem-transfer`.)

.. autofunction:: enqueue_svm_memfill
.. autofunction:: enqueue_svm_migratemem

Image
-----

.. class:: ImageFormat(channel_order, channel_type)

    .. attribute:: channel_order

        See :class:`channel_order` for possible values.

    .. attribute:: channel_data_type

        See :class:`channel_type` for possible values.

    .. attribute:: channel_count

        .. versionadded:: 0.91.5

    .. attribute:: dtype_size

        .. versionadded:: 0.91.5

    .. attribute:: itemsize

        .. versionadded:: 0.91.5

    .. method:: __repr__

        Returns a :class:`str` representation of the image format.

        .. versionadded:: 0.91

    |comparable|

    .. versionchanged:: 0.91

        Constructor arguments added.

    .. versionchanged:: 2013.2

        :class:`ImageFormat` was made comparable and hashable

.. function:: get_supported_image_formats(context, flags, image_type)

    See :class:`mem_flags` for possible values of *flags*
    and :class:`mem_object_type` for possible values of *image_type*.

.. class:: Image
    Use :func:`create_image` to create images.

    .. versionadded:: 0.91

    .. attribute:: info

        Lower case versions of the :class:`mem_info`
        and :class:`image_info` constants
        may be used as attributes on instances of this class
        to directly query info attributes.

    .. attribute:: shape

        Return the value of the *shape* constructor argument as a :class:`tuple`.

    .. method:: get_image_info(param)

        See :class:`image_info` for values of *param*.

    .. method:: release()

    |comparable|

.. autofunction:: create_image

.. function:: image_from_array(ctx, ary, num_channels=None, mode="r", norm_int=False)

    Build a 2D or 3D :class:`Image` from the :class:`numpy.ndarray` *ary*.  If
    *num_channels* is greater than one, the last dimension of *ary* must be
    identical to *num_channels*. *ary* must be in C order. If *num_channels* is
    not given, it defaults to 1 for scalar types and the number of entries
    for :ref:`vector-types`.

    The :class:`ImageFormat` is chosen as the first *num_channels* components
    of "RGBA".

    :param mode: "r" or "w" for read/write

    .. note::

        When reading from the image object, the indices passed to ``read_imagef``
        are in the reverse order from what they would be when accessing *ary* from
        Python.

    If *norm_int* is *True*, then the integer values are normalized to a floating
    point scale of 0..1 when read.

    .. versionadded:: 2011.2

.. function:: enqueue_fill_image(queue, mem, color, origin, region, wait_for=None)

    :arg color: a buffer object (likely a :class:`numpy.ndarray`)

    |std-enqueue-blurb|

    Only available with CL 1.2.

    .. versionadded:: 2011.2

.. _mem-transfer:

Transfers
---------

.. autofunction:: enqueue_copy(queue, dest, src, **kwargs)

.. autofunction:: enqueue_fill(queue, dest, src, **kwargs)

.. function:: enqueue_copy_buffer_p2p_amd(platform, queue, src, dest, size=None, wait_for=None)

    AMD extension to perform a peer-to-peer copy between two buffers on two different devices.
    The two devices must be in different contexts. The queue must be where the source
    buffer is located.

    :arg platform: a :class:`Platform` instance
    :arg queue: a :class:`CommandQueue` instance
    :arg src: a :class:`Buffer` instance
    :arg dest: a :class:`Buffer` instance

    :param size: the number of bytes to copy. If *None*, the minimum of the sizes of the two buffers is used.

    |std-enqueue-blurb|

    Only available on AMD platforms.

    .. versionadded:: 2023.1.2

Mapping Memory into Host Address Space
--------------------------------------

.. autoclass:: MemoryMap

.. function:: enqueue_map_buffer(queue, buf, flags, offset, shape, dtype, order="C", strides=None, wait_for=None, is_blocking=True)

    |explain-waitfor|
    *shape*, *dtype*, and *order* have the same meaning
    as in :func:`numpy.empty`.
    See :class:`map_flags` for possible values of *flags*.
    *strides*, if given, overrides *order*.

    :return: a tuple *(array, event)*. *array* is a
        :class:`numpy.ndarray` representing the host side
        of the map. Its *.base* member contains a
        :class:`MemoryMap`.

    .. versionchanged:: 2011.1
        *is_blocking* now defaults to True.

    .. versionchanged:: 2013.1
        *order* now defaults to "C".

    .. versionchanged:: 2013.2
        Added *strides* argument.

    Sample usage::

        mapped_buf = cl.enqueue_map_buffer(queue, buf, ...)
        with mapped_buf.base:
            # work with mapped_buf
            ...

        # memory will be unmapped here

.. function:: enqueue_map_image(queue, buf, flags, origin, region, shape, dtype, order="C", strides=None, wait_for=None, is_blocking=True)

    |explain-waitfor|
    *shape*, *dtype*, and *order* have the same meaning
    as in :func:`numpy.empty`.
    See :class:`map_flags` for possible values of *flags*.
    *strides*, if given, overrides *order*.

    :return: a tuple *(array, event)*. *array* is a
        :class:`numpy.ndarray` representing the host side
        of the map. Its *.base* member contains a
        :class:`MemoryMap`.

    .. versionchanged:: 2011.1
        *is_blocking* now defaults to True.

    .. versionchanged:: 2013.1
        *order* now defaults to "C".

    .. versionchanged:: 2013.2
        Added *strides* argument.

Samplers
--------

.. class:: Sampler

    .. method:: __init__(context, normalized_coords, addressing_mode, filter_mode)

        *normalized_coords* is a :class:`bool` indicating whether
        to use coordinates between 0 and 1 (*True*) or the texture's
        natural pixel size (*False*).
        See :class:`addressing_mode` and :class:`filter_mode` for possible
        argument values.

        Also supports an alternate signature ``(context, properties)``.

        :arg properties: a sequence
            of keys and values from :class:`sampler_properties` as accepted
            by :c:func:`clCreateSamplerWithProperties` (see the OpenCL
            spec for details). The trailing *0* is added automatically
            and does not need to be included.

        This signature Requires OpenCL 2 or newer.

        .. versionchanged:: 2018.2

            The properties-based signature was added.

    .. attribute:: info

        Lower case versions of the :class:`sampler_info` constants
        may be used as attributes on instances of this class
        to directly query info attributes.

    .. method:: get_info(param)

        See :class:`sampler_info` for values of *param*.

    .. automethod:: from_int_ptr
    .. autoattribute:: int_ptr

    |comparable|

Pipes
-----

.. class:: Pipe(context, flags, packet_size, max_packets, properties=())

    See :class:`mem_flags` for values of *flags*.

    :arg properties: a sequence
        of keys and values from :class:`pipe_properties` as accepted
        by :c:func:`clCreatePipe`. The trailing *0* is added automatically
        and does not need to be included.
        (This argument must currently be empty.)

    This function requires OpenCL 2 or newer.

    .. versionadded:: 2020.3

    .. versionchanged:: 2021.1.7

        *properties* now defaults to an empty tuple.

    .. method:: get_pipe_info(param)

        See :class:`pipe_info` for values of *param*.

Type aliases
------------

.. currentmodule:: pyopencl._cl

.. class:: Buffer

   See :class:`pyopencl.Buffer`.

.. class:: Image

   See :class:`pyopencl.Image`.