File: glDrawPixels.3G.xml

package info (click to toggle)
pyopengl 2.0.1.08-5.1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 19,484 kB
  • ctags: 9,036
  • sloc: pascal: 64,950; xml: 28,088; ansic: 20,696; python: 19,761; tcl: 668; makefile: 240; sh: 25
file content (575 lines) | stat: -rw-r--r-- 37,933 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE html
  PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN" "http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd">
<html
	xmlns="http://www.w3.org/1999/xhtml"
	xmlns:mml="http://www.w3.org/1998/Math/MathML"
><head><title>glDrawPixels</title><link rel="stylesheet" href="style.css" type="text/css"/><meta name="generator" content="DocBook XSL Stylesheets V1.59.1"/><link rel="home" href="index.xml" title="PyOpenGL 2.0.1.07 Man Pages"/><link rel="up" href="reference-GL.xml" title="GL"/><link rel="previous" href="glDrawElements.3G.xml" title="glDrawElements"/><link rel="next" href="glDrawRangeElements.3G.xml" title="glDrawRangeElements"/></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">glDrawPixels</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="glDrawElements.3G.xml">Prev</a></td><th width="60%" align="center">GL</th><td width="20%" align="right"><a accesskey="n" href="glDrawRangeElements.3G.xml">Next</a></td></tr></table><hr/></div><div class="refentry" lang="en"><a name="glDrawPixels.3G"/><div class="titlepage"/><div class="refnamediv"><a name="glDrawPixels.3G-name"/><h2>Name</h2><p>glDrawPixels, glDrawPixelsb, glDrawPixelsf, glDrawPixelsi, glDrawPixelss, glDrawPixelsub, glDrawPixelsui, glDrawPixelsus &#8212; write a block of pixels to the frame buffer</p></div><div class="refsynopsisdiv"><a name="glDrawPixels.3G-c_spec"/><h2>C Specification</h2><table class="funcprototype" border="0" cellpadding="0" cellspacing="0"><tr><td valign="top"><code>void<tt>glDrawPixels</tt></code></td><td valign="top"><code>(</code></td><td valign="top"><code>GLsizei<i><tt>width</tt></i>, GLsizei<i><tt>height</tt></i>, GLenum<i><tt>format</tt></i>, GLenum<i><tt>type</tt></i>, constGLvoid*<i><tt>pixels</tt></i>);</code></td></tr></table></div><div class="refsynopsisdiv"><a name="glDrawPixels.3G-python_spec"/><h2>Python Specification</h2><table class="funcprototype" border="0" cellpadding="0" cellspacing="0"><tr><td valign="top"><code><tt>glDrawPixels</tt></code></td><td valign="top"><code>(</code></td><td valign="top"><code><i><tt>width</tt></i>, <i><tt>height</tt></i>, <i><tt>format</tt></i>, <i><tt>type</tt></i>, <i><tt>pixels</tt></i>) &#8594;<tt>None</tt></code></td></tr><tr><td valign="top"><code><tt>glDrawPixelsb</tt></code></td><td valign="top"><code>(</code></td><td valign="top"><code><i><tt>format</tt></i>, <i><tt>pixels</tt></i>[][][]) &#8594;<tt>None</tt></code></td></tr><tr><td valign="top"><code><tt>glDrawPixelsf</tt></code></td><td valign="top"><code>(</code></td><td valign="top"><code><i><tt>format</tt></i>, <i><tt>pixels</tt></i>[][][]) &#8594;<tt>None</tt></code></td></tr><tr><td valign="top"><code><tt>glDrawPixelsi</tt></code></td><td valign="top"><code>(</code></td><td valign="top"><code><i><tt>format</tt></i>, <i><tt>pixels</tt></i>[][][]) &#8594;<tt>None</tt></code></td></tr><tr><td valign="top"><code><tt>glDrawPixelss</tt></code></td><td valign="top"><code>(</code></td><td valign="top"><code><i><tt>format</tt></i>, <i><tt>pixels</tt></i>[][][]) &#8594;<tt>None</tt></code></td></tr><tr><td valign="top"><code><tt>glDrawPixelsub</tt></code></td><td valign="top"><code>(</code></td><td valign="top"><code><i><tt>format</tt></i>, <i><tt>pixels</tt></i>[][][]) &#8594;<tt>None</tt></code></td></tr><tr><td valign="top"><code><tt>glDrawPixelsui</tt></code></td><td valign="top"><code>(</code></td><td valign="top"><code><i><tt>format</tt></i>, <i><tt>pixels</tt></i>[][][]) &#8594;<tt>None</tt></code></td></tr><tr><td valign="top"><code><tt>glDrawPixelsus</tt></code></td><td valign="top"><code>(</code></td><td valign="top"><code><i><tt>format</tt></i>, <i><tt>pixels</tt></i>[][][]) &#8594;<tt>None</tt></code></td></tr></table></div><div class="refsect1" lang="en"><a name="glDrawPixels.3G-parameters"/><h2>Parameters</h2><div class="variablelist"><dl><dt><span class="term"><i><tt>width</tt></i>, <i><tt>height</tt></i></span></dt><dd>
						Specify the dimensions of the pixel rectangle to be written into the frame buffer.
					</dd><dt><span class="term"><i><tt>format</tt></i></span></dt><dd>
						Specifies the of the pixel data. Symbolic constants <tt>GL_COLOR_INDEX</tt>,
						<tt>GL_STENCIL_INDEX</tt>, <tt>GL_DEPTH_COMPONENT</tt>,
						<tt>GL_RGB</tt>, <tt>GL_BGR</tt>, <tt>GL_RGBA</tt>,
						<tt>GL_BGRA</tt>, <tt>GL_RED</tt>, <tt>GL_GREEN</tt>,
						<tt>GL_BLUE</tt>, <tt>GL_ALPHA</tt>, <tt>GL_LUMINANCE</tt>, and
						<tt>GL_LUMINANCE_ALPHA</tt> are accepted.
					</dd><dt><span class="term"><i><tt>type</tt></i></span></dt><dd>
						Specifies the data type for <i><tt>pixels</tt></i>. Symbolic constants
						<tt>GL_UNSIGNED_BYTE</tt>, <tt>GL_BYTE</tt>, <tt>GL_BITMAP</tt>,
						<tt>GL_UNSIGNED_SHORT</tt>, <tt>GL_SHORT</tt>,
						<tt>GL_UNSIGNED_INT</tt>, <tt>GL_INT</tt>, <tt>GL_FLOAT</tt>,
						<tt>GL_UNSIGNED_BYTE_3_3_2</tt>, <tt>GL_UNSIGNED_BYTE_2_3_3_REV</tt>,
						<tt>GL_UNSIGNED_SHORT_5_6_5</tt>, <tt>GL_UNSIGNED_SHORT_5_6_5_REV</tt>,
						<tt>GL_UNSIGNED_SHORT_4_4_4_4</tt>, <tt>GL_UNSIGNED_SHORT_4_4_4_4_REV</tt>,
						<tt>GL_UNSIGNED_SHORT_5_5_5_1</tt>, <tt>GL_UNSIGNED_SHORT_1_5_5_5_REV</tt>,
						<tt>GL_UNSIGNED_INT_8_8_8_8</tt>, <tt>GL_UNSIGNED_INT_8_8_8_8_REV</tt>,
						<tt>GL_UNSIGNED_INT_10_10_10_2</tt>, and <tt>GL_UNSIGNED_INT_2_10_10_10_REV</tt>
						are accepted.
					</dd><dt><span class="term"><i><tt>pixels</tt></i></span></dt><dd>
						Specifies a pointer to the pixel data.
					</dd></dl></div></div><div class="refsect1" lang="en"><a name="glDrawPixels.3G-description"/><h2>Description</h2><p>
			<tt>glDrawPixels</tt> reads pixel data from memory and writes it into the frame buffer
		</p><p>
			relative to the current raster position, provided that the raster position is valid. Use
		</p><p>
			<tt>glRasterPos</tt> to set the current raster position; use <tt>glGet</tt> with argument <tt>GL_CURRENT_RASTER_POSITION_VALID</tt> to determine
			if the specified raster position is valid, and <tt>glGet</tt> with argument
			<tt>GL_CURRENT_RASTER_POSITION</tt> to query the raster position.
		</p><p>
			Several parameters define the encoding of pixel data in memory and control the processing of the pixel data before it
			is placed in the frame buffer. These parameters are set with four commands: <tt>glPixelStore</tt>, <tt>glPixelTransfer</tt>, <tt>glPixelMap</tt>, and <a href="glPixelZoom.3G.xml"><tt>glPixelZoom</tt></a>. This reference
			page describes the effects on <tt>glDrawPixels</tt> of many, but not all, of the parameters specified by
			these four commands.
		</p><p>
			Data is read from <i><tt>pixels</tt></i> as a sequence of signed or unsigned bytes, signed or unsigned shorts,
			signed or unsigned integers, or single-precision floating-point values, depending on <i><tt>type</tt></i>. When
			<i><tt>type</tt></i> is one of <tt>GL_UNSIGNED_BYTE</tt>, <tt>GL_BYTE</tt>,
			<tt>GL_UNSIGNED_SHORT</tt>, <tt>GL_SHORT</tt>, <tt>GL_UNSIGNED_INT</tt>,
			<tt>GL_INT</tt>, or <tt>GL_FLOAT</tt> each of these bytes, shorts, integers, or floating-point
			values is interpreted as one color or depth component, or one index, depending on <i><tt>format</tt></i>. When
			<i><tt>type</tt></i> is one of <tt>GL_UNSIGNED_BYTE_3_3_2</tt>,
			<tt>GL_UNSIGNED_SHORT_5_6_5</tt>, <tt>GL_UNSIGNED_SHORT_4_4_4_4</tt>,
			<tt>GL_UNSIGNED_SHORT_5_5_5_1</tt>, <tt>GL_UNSIGNED_INT_8_8_8_8</tt>,
			<tt>GL_UNSIGNED_INT_10_10_10_2</tt>, each unsigned value is interpreted as containing all the components
			for a single pixel, with the color components arranged according to <i><tt>format</tt></i>. When
			<i><tt>type</tt></i> is one of <tt>GL_UNSIGNED_BYTE_2_3_3_REV</tt>,
			<tt>GL_UNSIGNED_SHORT_5_6_5_REV</tt>, <tt>GL_UNSIGNED_SHORT_4_4_4_4_REV</tt>,
			<tt>GL_UNSIGNED_SHORT_1_5_5_5_REV</tt>, <tt>GL_UNSIGNED_INT_8_8_8_8_REV</tt>,
			<tt>GL_UNSIGNED_INT_2_10_10_10_REV</tt>, each unsigned value is interpreted as containing all color
			components, specified by <i><tt>format</tt></i>, for a single pixel in a reversed order. Indices are always
			treated individually. Color components are treated as groups of one, two, three, or four values, again based on
			<i><tt>format</tt></i>. Both individual indices and groups of components are referred to as pixels. If
			<i><tt>type</tt></i> is <tt>GL_BITMAP</tt>, the data must be unsigned bytes, and
			<i><tt>format</tt></i> must be either <tt>GL_COLOR_INDEX</tt> or
			<tt>GL_STENCIL_INDEX</tt>. Each unsigned byte is treated as eight 1-bit pixels, with bit ordering
			determined by <tt>GL_UNPACK_LSB_FIRST</tt> (see <a href="glPixelStore.3G.xml">glPixelStore</a>).
		</p><p>
			<i><tt>width</tt></i><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:mo></mml:mo>
					</mml:mrow>
				</mml:math><i><tt>height</tt></i> pixels are read from memory, starting at location
			<i><tt>pixels</tt></i>. By default, these pixels are taken from adjacent memory locations, except that after all
			<i><tt>width</tt></i> pixels are read, the read pointer is advanced to the next four-byte boundary. The
			four-byte row alignment is specified by <tt>glPixelStore</tt> with argument
			<tt>GL_UNPACK_ALIGNMENT</tt>, and it can be set to one, two, four, or eight bytes. Other pixel store
			parameters specify different read pointer advancements, both before the first pixel is read and after all
			<i><tt>width</tt></i> pixels are read. See the <tt>glPixelStore</tt> reference
			page for details on these options.
		</p><p>
			The <i><tt>width</tt></i><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:mo></mml:mo>
					</mml:mrow>
				</mml:math><i><tt>height</tt></i> pixels that are read from memory are each operated on in the same way,
			based on the values of several parameters specified by <tt>glPixelTransfer</tt> and
			<tt>glPixelMap</tt>. The details of these operations, as well as the target buffer into
			which the pixels are drawn, are specific to the of the pixels, as specified by <i><tt>format</tt></i>.
			<i><tt>format</tt></i> can assume one of 13 symbolic values:
		</p><div class="variablelist"><dl><dt><span class="term"><tt>GL_COLOR_INDEX</tt></span></dt><dd><p>
						Each pixel is a single value, a color index. It is converted to fixed-point , with an unspecified number of
						bits to the right of the binary point, regardless of the memory data type. Floating-point values convert to
						true fixed-point values. Signed and unsigned integer data is converted with all fraction bits set to 0.
						Bitmap data convert to either 0 or 1.
					</p><p>
						Each fixed-point index is then shifted left by <tt>GL_INDEX_SHIFT</tt> bits and added to
						<tt>GL_INDEX_OFFSET</tt>. If <tt>GL_INDEX_SHIFT</tt> is negative, the shift is to
						the right. In either case, zero bits fill otherwise unspecified bit locations in the result.
					</p><p>
						If the GL is in RGBA mode, the resulting index is converted to an RGBA pixel with the help of the
						<tt>GL_PIXEL_MAP_I_TO_R</tt>, <tt>GL_PIXEL_MAP_I_TO_G</tt>,
						<tt>GL_PIXEL_MAP_I_TO_B</tt>, and <tt>GL_PIXEL_MAP_I_TO_A</tt> tables. If the GL is
						in color index mode, and if <tt>GL_MAP_COLOR</tt> is true, the index is replaced with the value
						that it references in lookup table <tt>GL_PIXEL_MAP_I_TO_I</tt>. Whether the lookup replacement
						of the index is done or not, the integer part of the index is then ANDed with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mrow>
									<mml:msup>
										<mml:mn>2</mml:mn>
										<mml:mi>b</mml:mi>
									</mml:msup>
									<mml:mn>-1</mml:mn>
								</mml:mrow>
							</mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mi>b</mml:mi>
							</mml:math> is the number of bits in a color index buffer.
					</p><p>
						The GL then converts the resulting indices or RGBA colors to fragments by attaching the current raster
						position <i><tt>z</tt></i> coordinate and texture coordinates to each pixel, then assigning
						<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mi>x</mml:mi>
							</mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mi>y</mml:mi>
							</mml:math> window coordinates to the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mi>n</mml:mi>
							</mml:math>th fragment such that <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mrow>
									<mml:msub>
										<mml:mi>x</mml:mi>
										<mml:mi>n</mml:mi>
									</mml:msub>
									<mml:mo>=</mml:mo>
									<mml:msub>
										<mml:mi>x</mml:mi>
										<mml:mi>r</mml:mi>
									</mml:msub>
									<mml:mo>+</mml:mo>
									<mml:mi>n</mml:mi>
									<mml:mi>mod</mml:mi>
									<mml:mi>width</mml:mi>
								</mml:mrow>
							</mml:math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mrow>
									<mml:msub>
										<mml:mi>y</mml:mi>
										<mml:mi>n</mml:mi>
									</mml:msub>
									<mml:mo>=</mml:mo>
									<mml:msub>
										<mml:mi>y</mml:mi>
										<mml:mi>r</mml:mi>
									</mml:msub>
									<mml:mo>+</mml:mo>
									<mml:mo>&#8970;</mml:mo>
									<mml:mi>n</mml:mi>
									<mml:mo>/</mml:mo>
									<mml:mi>width</mml:mi>
									<mml:mo>&#8971;</mml:mo>
								</mml:mrow>
							</mml:math>
					</p><p>
						where (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mrow>
									<mml:msub>
										<mml:mi>x</mml:mi>
										<mml:mi>r</mml:mi>
									</mml:msub>
									<mml:msub>
										<mml:mi>y</mml:mi>
										<mml:mi>r</mml:mi>
									</mml:msub>
								</mml:mrow>
							</mml:math>) is the current raster position. These pixel fragments are then treated just like the
						fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment
						operations are applied before the fragments are written to the frame buffer.
					</p></dd><dt><span class="term"><tt>GL_STENCIL_INDEX</tt></span></dt><dd><p>
						Each pixel is a single value, a stencil index. It is converted to fixed-point , with an unspecified number
						of bits to the right of the binary point, regardless of the memory data type. Floating-point values convert
						to true fixed-point values. Signed and unsigned integer data is converted with all fraction bits set to 0.
						Bitmap data convert to either 0 or 1.
					</p><p>
						Each fixed-point index is then shifted left by <tt>GL_INDEX_SHIFT</tt> bits, and added to
						<tt>GL_INDEX_OFFSET</tt>. If <tt>GL_INDEX_SHIFT</tt> is negative, the shift is to
						the right. In either case, zero bits fill otherwise unspecified bit locations in the result. If
						<tt>GL_MAP_STENCIL</tt> is true, the index is replaced with the value that it references in
						lookup table <tt>GL_PIXEL_MAP_S_TO_S</tt>. Whether the lookup replacement of the index is done
						or not, the integer part of the index is then ANDed with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mrow>
									<mml:msup>
										<mml:mn>2</mml:mn>
										<mml:mi>b</mml:mi>
									</mml:msup>
									<mml:mn>-1</mml:mn>
								</mml:mrow>
							</mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mi>b</mml:mi>
							</mml:math> is the number of bits in the stencil buffer. The resulting stencil indices are then
						written to the stencil buffer such that the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mi>n</mml:mi>
							</mml:math>th index is written to location
					</p></dd></dl></div><p>
			<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>x</mml:mi>
							<mml:mi>n</mml:mi>
						</mml:msub>
						<mml:mo>=</mml:mo>
						<mml:msub>
							<mml:mi>x</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:mo>+</mml:mo>
						<mml:mi>n</mml:mi>
						<mml:mi>mod</mml:mi>
						<mml:mi>width</mml:mi>
					</mml:mrow>
				</mml:math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>y</mml:mi>
							<mml:mi>n</mml:mi>
						</mml:msub>
						<mml:mo>=</mml:mo>
						<mml:msub>
							<mml:mi>y</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:mo>+</mml:mo>
						<mml:mo>&#8970;</mml:mo>
						<mml:mi>n</mml:mi>
						<mml:mo>/</mml:mo>
						<mml:mi>width</mml:mi>
						<mml:mo>&#8971;</mml:mo>
					</mml:mrow>
				</mml:math>
		</p><p>
			where (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>x</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:msub>
							<mml:mi>y</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
					</mml:mrow>
				</mml:math>) is the current raster position. Only the pixel ownership test, the scissor test, and the stencil
			writemask affect these write operations.
		</p><div class="variablelist"><dl><dt><span class="term"><tt>GL_DEPTH_COMPONENT</tt></span></dt><dd><p>
						Each pixel is a single-depth component. Floating-point data is converted directly to an internal
						floating-point with unspecified precision. Signed integer data is mapped linearly to the internal
						floating-point such that the most positive representable integer value maps to 1.0, and the most negative
						representable value maps to -1.0. Unsigned integer data is mapped similarly: the largest integer value maps
						to 1.0, and 0 maps to 0.0. The resulting floating-point depth value is then multiplied by
						<tt>GL_DEPTH_SCALE</tt> and added to <tt>GL_DEPTH_BIAS</tt>. The result is clamped
						to the range [0,1].
					</p><p>
						The GL then converts the resulting depth components to fragments by attaching the current raster position
						color or color index and texture coordinates to each pixel, then assigning <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mi>x</mml:mi>
							</mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mi>y</mml:mi>
							</mml:math> window coordinates to the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mi>n</mml:mi>
							</mml:math>th fragment such that
					</p></dd></dl></div><p>
			<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>x</mml:mi>
							<mml:mi>n</mml:mi>
						</mml:msub>
						<mml:mo>=</mml:mo>
						<mml:msub>
							<mml:mi>x</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:mo>+</mml:mo>
						<mml:mi>n</mml:mi>
						<mml:mi>mod</mml:mi>
						<mml:mi>width</mml:mi>
					</mml:mrow>
				</mml:math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>y</mml:mi>
							<mml:mi>n</mml:mi>
						</mml:msub>
						<mml:mo>=</mml:mo>
						<mml:msub>
							<mml:mi>y</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:mo>+</mml:mo>
						<mml:mo>&#8970;</mml:mo>
						<mml:mi>n</mml:mi>
						<mml:mo>/</mml:mo>
						<mml:mi>width</mml:mi>
						<mml:mo>&#8971;</mml:mo>
					</mml:mrow>
				</mml:math>
		</p><p>
			where (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>x</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:msub>
							<mml:mi>y</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
					</mml:mrow>
				</mml:math>) is the current raster position. These pixel fragments are then treated just like the fragments
			generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are applied
			before the fragments are written to the frame buffer.
		</p><div class="variablelist"><dl><dt><span class="term"><tt>GL_BGRA</tt>, </span><span class="term"><tt>GL_RGBA</tt></span></dt><dd><p>
						Each pixel is a four-component group: for <tt>GL_RGBA</tt>, the red component is first,
						followed by green, followed by blue, followed by alpha; for <tt>GL_BGRA</tt> the order is blue,
						green, red and then alpha. Floating-point values are converted directly to an internal floating-point with
						unspecified precision. Signed integer values are mapped linearly to the internal floating-point such that
						the most positive representable integer value maps to 1.0, and the most negative representable value maps
						to -1.0. (Note that this mapping does not convert 0 precisely to 0.0.) Unsigned integer data is mapped
						similarly: the largest integer value maps to 1.0, and 0 maps to 0.0. The resulting floating-point color
						values are then multiplied by <tt>GL_c_SCALE</tt> and added to <tt>GL_c_BIAS</tt>,
						where <i><tt>c</tt></i> is RED, GREEN, BLUE, and ALPHA for the respective color components. The
						results are clamped to the range [0,1].
					</p><p>
						If <tt>GL_MAP_COLOR</tt> is true, each color component is scaled by the size of lookup table
						<tt>GL_PIXEL_MAP_c_TO_c</tt>, then replaced by the value that it references in that table.
						<i><tt>c</tt></i> is R, G, B, or A respectively.
					</p><p>
						The GL then converts the resulting RGBA colors to fragments by attaching the current raster position
						<i><tt>z</tt></i> coordinate and texture coordinates to each pixel, then assigning <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mi>x</mml:mi>
							</mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mi>y</mml:mi>
							</mml:math> window coordinates to the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
								<mml:mi>n</mml:mi>
							</mml:math>th fragment such that
					</p></dd></dl></div><p>
			<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>x</mml:mi>
							<mml:mi>n</mml:mi>
						</mml:msub>
						<mml:mo>=</mml:mo>
						<mml:msub>
							<mml:mi>x</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:mo>+</mml:mo>
						<mml:mi>n</mml:mi>
						<mml:mi>mod</mml:mi>
						<mml:mi>width</mml:mi>
					</mml:mrow>
				</mml:math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>y</mml:mi>
							<mml:mi>n</mml:mi>
						</mml:msub>
						<mml:mo>=</mml:mo>
						<mml:msub>
							<mml:mi>y</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:mo>+</mml:mo>
						<mml:mo>&#8970;</mml:mo>
						<mml:mi>n</mml:mi>
						<mml:mo>/</mml:mo>
						<mml:mi>width</mml:mi>
						<mml:mo>&#8971;</mml:mo>
					</mml:mrow>
				</mml:math>
		</p><p>
			where (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>x</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:msub>
							<mml:mi>y</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
					</mml:mrow>
				</mml:math>) is the current raster position. These pixel fragments are then treated just like the fragments
			generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are applied
			before the fragments are written to the frame buffer.
		</p><div class="variablelist"><dl><dt><span class="term"><tt>GL_RED</tt></span></dt><dd>
						Each pixel is a single red component. This component is converted to the internal floating-point in the
						same way the red component of an RGBA pixel is. It is then converted to an RGBA pixel with green and blue
						set to 0, and alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA
						pixel.
					</dd><dt><span class="term"><tt>GL_GREEN</tt></span></dt><dd>
						Each pixel is a single green component. This component is converted to the internal floating-point in the
						same way the green component of an RGBA pixel is. It is then converted to an RGBA pixel with red and blue
						set to 0, and alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA
						pixel.
					</dd><dt><span class="term"><tt>GL_BLUE</tt></span></dt><dd>
						Each pixel is a single blue component. This component is converted to the internal floating-point in the
						same way the blue component of an RGBA pixel is. It is then converted to an RGBA pixel with red and green
						set to 0, and alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA
						pixel.
					</dd><dt><span class="term"><tt>GL_ALPHA</tt></span></dt><dd>
						Each pixel is a single alpha component. This component is converted to the internal floating-point in the
						same way the alpha component of an RGBA pixel is. It is then converted to an RGBA pixel with red, green,
						and blue set to 0. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
					</dd><dt><span class="term"><tt>GL_BGR</tt>, </span><span class="term"><tt>GL_RGB</tt></span></dt><dd>
						Each pixel is a three-component group: red first, followed by green, followed by blue; for
						<tt>GL_BGR</tt>, the first component is blue, followed by green and then red. Each component is
						converted to the internal floating-point in the same way the red, green, and blue components of an RGBA
						pixel are. The color triple is converted to an RGBA pixel with alpha set to 1. After this conversion, the
						pixel is treated as if it had been read as an RGBA pixel.
					</dd><dt><span class="term"><tt>GL_LUMINANCE</tt></span></dt><dd>
						Each pixel is a single luminance component. This component is converted to the internal floating-point in
						the same way the red component of an RGBA pixel is. It is then converted to an RGBA pixel with red, green,
						and blue set to the converted luminance value, and alpha set to 1. After this conversion, the pixel is
						treated as if it had been read as an RGBA pixel.
					</dd><dt><span class="term"><tt>GL_LUMINANCE_ALPHA</tt></span></dt><dd>
						Each pixel is a two-component group: luminance first, followed by alpha. The two components are converted
						to the internal floating-point in the same way the red component of an RGBA pixel is. They are then
						converted to an RGBA pixel with red, green, and blue set to the converted luminance value, and alpha set to
						the converted alpha value. After this conversion, the pixel is treated as if it had been read as an RGBA
						pixel.
					</dd></dl></div><p>
			The following table summarizes the meaning of the valid constants for the <i><tt>type</tt></i> parameter:
		</p><div class="informaltable"><table border="1"><colgroup><col/><col/><col/></colgroup><tbody><tr><td><span class="bold"><b>Type</b></span></td><td><span class="bold"><b>Corresponding Type</b></span></td><td></td></tr><tr><td><tt>GL_UNSIGNED_BYTE</tt></td><td>unsigned 8-bit integer</td><td></td></tr><tr><td><tt>GL_BYTE</tt></td><td>signed 8-bit integer</td><td></td></tr><tr><td><tt>GL_BITMAP</tt></td><td>single bits in unsigned 8-bit integers</td><td></td></tr><tr><td><tt>GL_UNSIGNED_SHORT</tt></td><td>unsigned 16-bit integer</td><td></td></tr><tr><td><tt>GL_SHORT</tt></td><td>signed 16-bit integer</td><td></td></tr><tr><td><tt>GL_UNSIGNED_INT</tt></td><td>unsigned 32-bit integer</td><td></td></tr><tr><td><tt>GL_INT</tt></td><td>32-bit integer</td><td></td></tr><tr><td><tt>GL_FLOAT</tt></td><td>single-precision floating-point</td><td></td></tr><tr><td><tt>GL_UNSIGNED_BYTE_3_3_2</tt></td><td>unsigned 8-bit integer</td><td></td></tr><tr><td><tt>GL_UNSIGNED_BYTE_2_3_3_REV</tt></td><td>unsigned 8-bit integer with reversed component ordering</td><td></td></tr><tr><td><tt>GL_UNSIGNED_SHORT_5_6_5</tt></td><td>unsigned 16-bit integer</td><td></td></tr><tr><td><tt>GL_UNSIGNED_SHORT_5_6_5_REV</tt></td><td>unsigned 16-bit integer with reversed component ordering</td><td></td></tr><tr><td><tt>GL_UNSIGNED_SHORT_4_4_4_4</tt></td><td>unsigned 16-bit integer</td><td></td></tr><tr><td><tt>GL_UNSIGNED_SHORT_4_4_4_4_REV</tt></td><td>unsigned 16-bit integer with reversed component ordering</td><td></td></tr><tr><td><tt>GL_UNSIGNED_SHORT_5_5_5_1</tt></td><td>unsigned 16-bit integer</td><td></td></tr><tr><td><tt>GL_UNSIGNED_SHORT_1_5_5_5_REV</tt></td><td>unsigned 16-bit integer with reversed component ordering</td><td></td></tr><tr><td><tt>GL_UNSIGNED_INT_8_8_8_8</tt></td><td>unsigned 32-bit integer</td><td></td></tr><tr><td><tt>GL_UNSIGNED_INT_8_8_8_8_REV</tt></td><td>unsigned 32-bit integer with reversed component ordering</td><td></td></tr><tr><td><tt>GL_UNSIGNED_INT_10_10_10_2</tt></td><td>unsigned 32-bit integer</td><td></td></tr><tr><td><tt>GL_UNSIGNED_INT_2_10_10_10_REV</tt></td><td>unsigned 32-bit integer with reversed component ordering</td><td></td></tr></tbody></table></div><p>
			The rasterization described so far assumes pixel zoom factors of 1. If
		</p><p>
			<a href="glPixelZoom.3G.xml"><tt>glPixelZoom</tt></a> is used to change the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mi>x</mml:mi>
				</mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mi>y</mml:mi>
				</mml:math> pixel zoom factors, pixels are converted to fragments as follows. If (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:msub>
						<mml:mi>x</mml:mi>
						<mml:mi>r</mml:mi>
					</mml:msub>
				</mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:msub>
						<mml:mi>y</mml:mi>
						<mml:mi>r</mml:mi>
					</mml:msub>
				</mml:math>) is the current raster position, and a given pixel is in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mi>n</mml:mi>
				</mml:math>th column and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mi>m</mml:mi>
				</mml:math>th row of the pixel rectangle, then fragments are generated for pixels whose centers are in the
			rectangle with corners at (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>x</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:mo>+</mml:mo>
						<mml:msub>
							<mml:mi>zoom</mml:mi>
							<mml:mi>x</mml:mi>
						</mml:msub>
						<mml:mi>n</mml:mi>
					</mml:mrow>
				</mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>y</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:mo>+</mml:mo>
						<mml:msub>
							<mml:mi>zoom</mml:mi>
							<mml:mi>y</mml:mi>
						</mml:msub>
						<mml:mi>m</mml:mi>
					</mml:mrow>
				</mml:math>) (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>x</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:mo>+</mml:mo>
						<mml:msub>
							<mml:mi>zoom</mml:mi>
							<mml:mi>x</mml:mi>
						</mml:msub>
						<mml:mo>(</mml:mo>
						<mml:mi>n</mml:mi>
						<mml:mo>+</mml:mo>
						<mml:mn>1</mml:mn>
						<mml:mo>)</mml:mo>
					</mml:mrow>
				</mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mrow>
						<mml:msub>
							<mml:mi>y</mml:mi>
							<mml:mi>r</mml:mi>
						</mml:msub>
						<mml:mo>+</mml:mo>
						<mml:msub>
							<mml:mi>zoom</mml:mi>
							<mml:mi>y</mml:mi>
						</mml:msub>
						<mml:mo>(</mml:mo>
						<mml:mi>m</mml:mi>
						<mml:mo>+</mml:mo>
						<mml:mn>1</mml:mn>
						<mml:mo>)</mml:mo>
					</mml:mrow>
				</mml:math>)
		</p><p>
			where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:msub>
						<mml:mi>zoom</mml:mi>
						<mml:mi>x</mml:mi>
					</mml:msub>
				</mml:math> is the value of <tt>GL_ZOOM_X</tt> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:msub>
						<mml:mi>zoom</mml:mi>
						<mml:mi>y</mml:mi>
					</mml:msub>
				</mml:math> is the value of <tt>GL_ZOOM_Y</tt>.
		</p></div><div class="refsect1" lang="en"><a name="glDrawPixels.3G-notes"/><h2>Notes</h2><p>
			<tt>GL_BGR</tt> and <tt>GL_BGRA</tt> are only valid for <i><tt>format</tt></i> if the GL
			version is 1.2 or greater.
		</p><p>
			<tt>GL_UNSIGNED_BYTE_3_3_2</tt>, <tt>GL_UNSIGNED_BYTE_2_3_3_REV</tt>,
			<tt>GL_UNSIGNED_SHORT_5_6_5</tt>, <tt>GL_UNSIGNED_SHORT_5_6_5_REV</tt>,
			<tt>GL_UNSIGNED_SHORT_4_4_4_4</tt>, <tt>GL_UNSIGNED_SHORT_4_4_4_4_REV</tt>,
			<tt>GL_UNSIGNED_SHORT_5_5_5_1</tt>, <tt>GL_UNSIGNED_SHORT_1_5_5_5_REV</tt>,
			<tt>GL_UNSIGNED_INT_8_8_8_8</tt>, <tt>GL_UNSIGNED_INT_8_8_8_8_REV</tt>,
			<tt>GL_UNSIGNED_INT_10_10_10_2</tt>, and <tt>GL_UNSIGNED_INT_2_10_10_10_REV</tt> are only valid
			for <i><tt>type</tt></i> if the GL version is 1.2 or greater.
		</p></div><div class="refsect1" lang="en"><a name="glDrawPixels.3G-errors"/><h2>Errors</h2><p>
			<tt>GL_INVALID_VALUE</tt> is generated if either <i><tt>width</tt></i> or
			<i><tt>height</tt></i> is negative.
		</p><p>
			<tt>GL_INVALID_ENUM</tt> is generated if <i><tt>format</tt></i> or <i><tt>type</tt></i> is
			not one of the accepted values.
		</p><p>
			<tt>GL_INVALID_OPERATION</tt> is generated if <i><tt>format</tt></i> is <tt>GL_RED</tt>,
			<tt>GL_GREEN</tt>, <tt>GL_BLUE</tt>, <tt>GL_ALPHA</tt>,
			<tt>GL_RGB</tt>, <tt>GL_RGBA</tt>, <tt>GL_BGR</tt>, <tt>GL_BGRA</tt>,
			<tt>GL_LUMINANCE</tt>, or <tt>GL_LUMINANCE_ALPHA</tt>, and the GL is in color index mode.
		</p><p>
			<tt>GL_INVALID_ENUM</tt> is generated if <i><tt>type</tt></i> is <tt>GL_BITMAP</tt> and
			<i><tt>format</tt></i> is not either <tt>GL_COLOR_INDEX</tt> or
			<tt>GL_STENCIL_INDEX</tt>.
		</p><p>
			<tt>GL_INVALID_OPERATION</tt> is generated if <i><tt>format</tt></i> is
			<tt>GL_STENCIL_INDEX</tt> and there is no stencil buffer.
		</p><p>
			<tt>GL_INVALID_OPERATION</tt> is generated if <tt>glDrawPixels</tt> is executed between the
			execution of <a href="glBegin.3G.xml"><tt>glBegin</tt></a> and the corresponding execution of <a href="glBegin.3G.xml"><tt>glEnd</tt></a>.
		</p><p>
			<tt>GL_INVALID_OPERATION</tt> is generated if <i><tt>format</tt></i> is one
			<tt>GL_UNSIGNED_BYTE_3_3_2</tt>, <tt>GL_UNSIGNED_BYTE_2_3_3_REV</tt>,
			<tt>GL_UNSIGNED_SHORT_5_6_5</tt>, of <tt>GL_UNSIGNED_SHORT_5_6_5_REV</tt> and
			<i><tt>format</tt></i> is not <tt>GL_RGB</tt>.
		</p><p>
			<tt>GL_INVALID_OPERATION</tt> is generated if <i><tt>format</tt></i> is one of
			<tt>GL_UNSIGNED_SHORT_4_4_4_4</tt>, <tt>GL_UNSIGNED_SHORT_4_4_4_4_REV</tt>,
			<tt>GL_UNSIGNED_SHORT_5_5_5_1</tt>, <tt>GL_UNSIGNED_SHORT_1_5_5_5_REV</tt>,
			<tt>GL_UNSIGNED_INT_8_8_8_8</tt>, <tt>GL_UNSIGNED_INT_8_8_8_8_REV</tt>,
			<tt>GL_UNSIGNED_INT_10_10_10_2</tt>, or <tt>GL_UNSIGNED_INT_2_10_10_10_REV</tt> and
			<i><tt>format</tt></i> is neither <tt>GL_RGBA</tt> nor <tt>GL_BGRA</tt>.
		</p></div><div class="refsect1" lang="en"><a name="glDrawPixels.3G-associated_gets"/><h2>Associated Gets</h2><p>
			<tt>glGet</tt> with argument <tt>GL_CURRENT_RASTER_POSITION</tt>
		</p><p>
			<tt>glGet</tt> with argument <tt>GL_CURRENT_RASTER_POSITION_VALID</tt>
		</p></div><div class="refsect1" lang="en"><a name="glDrawPixels.3G-see_also"/><h2>See Also</h2><p>
			<span class="simplelist"><a href="glAlphaFunc.3G.xml">glAlphaFunc</a>, <a href="glBlendFunc.3G.xml">glBlendFunc</a>, <a href="glCopyPixels.3G.xml">glCopyPixels</a>, <a href="glDepthFunc.3G.xml">glDepthFunc</a>, <a href="glLogicOp.3G.xml">glLogicOp</a>, <a href="glPixelMap.3G.xml">glPixelMap</a>, <a href="glPixelStore.3G.xml">glPixelStore</a>, <a href="glPixelTransfer.3G.xml">glPixelTransfer</a>, <a href="glPixelZoom.3G.xml">glPixelZoom</a>, <a href="glRasterPos.3G.xml">glRasterPos</a>, <a href="glReadPixels.3G.xml">glReadPixels</a>, <a href="glScissor.3G.xml">glScissor</a>, <a href="glStencilFunc.3G.xml">glStencilFunc</a></span>
		</p></div></div><div class="navfooter"><hr/><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="glDrawElements.3G.xml">Prev</a></td><td width="20%" align="center"><a accesskey="u" href="reference-GL.xml">Up</a></td><td width="40%" align="right"><a accesskey="n" href="glDrawRangeElements.3G.xml">Next</a></td></tr><tr><td width="40%" align="left" valign="top">glDrawElements</td><td width="20%" align="center"><a accesskey="h" href="index.xml">Home</a></td><td width="40%" align="right" valign="top">glDrawRangeElements</td></tr></table></div></body></html>