File: gleSpiral.3GLE.xml

package info (click to toggle)
pyopengl 2.0.1.08-5.1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 19,484 kB
  • ctags: 9,036
  • sloc: pascal: 64,950; xml: 28,088; ansic: 20,696; python: 19,761; tcl: 668; makefile: 240; sh: 25
file content (290 lines) | stat: -rw-r--r-- 12,504 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE html
  PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN" "http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd">
<html
	xmlns="http://www.w3.org/1999/xhtml"
	xmlns:mml="http://www.w3.org/1998/Math/MathML"
><head><title>gleSpiral</title><link rel="stylesheet" href="style.css" type="text/css"/><meta name="generator" content="DocBook XSL Stylesheets V1.59.1"/><link rel="home" href="index.xml" title="PyOpenGL 2.0.1.07 Man Pages"/><link rel="up" href="reference-GLE.xml" title="GLE"/><link rel="previous" href="gleSetNumSides.3GLE.xml" title="gleSetNumSides"/><link rel="next" href="gleSuperExtrusion.3GLE.xml" title="gleSuperExtrusion"/></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">gleSpiral</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="gleSetNumSides.3GLE.xml">Prev</a></td><th width="60%" align="center">GLE</th><td width="20%" align="right"><a accesskey="n" href="gleSuperExtrusion.3GLE.xml">Next</a></td></tr></table><hr/></div><div class="refentry" lang="en"><a name="gleSpiral.3GLE"/><div class="titlepage"/><div class="refnamediv"><a name="gleSpiral.3GLE-name"/><h2>Name</h2><p>gleSpiral &#8212; Sweep an arbitrary contour along a helical path.</p></div><div class="refsynopsisdiv"><a name="gleSpiral.3GLE-c_spec"/><h2>C Specification</h2><table class="funcprototype" border="0" cellpadding="0" cellspacing="0"><tr><td valign="top"><code>void<tt>gleSpiral</tt></code></td><td valign="top"><code>(</code></td><td valign="top"><code>int<i><tt>ncp</tt></i>, gleDouble<i><tt>contour</tt></i>[][2], gleDouble<i><tt>cont_normal</tt></i>[][2], gleDouble<i><tt>up</tt></i>[3], gleDouble<i><tt>startRadius</tt></i>, gleDouble<i><tt>drdTheta</tt></i>, gleDouble<i><tt>startZ</tt></i>, gleDouble<i><tt>dzdTheta</tt></i>, gleDouble<i><tt>startXform</tt></i>[2][3], gleDouble<i><tt>dXformdTheta</tt></i>[2][3], gleDouble<i><tt>startTheta</tt></i>, gleDouble<i><tt>sweepTheta</tt></i>);</code></td></tr></table></div><div class="refsynopsisdiv"><a name="gleSpiral.3GLE-python_specification"/><h2>Python Specification</h2><table class="funcprototype" border="0" cellpadding="0" cellspacing="0"><tr><td valign="top"><code><tt>gleSpiral</tt></code></td><td valign="top"><code>(</code></td><td valign="top"><code><i><tt>contour</tt></i>[][2], <i><tt>cont_normal</tt></i>[][2], <i><tt>up</tt></i>[3], <i><tt>startRadius</tt></i>, <i><tt>drdTheta</tt></i>, <i><tt>startZ</tt></i>, <i><tt>dzdTheta</tt></i>, <i><tt>startXform</tt></i>[2][3], <i><tt>dXformdTheta</tt></i>[2][3], <i><tt>startTheta</tt></i>, <i><tt>sweepTheta</tt></i>) &#8594;<tt>None</tt></code></td></tr></table></div><div class="refsect1" lang="en"><a name="gleSpiral.3GLE-parameters"/><h2>Parameters</h2><div class="variablelist"><dl><dt><span class="term"><i><tt>ncp</tt></i></span></dt><dd>
						number of contour points
					</dd><dt><span class="term"><i><tt>contour</tt></i></span></dt><dd>
						2D contour
					</dd><dt><span class="term"><i><tt>cont_normal</tt></i></span></dt><dd>
						2D contour normals
					</dd><dt><span class="term"><i><tt>up</tt></i></span></dt><dd>
						up vector for contour
					</dd><dt><span class="term"><i><tt>startRadius</tt></i></span></dt><dd>
						spiral starts in x-y plane
					</dd><dt><span class="term"><i><tt>drdTheta</tt></i></span></dt><dd>
						change in radius per revolution
					</dd><dt><span class="term"><i><tt>startZ</tt></i></span></dt><dd>
						starting z value
					</dd><dt><span class="term"><i><tt>dzdTheta</tt></i></span></dt><dd>
						change in Z per revolution
					</dd><dt><span class="term"><i><tt>startXform</tt></i></span></dt><dd>
						starting contour affine transformation
					</dd><dt><span class="term"><i><tt>dXformdTheta</tt></i></span></dt><dd>
						tangent change xform per revolution
					</dd><dt><span class="term"><i><tt>startTheta</tt></i></span></dt><dd>
						start angle in x-y plane
					</dd><dt><span class="term"><i><tt>sweepTheta</tt></i></span></dt><dd>
						degrees to spiral around
					</dd></dl></div></div><div class="refsect1" lang="en"><a name="gleSpiral.3GLE-description"/><h2>Description</h2><p>
			Sweep an arbitrary contour along a helical path.
		</p><p>
			The axis of the helix lies along the modeling coordinate z-axis.
		</p><p>
			An affine transform can be applied as the contour is swept. For most ordinary usage, the affines should be given as
			<tt>NULL</tt>.
		</p><p>
			The <i><tt>startXform</tt></i> is an affine matrix applied to the contour to deform the contour. Thus,
			<i><tt>startXform</tt></i> of the form
		</p><div class="informalequation"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" mode="display" overflow="scroll">
				<mml:mfenced separator=",">
					<mml:mtable>
						<mml:mtr>
							<mml:mtd>
								<mml:mi>cos</mml:mi>
							</mml:mtd>
							<mml:mtd>
								<mml:mi>sin</mml:mi>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
						</mml:mtr>
						<mml:mtr>
							<mml:mtd>
								<mml:mo>-</mml:mo>
								<mml:mo>sin</mml:mo>
							</mml:mtd>
							<mml:mtd>
								<mml:mi>cos</mml:mi>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
						</mml:mtr>
					</mml:mtable>
				</mml:mfenced>
			</mml:math></div><p>
			will rotate the contour (in the plane of the contour), while
		</p><div class="informalequation"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" mode="display" overflow="scroll">
				<mml:mfenced separator=",">
					<mml:mtable>
						<mml:mtr>
							<mml:mtd>
								<mml:mn>1</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mi>tx</mml:mi>
							</mml:mtd>
						</mml:mtr>
						<mml:mtr>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>1</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mi>ty</mml:mi>
							</mml:mtd>
						</mml:mtr>
					</mml:mtable>
				</mml:mfenced>
			</mml:math></div><p>
			will translate the contour, and
		</p><div class="informalequation"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" mode="display" overflow="scroll">
				<mml:mfenced separator=",">
					<mml:mtable>
						<mml:mtr>
							<mml:mtd>
								<mml:mi>sx</mml:mi>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
						</mml:mtr>
						<mml:mtr>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mi>sy</mml:mi>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
						</mml:mtr>
					</mml:mtable>
				</mml:mfenced>
			</mml:math></div><p>
			scales along the two axes of the contour. In particular, note that
		</p><div class="informalequation"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" mode="display" overflow="scroll">
				<mml:mfenced separator=",">
					<mml:mtable>
						<mml:mtr>
							<mml:mtd>
								<mml:mn>1</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
						</mml:mtr>
						<mml:mtr>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>1</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
						</mml:mtr>
					</mml:mtable>
				</mml:mfenced>
			</mml:math></div><p>
			is the identity matrix. The <i><tt>dXformdTheta</tt></i> is a differential affine matrix that is integrated
			while the contour is extruded. Note that this affine matrix lives in the tangent space, and so it should have the form
			of a generator. Thus, dx/dt's of the form
		</p><div class="informalequation"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" mode="display" overflow="scroll">
				<mml:mfenced separator=",">
					<mml:mtable>
						<mml:mtr>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mi>r</mml:mi>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
						</mml:mtr>
						<mml:mtr>
							<mml:mtd>
								<mml:mo>-</mml:mo>
								<mml:mi>r</mml:mi>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
						</mml:mtr>
					</mml:mtable>
				</mml:mfenced>
			</mml:math></div><p>
			rotate the the contour as it is extruded (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mi>r</mml:mi>
					<mml:mo>&#8801;</mml:mo>
					<mml:mn>0</mml:mn>
				</mml:math> implies no rotation, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
					<mml:mi>r</mml:mi>
					<mml:mo>&#8801;</mml:mo>
					<mml:mn>2</mml:mn>
					<mml:mi>&#960;</mml:mi>
				</mml:math> implies that the contour is rotated once, etc.), while
		</p><div class="informalequation"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" mode="display" overflow="scroll">
				<mml:mfenced separator=",">
					<mml:mtable>
						<mml:mtr>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mi>tx</mml:mi>
							</mml:mtd>
						</mml:mtr>
						<mml:mtr>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mi>ty</mml:mi>
							</mml:mtd>
						</mml:mtr>
					</mml:mtable>
				</mml:mfenced>
			</mml:math></div><p>
			translates the contour, and
		</p><div class="informalequation"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" mode="display" overflow="scroll">
				<mml:mfenced separator=",">
					<mml:mtable>
						<mml:mtr>
							<mml:mtd>
								<mml:mi>sx</mml:mi>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
						</mml:mtr>
						<mml:mtr>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mi>sy</mml:mi>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
						</mml:mtr>
					</mml:mtable>
				</mml:mfenced>
			</mml:math></div><p>
			scales it. In particular, note that
		</p><div class="informalequation"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" mode="display" overflow="scroll">
				<mml:mfenced separator=",">
					<mml:mtable>
						<mml:mtr>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
						</mml:mtr>
						<mml:mtr>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
							<mml:mtd>
								<mml:mn>0</mml:mn>
							</mml:mtd>
						</mml:mtr>
					</mml:mtable>
				</mml:mfenced>
			</mml:math></div><p>
			is the identity matrix &#8212; i.e. the derivatives are zero, and therefore the integral is a constant.
		</p></div><div class="refsect1" lang="en"><a name="gleSpiral.3GLE-see_also"/><h2>See Also</h2><p>
			<a href="gleLathe.3GLE.xml">gleLathe</a>
		</p></div><div class="refsect1" lang="en"><a name="gleSpiral.3GLE-author"/><h2>Author</h2><p>
			Linas Vepstas
		</p></div></div><div class="navfooter"><hr/><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="gleSetNumSides.3GLE.xml">Prev</a></td><td width="20%" align="center"><a accesskey="u" href="reference-GLE.xml">Up</a></td><td width="40%" align="right"><a accesskey="n" href="gleSuperExtrusion.3GLE.xml">Next</a></td></tr><tr><td width="40%" align="left" valign="top">gleSetNumSides</td><td width="20%" align="center"><a accesskey="h" href="index.xml">Home</a></td><td width="40%" align="right" valign="top">gleSuperExtrusion</td></tr></table></div></body></html>