1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
"""Lists/tuples as data-format for storage
Note:
This implementation is *far* less efficient than using Numpy
to support lists/tuples, as the code here is all available in
C-level code there. This implementation is required to allow
for usage without numpy installed.
"""
REGISTRY_NAME = 'ctypesarrays'
import ctypes, _ctypes
from OpenGL import constants, constant
from OpenGL.arrays import formathandler
try:
from OpenGL.arrays import numpymodule
except ImportError, err:
# we are required...
HANDLED_TYPES = (list,tuple)
else:
HANDLED_TYPES = ()
import operator
class ListHandler( formathandler.FormatHandler ):
"""Storage of array data in Python lists/arrays
This mechanism, unlike multi-dimensional arrays, is not necessarily
uniform in type or dimension, so we have to do a lot of extra checks
to make sure that we get a correctly-structured array. That, as
well as the need to copy the arrays in Python code, makes this a far
less efficient implementation than the numpy implementation, which
does all the same things, but does them all in C code.
Note: as an *output* format, this format handler produces ctypes
arrays, not Python lists, this is done for convenience in coding
the implementation, mostly.
"""
from_param = staticmethod( ctypes.byref )
dataPointer = staticmethod( ctypes.addressof )
HANDLED_TYPES = HANDLED_TYPES
def voidDataPointer( cls, value ):
"""Given value in a known data-pointer type, return void_p for pointer"""
return ctypes.byref( value )
def zeros( self, dims, typeCode ):
"""Return array of zeros in given size"""
type = GL_TYPE_TO_ARRAY_MAPPING[ typeCode ]
for dim in dims:
type *= dim
return type() # should expicitly set to 0s
def dimsOf( cls, x ):
"""Calculate total dimension-set of the elements in x
This is *extremely* messy, as it has to track nested arrays
where the arrays could be different sizes on all sorts of
levels...
"""
try:
dimensions = [ len(x) ]
except (TypeError,AttributeError,ValueError), err:
return []
else:
childDimension = None
for child in x:
newDimension = cls.dimsOf( child )
if childDimension is not None:
if newDimension != childDimension:
raise ValueError(
"""Non-uniform array encountered: %s versus %s"""%(
newDimension, childDimension,
), x
)
dimsOf = classmethod( dimsOf )
def arrayToGLType( self, value ):
"""Given a value, guess OpenGL type of the corresponding pointer"""
result = ARRAY_TO_GL_TYPE_MAPPING.get( value._type_ )
if result is not None:
return result
raise TypeError(
"""Don't know GL type for array of type %r, known types: %s\nvalue:%s"""%(
value._type_, ARRAY_TO_GL_TYPE_MAPPING.keys(), value,
)
)
def arraySize( self, value, typeCode = None ):
"""Given a data-value, calculate dimensions for the array"""
dims = 1
for base in self.types( value ):
length = getattr( base, '_length_', None)
if length is not None:
dims *= length
return dims
def types( self, value ):
"""Produce iterable producing all composite types"""
dimObject = value
while dimObject is not None:
yield dimObject
dimObject = getattr( dimObject, '_type_', None )
if isinstance( dimObject, (str,unicode)):
dimObject = None
def dims( self, value ):
"""Produce iterable of all dimensions"""
for base in self.types( value ):
length = getattr( base, '_length_', None)
if length is not None:
yield length
def asArray( self, value, typeCode=None ):
"""Convert given value to a ctypes array value of given typeCode
This does a *lot* of work just to get the data into the correct
format. It's not going to be anywhere near as fast as a numpy
or similar approach!
"""
if typeCode is None:
raise NotImplementedError( """Haven't implemented type-inference for lists yet""" )
arrayType = GL_TYPE_TO_ARRAY_MAPPING[ typeCode ]
if isinstance( value, (list,tuple)):
subItems = [
self.asArray( item, typeCode )
for item in value
]
if subItems:
for dim in self.dimensions( subItems[0] )[::-1]:
arrayType *= dim
arrayType *= len( subItems )
result = arrayType()
result[:] = subItems
return result
else:
return arrayType( value )
def unitSize( self, value, typeCode=None ):
"""Determine unit size of an array (if possible)"""
return tuple(self.dims(value))[-1]
def dimensions( self, value, typeCode=None ):
"""Determine dimensions of the passed array value (if possible)"""
return tuple( self.dims(value) )
ARRAY_TO_GL_TYPE_MAPPING = {
constants.GLdouble: constants.GL_DOUBLE,
constants.GLfloat: constants.GL_FLOAT,
constants.GLint: constants.GL_INT,
constants.GLuint: constants.GL_UNSIGNED_INT,
constants.GLshort: constants.GL_SHORT,
constants.GLushort: constants.GL_UNSIGNED_SHORT,
constants.GLchar: constants.GL_CHAR,
constants.GLbyte: constants.GL_BYTE,
constants.GLubyte: constants.GL_UNSIGNED_BYTE,
}
GL_TYPE_TO_ARRAY_MAPPING = {
constants.GL_DOUBLE: constants.GLdouble,
constants.GL_FLOAT: constants.GLfloat,
constants.GL_INT: constants.GLint,
constants.GL_UNSIGNED_INT: constants.GLuint,
constants.GL_SHORT: constants.GLshort,
constants.GL_UNSIGNED_SHORT: constants.GLushort,
constants.GL_CHAR: constants.GLchar,
constants.GL_BYTE: constants.GLbyte,
constants.GL_UNSIGNED_BYTE: constants.GLubyte,
}
|