1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
/*
* pkey.c
*
* Copyright (C) AB Strakt
* Copyright (C) Jean-Paul Calderone
* See LICENSE for details.
*
* Public/rivate key handling code, mostly thin wrappers around OpenSSL.
* See the file RATIONALE for a short explanation of why this module was written.
*
*/
#include <Python.h>
#define crypto_MODULE
#include "crypto.h"
/*
* This is done every time something fails, so turning it into a macro is
* really nice.
*
* Arguments: None
* Returns: Doesn't return
*/
#define FAIL() \
do { \
exception_from_error_queue(crypto_Error); \
return NULL; \
} while (0)
static char crypto_PKey_generate_key_doc[] = "\n\
Generate a key of a given type, with a given number of a bits\n\
\n\
@param type: The key type (TYPE_RSA or TYPE_DSA)\n\
@param bits: The number of bits\n\
@return: None\n\
";
static PyObject *
crypto_PKey_generate_key(crypto_PKeyObj *self, PyObject *args)
{
int type, bits;
RSA *rsa;
DSA *dsa;
if (!PyArg_ParseTuple(args, "ii:generate_key", &type, &bits))
return NULL;
switch (type)
{
case crypto_TYPE_RSA:
if (bits <= 0) {
PyErr_SetString(PyExc_ValueError, "Invalid number of bits");
return NULL;
}
if ((rsa = RSA_generate_key(bits, 0x10001, NULL, NULL)) == NULL)
FAIL();
if (!EVP_PKEY_assign_RSA(self->pkey, rsa))
FAIL();
break;
case crypto_TYPE_DSA:
if ((dsa = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL, NULL)) == NULL)
FAIL();
if (!DSA_generate_key(dsa))
FAIL();
if (!EVP_PKEY_assign_DSA(self->pkey, dsa))
FAIL();
break;
default:
PyErr_SetString(crypto_Error, "No such key type");
return NULL;
}
self->initialized = 1;
Py_INCREF(Py_None);
return Py_None;
}
static char crypto_PKey_bits_doc[] = "\n\
Returns the number of bits of the key\n\
\n\
@return: The number of bits of the key.\n\
";
static PyObject *
crypto_PKey_bits(crypto_PKeyObj *self, PyObject *args)
{
if (!PyArg_ParseTuple(args, ":bits"))
return NULL;
return PyLong_FromLong(EVP_PKEY_bits(self->pkey));
}
static char crypto_PKey_type_doc[] = "\n\
Returns the type of the key\n\
\n\
@return: The type of the key.\n\
";
static PyObject *
crypto_PKey_type(crypto_PKeyObj *self, PyObject *args)
{
if (!PyArg_ParseTuple(args, ":type"))
return NULL;
return PyLong_FromLong(self->pkey->type);
}
static char crypto_PKey_check_doc[] = "\n\
Check the consistency of an RSA private key.\n\
\n\
@return: True if key is consistent.\n\
@raise Error: if the key is inconsistent.\n\
@raise TypeError: if the key is of a type which cannot be checked.\n\
Only RSA keys can currently be checked.\n\
";
static PyObject *
crypto_PKey_check(crypto_PKeyObj *self, PyObject *args) {
int r;
if (!PyArg_ParseTuple(args, ":check")) {
return NULL;
}
if (self->pkey->type == EVP_PKEY_RSA) {
RSA *rsa;
rsa = EVP_PKEY_get1_RSA(self->pkey);
r = RSA_check_key(rsa);
if (r == 1) {
return PyBool_FromLong(1L);
} else {
FAIL();
}
} else {
PyErr_SetString(PyExc_TypeError, "key type unsupported");
return NULL;
}
}
/*
* ADD_METHOD(name) expands to a correct PyMethodDef declaration
* { 'name', (PyCFunction)crypto_PKey_name, METH_VARARGS }
* for convenience
*/
#define ADD_METHOD(name) \
{ #name, (PyCFunction)crypto_PKey_##name, METH_VARARGS, crypto_PKey_##name##_doc }
static PyMethodDef crypto_PKey_methods[] =
{
ADD_METHOD(generate_key),
ADD_METHOD(bits),
ADD_METHOD(type),
ADD_METHOD(check),
{ NULL, NULL }
};
#undef ADD_METHOD
/*
* Constructor for PKey objects, never called by Python code directly
*
* Arguments: pkey - A "real" EVP_PKEY object
* dealloc - Boolean value to specify whether the destructor should
* free the "real" EVP_PKEY object
* Returns: The newly created PKey object
*/
crypto_PKeyObj *
crypto_PKey_New(EVP_PKEY *pkey, int dealloc)
{
crypto_PKeyObj *self;
self = PyObject_New(crypto_PKeyObj, &crypto_PKey_Type);
if (self == NULL)
return NULL;
self->pkey = pkey;
self->dealloc = dealloc;
self->only_public = 0;
/*
* Heuristic. Most call-sites pass an initialized EVP_PKEY. Not
* necessarily the case that they will, though. That's part of why this is
* a hack. -exarkun
*/
self->initialized = 1;
return self;
}
static char crypto_PKey_doc[] = "\n\
PKey() -> PKey instance\n\
\n\
Create a new PKey object.\n\
\n\
@return: The PKey object\n\
";
static PyObject*
crypto_PKey_new(PyTypeObject *subtype, PyObject *args, PyObject *kwargs) {
crypto_PKeyObj *self;
if (!PyArg_ParseTuple(args, ":PKey")) {
return NULL;
}
self = crypto_PKey_New(EVP_PKEY_new(), 1);
if (self) {
self->initialized = 0;
}
return (PyObject *)self;
}
/*
* Deallocate the memory used by the PKey object
*
* Arguments: self - The PKey object
* Returns: None
*/
static void
crypto_PKey_dealloc(crypto_PKeyObj *self)
{
/* Sometimes we don't have to dealloc the "real" EVP_PKEY pointer ourselves */
if (self->dealloc)
EVP_PKEY_free(self->pkey);
PyObject_Del(self);
}
PyTypeObject crypto_PKey_Type = {
PyOpenSSL_HEAD_INIT(&PyType_Type, 0)
"OpenSSL.crypto.PKey",
sizeof(crypto_PKeyObj),
0,
(destructor)crypto_PKey_dealloc,
NULL, /* print */
NULL, /* getattr */
NULL, /* setattr */
NULL, /* compare */
NULL, /* repr */
NULL, /* as_number */
NULL, /* as_sequence */
NULL, /* as_mapping */
NULL, /* hash */
NULL, /* call */
NULL, /* str */
NULL, /* getattro */
NULL, /* setattro */
NULL, /* as_buffer */
Py_TPFLAGS_DEFAULT,
crypto_PKey_doc, /* doc */
NULL, /* traverse */
NULL, /* clear */
NULL, /* tp_richcompare */
0, /* tp_weaklistoffset */
NULL, /* tp_iter */
NULL, /* tp_iternext */
crypto_PKey_methods, /* tp_methods */
NULL, /* tp_members */
NULL, /* tp_getset */
NULL, /* tp_base */
NULL, /* tp_dict */
NULL, /* tp_descr_get */
NULL, /* tp_descr_set */
0, /* tp_dictoffset */
NULL, /* tp_init */
NULL, /* tp_alloc */
crypto_PKey_new, /* tp_new */
};
/*
* Initialize the PKey part of the crypto sub module
*
* Arguments: module - The crypto module
* Returns: None
*/
int
init_crypto_pkey(PyObject *module)
{
if (PyType_Ready(&crypto_PKey_Type) < 0) {
return 0;
}
/* PyModule_AddObject steals a reference.
*/
Py_INCREF((PyObject *)&crypto_PKey_Type);
if (PyModule_AddObject(module, "PKey", (PyObject *)&crypto_PKey_Type) != 0) {
return 0;
}
/* PyModule_AddObject steals a reference.
*/
Py_INCREF((PyObject *)&crypto_PKey_Type);
if (PyModule_AddObject(module, "PKeyType", (PyObject *)&crypto_PKey_Type) != 0) {
return 0;
}
return 1;
}
|