1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
# fourFn.py
#
# Demonstration of the pyparsing module, implementing a simple 4-function expression parser,
# with support for scientific notation, and symbols for e and pi.
# Extended to add exponentiation and simple built-in functions.
# Extended test cases, simplified pushFirst method.
#
# Copyright 2003-2006 by Paul McGuire
#
from pyparsing import Literal,CaselessLiteral,Word,Combine,Group,Optional,\
ZeroOrMore,Forward,nums,alphas
import math
import operator
exprStack = []
def pushFirst( strg, loc, toks ):
exprStack.append( toks[0] )
def pushUMinus( strg, loc, toks ):
if toks and toks[0]=='-':
exprStack.append( 'unary -' )
#~ exprStack.append( '-1' )
#~ exprStack.append( '*' )
bnf = None
def BNF():
"""
expop :: '^'
multop :: '*' | '/'
addop :: '+' | '-'
integer :: ['+' | '-'] '0'..'9'+
atom :: PI | E | real | fn '(' expr ')' | '(' expr ')'
factor :: atom [ expop factor ]*
term :: factor [ multop factor ]*
expr :: term [ addop term ]*
"""
global bnf
if not bnf:
point = Literal( "." )
e = CaselessLiteral( "E" )
fnumber = Combine( Word( "+-"+nums, nums ) +
Optional( point + Optional( Word( nums ) ) ) +
Optional( e + Word( "+-"+nums, nums ) ) )
ident = Word(alphas, alphas+nums+"_$")
plus = Literal( "+" )
minus = Literal( "-" )
mult = Literal( "*" )
div = Literal( "/" )
lpar = Literal( "(" ).suppress()
rpar = Literal( ")" ).suppress()
addop = plus | minus
multop = mult | div
expop = Literal( "^" )
pi = CaselessLiteral( "PI" )
expr = Forward()
atom = (Optional("-") + ( pi | e | fnumber | ident + lpar + expr + rpar ).setParseAction( pushFirst ) | ( lpar + expr.suppress() + rpar )).setParseAction(pushUMinus)
# by defining exponentiation as "atom [ ^ factor ]..." instead of "atom [ ^ atom ]...", we get right-to-left exponents, instead of left-to-righ
# that is, 2^3^2 = 2^(3^2), not (2^3)^2.
factor = Forward()
factor << atom + ZeroOrMore( ( expop + factor ).setParseAction( pushFirst ) )
term = factor + ZeroOrMore( ( multop + factor ).setParseAction( pushFirst ) )
expr << term + ZeroOrMore( ( addop + term ).setParseAction( pushFirst ) )
bnf = expr
return bnf
# map operator symbols to corresponding arithmetic operations
epsilon = 1e-12
opn = { "+" : operator.add,
"-" : operator.sub,
"*" : operator.mul,
"/" : operator.truediv,
"^" : operator.pow }
fn = { "sin" : math.sin,
"cos" : math.cos,
"tan" : math.tan,
"abs" : abs,
"trunc" : lambda a: int(a),
"round" : round,
"sgn" : lambda a: abs(a)>epsilon and cmp(a,0) or 0}
def evaluateStack( s ):
op = s.pop()
if op == 'unary -':
return -evaluateStack( s )
if op in "+-*/^":
op2 = evaluateStack( s )
op1 = evaluateStack( s )
return opn[op]( op1, op2 )
elif op == "PI":
return math.pi # 3.1415926535
elif op == "E":
return math.e # 2.718281828
elif op in fn:
return fn[op]( evaluateStack( s ) )
elif op[0].isalpha():
return 0
else:
return float( op )
if __name__ == "__main__":
def test( s, expVal ):
global exprStack
exprStack = []
results = BNF().parseString( s )
val = evaluateStack( exprStack[:] )
if val == expVal:
print s, "=", val, results, "=>", exprStack
else:
print s+"!!!", val, "!=", expVal, results, "=>", exprStack
test( "9", 9 )
test( "-9", -9 )
test( "--9", 9 )
test( "-E", -math.e )
test( "9 + 3 + 6", 9 + 3 + 6 )
test( "9 + 3 / 11", 9 + 3.0 / 11 )
test( "(9 + 3)", (9 + 3) )
test( "(9+3) / 11", (9+3.0) / 11 )
test( "9 - 12 - 6", 9 - 12 - 6 )
test( "9 - (12 - 6)", 9 - (12 - 6) )
test( "2*3.14159", 2*3.14159 )
test( "3.1415926535*3.1415926535 / 10", 3.1415926535*3.1415926535 / 10 )
test( "PI * PI / 10", math.pi * math.pi / 10 )
test( "PI*PI/10", math.pi*math.pi/10 )
test( "PI^2", math.pi**2 )
test( "round(PI^2)", round(math.pi**2) )
test( "6.02E23 * 8.048", 6.02E23 * 8.048 )
test( "e / 3", math.e / 3 )
test( "sin(PI/2)", math.sin(math.pi/2) )
test( "trunc(E)", int(math.e) )
test( "trunc(-E)", int(-math.e) )
test( "round(E)", round(math.e) )
test( "round(-E)", round(-math.e) )
test( "E^PI", math.e**math.pi )
test( "2^3^2", 2**3**2 )
test( "2^3+2", 2**3+2 )
test( "2^3+5", 2**3+5 )
test( "2^9", 2**9 )
test( "sgn(-2)", -1 )
test( "sgn(0)", 0 )
test( "sgn(0.1)", 1 )
"""
Test output:
>pythonw -u fourFn.py
9 = 9.0 ['9'] => ['9']
9 + 3 + 6 = 18.0 ['9', '+', '3', '+', '6'] => ['9', '3', '+', '6', '+']
9 + 3 / 11 = 9.27272727273 ['9', '+', '3', '/', '11'] => ['9', '3', '11', '/', '+']
(9 + 3) = 12.0 [] => ['9', '3', '+']
(9+3) / 11 = 1.09090909091 ['/', '11'] => ['9', '3', '+', '11', '/']
9 - 12 - 6 = -9.0 ['9', '-', '12', '-', '6'] => ['9', '12', '-', '6', '-']
9 - (12 - 6) = 3.0 ['9', '-'] => ['9', '12', '6', '-', '-']
2*3.14159 = 6.28318 ['2', '*', '3.14159'] => ['2', '3.14159', '*']
3.1415926535*3.1415926535 / 10 = 0.986960440053 ['3.1415926535', '*', '3.1415926535', '/', '10'] => ['3.1415926535', '3.1415926535', '*', '10', '/']
PI * PI / 10 = 0.986960440109 ['PI', '*', 'PI', '/', '10'] => ['PI', 'PI', '*', '10', '/']
PI*PI/10 = 0.986960440109 ['PI', '*', 'PI', '/', '10'] => ['PI', 'PI', '*', '10', '/']
PI^2 = 9.86960440109 ['PI', '^', '2'] => ['PI', '2', '^']
6.02E23 * 8.048 = 4.844896e+024 ['6.02E23', '*', '8.048'] => ['6.02E23', '8.048', '*']
e / 3 = 0.90609394282 ['E', '/', '3'] => ['E', '3', '/']
sin(PI/2) = 1.0 ['sin', 'PI', '/', '2'] => ['PI', '2', '/', 'sin']
trunc(E) = 2 ['trunc', 'E'] => ['E', 'trunc']
E^PI = 23.1406926328 ['E', '^', 'PI'] => ['E', 'PI', '^']
2^3^2 = 512.0 ['2', '^', '3', '^', '2'] => ['2', '3', '2', '^', '^']
2^3+2 = 10.0 ['2', '^', '3', '+', '2'] => ['2', '3', '^', '2', '+']
2^9 = 512.0 ['2', '^', '9'] => ['2', '9', '^']
sgn(-2) = -1 ['sgn', '-2'] => ['-2', 'sgn']
sgn(0) = 0 ['sgn', '0'] => ['0', 'sgn']
sgn(0.1) = 1 ['sgn', '0.1'] => ['0.1', 'sgn']
>Exit code: 0
"""
|