File: delta_time.py

package info (click to toggle)
pyparsing 3.1.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,928 kB
  • sloc: python: 25,633; ansic: 422; makefile: 22
file content (593 lines) | stat: -rw-r--r-- 22,006 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# delta_time.py
#
# Parser to convert a conversational time reference such as "in a minute" or
# "noon tomorrow" and convert it to a Python datetime. The returned
# ParseResults object contains
#   - original - the original time expression string
#   - computed_dt - the Python datetime representing the computed time
#   - relative_to - the reference "now" time
#   - time_offset - the difference between the reference time and the computed time
#
# BNF:
#     time_and_day ::= time_reference [day_reference] | day_reference 'at' absolute_time_of_day
#     day_reference ::= absolute_day_reference | relative_day_reference
#     absolute_day_reference ::= 'today' | 'tomorrow' | 'yesterday' | ['next' | 'last'] weekday_name
#        (if weekday_name is given and is the same as the reference weekday:
#            if 'next' is given, use 7 days after the reference time
#            else if 'last' is given, use 7 days before the reference time
#            else, use the reference time)
#
#     relative_day_reference ::= 'in' qty day_units
#                                | qty day_units 'ago'
#                                | 'qty day_units ('from' | 'before' | 'after') absolute_day_reference
#     day_units ::= 'days' | 'weeks'
#
#     time_reference ::= absolute_time_of_day | relative_time_reference
#     relative_time_reference ::= qty time_units ('from' | 'before' | 'after') absolute_time_of_day
#                                 | qty time_units 'ago'
#                                 | 'in' qty time_units
#     time_units ::= 'hours' | 'minutes' | 'seconds'
#     absolute_time_of_day ::= 'noon' | 'midnight' | 'now' | absolute_time
#     absolute_time ::=  24hour_time | hour ("o'clock" | ':' minute) ('AM'|'PM')
#
#     qty ::= integer | integer_words | 'a couple of' | 'a' | 'the'
#     weekday_name ::= 'Monday' | ... | 'Sunday'
#
# Copyright 2010, 2019 by Paul McGuire
#

import calendar
from datetime import datetime, time as datetime_time, timedelta

import pyparsing as pp

__all__ = ["time_expression"]


_WEEKDAY_NAMES = list(calendar.day_name)
_DAY_NUM_BY_NAME = {d: i for i, d in enumerate(_WEEKDAY_NAMES)}


# basic grammar definitions
def _make_integer_word_expr(int_name: str, int_value: int) -> pp.CaselessKeyword:
    return pp.CaselessKeyword(
        int_name, ident_chars=pp.srange("[A-Za-z-]")
    ).add_parse_action(pp.replace_with(int_value))


integer_word = pp.MatchFirst(
    _make_integer_word_expr(int_str, int_value)
    for int_value, int_str in enumerate(
        "one two three four five six seven eight nine ten"
        " eleven twelve thirteen fourteen fifteen sixteen"
        " seventeen eighteen nineteen twenty twenty-one"
        " twenty-two twenty-three twenty-four".split(),
        start=1,
    )
).set_name("integer_word")

integer = pp.pyparsing_common.integer | integer_word
integer.set_name("numeric")

CK = pp.CaselessKeyword
CL = pp.CaselessLiteral
today, tomorrow, yesterday, noon, midnight, now = CK.using_each(
    "today tomorrow yesterday noon midnight now".split()
)


def _now():
    return datetime.now().replace(microsecond=0)


def _singular_or_plural(s: str) -> pp.ParserElement:
    return CK(s) | CK(s + "s").add_parse_action(pp.replace_with(s))


week, day, hour, minute, second = map(
    _singular_or_plural, "week day hour minute second".split()
)
time_units = hour | minute | second
any_time_units = (week | day | time_units).set_name("any_time_units")

am = CL("am")
pm = CL("pm")
COLON = pp.Suppress(":")

in_ = CK("in").set_parse_action(pp.replace_with(1))
from_ = CK("from").set_parse_action(pp.replace_with(1))
before = CK("before").set_parse_action(pp.replace_with(-1))
after = CK("after").set_parse_action(pp.replace_with(1))
ago = CK("ago").set_parse_action(pp.replace_with(-1))
next_ = CK("next").set_parse_action(
    pp.replace_with(1), lambda t: t.__setitem__("next_present", True)
)
last_ = CK("last").set_parse_action(pp.replace_with(-1))
at_ = CK("at")
on_ = CK("on")
a_ = CK("a")
an_ = CK("an")
of_ = CK("of")
the_ = CK("the")
adverb_ = pp.MatchFirst(CK.using_each("just only exactly".split())).suppress()

couple = (
    (pp.Opt(CK("a")) + CK("couple") + pp.Opt(CK("of")))
    .set_parse_action(pp.replace_with(2))
    .set_name("couple")
)

a_qty = (a_ | an_).set_parse_action(pp.replace_with(1))
the_qty = the_.set_parse_action(pp.replace_with(1))
qty = pp.ungroup(
    (pp.Opt(adverb_) + (integer | couple | a_qty | the_qty)).set_name("qty_expression")
).set_name("qty")
time_ref_present = pp.Tag("time_ref_present")

# get weekday names from the calendar module
weekday_names = list(calendar.day_name)
weekday_name = pp.MatchFirst(CK.using_each(weekday_names)).set_name("weekday_name")

# expressions for military 2400 time
_24hour_time = ~(pp.Word(pp.nums) + any_time_units).set_name(
    "numbered_time_units"
) + pp.Regex(
    r"\b([01]\d|2[0-3])([0-5]\d)\b",
    as_group_list=True
).set_name("HHMM").add_parse_action(
    lambda t: [int(t[0][0]), int(t[0][1])]
)
_24hour_time.set_name("0000 time")

@_24hour_time.add_parse_action
def _fill_24hr_time_fields(t: pp.ParseResults) -> None:
    t["HH"] = t[0]
    t["MM"] = t[1]
    t["SS"] = 0
    t["ampm"] = "am" if t.HH < 12 else "pm"

ampm = am | pm
o_clock = CK("o'clock", ident_chars=pp.srange("[A-Za-z']"))
timespec = (
    integer("HH")
    + pp.Opt(o_clock | COLON + integer("MM") + pp.Opt(COLON + integer("SS")))
    + (am | pm)("ampm")
)

@timespec.add_parse_action
def _fill_default_time_fields(t: pp.ParseResults) -> None:
    for fld in "HH MM SS".split():
        if fld not in t:
            t[fld] = 0


absolute_time = _24hour_time | timespec
absolute_time.set_name("absolute time")

absolute_time_of_day = noon | midnight | now | absolute_time
absolute_time_of_day.set_name("time of day")

@absolute_time_of_day.add_parse_action
def _add_computed_time(t: pp.ParseResults) -> None:
    initial_word = t[0]
    if initial_word in "now noon midnight".split():
        t["computed_time"] = {
            "now": _now().time(),
            "noon": datetime_time(hour=12),
            "midnight": datetime_time(hour=0),
        }[initial_word]
    else:
        t["HH"] = {"am": int(t["HH"]) % 12, "pm": int(t["HH"]) % 12 + 12}[t.ampm]
        t["computed_time"] = datetime_time(hour=t.HH, minute=t.MM, second=t.SS)


#     relative_time_reference ::= qty time_units ('ago' | ('from' | 'before' | 'after') absolute_time_of_day)
#                                 | 'in' qty time_units
time_units = (hour | minute | second).set_name("time unit")
relative_time_reference = (
    (
        qty("qty")
        + time_units("units")
        + (
            ago("dir")
            | (from_ | before | after)("dir")
            + pp.Group(absolute_time_of_day)("ref_time")
        )
    )
    | in_("dir") + qty("qty") + time_units("units")
).set_name("relative time")

@relative_time_reference.add_parse_action
def _compute_relative_time(t: pp.ParseResults) -> None:
    if "ref_time" not in t:
        t["ref_time"] = _now().time().replace(microsecond=0)
    else:
        t["ref_time"] = t.ref_time.computed_time
    delta_seconds = {"hour": 3600, "minute": 60, "second": 1}[t.units] * t.qty
    t["time_delta"] = timedelta(seconds=t.dir * delta_seconds)


time_reference = absolute_time_of_day | relative_time_reference
time_reference.set_name("time reference")

@time_reference.add_parse_action
def _add_default_time_ref_fields(t: pp.ParseResults) -> None:
    if "time_delta" not in t:
        t["time_delta"] = timedelta()


#     absolute_day_reference ::= 'today' | 'tomorrow' | 'yesterday' | ('next' | 'last') weekday_name
#     day_units ::= 'days' | 'weeks'

day_units = day | week
weekday_reference = pp.Opt(next_ | last_, 1)("dir") + weekday_name("day_name")


absolute_day_reference = (
    today | tomorrow | yesterday | (now + time_ref_present) | weekday_reference
)
absolute_day_reference.set_name("absolute day")

@absolute_day_reference.add_parse_action
def _convert_abs_day_reference_to_date(t: pp.ParseResults) -> None:
    now_ref = _now().replace(microsecond=0)

    # handle day reference by weekday name
    if "day_name" in t:
        today_num = now_ref.weekday()
        day_names = [n.lower() for n in weekday_names]
        named_day_num = day_names.index(t.day_name.lower())
        # compute difference in days - if current weekday name is referenced, then
        # computed 0 offset is changed to 7
        if t.dir > 0:
            if today_num != named_day_num or t.next_present:
                day_diff = (named_day_num + 7 - today_num) % 7 or 7
            else:
                day_diff = 0
        else:
            day_diff = -((today_num + 7 - named_day_num) % 7 or 7)
        t["abs_date"] = datetime(now_ref.year, now_ref.month, now_ref.day) + timedelta(
            days=day_diff
        )
    else:
        name = t[0]
        t["abs_date"] = {
            "now": now_ref,
            "today": datetime(now_ref.year, now_ref.month, now_ref.day),
            "yesterday": datetime(now_ref.year, now_ref.month, now_ref.day)
            + timedelta(days=-1),
            "tomorrow": datetime(now_ref.year, now_ref.month, now_ref.day)
            + timedelta(days=+1),
        }[name]


#     relative_day_reference ::=  'in' qty day_units
#                                   | qty day_units
#                                     ('ago'
#                                      | ('from' | 'before' | 'after') absolute_day_reference)
relative_day_reference = in_("dir") + qty("qty") + day_units("units") | qty(
    "qty"
) + day_units("units") + (
    ago("dir") | ((from_ | before | after)("dir") + absolute_day_reference("ref_day"))
)
relative_day_reference.set_name("relative day")

@relative_day_reference.add_parse_action
def _compute_relative_date(t: pp.ParseResults) -> None:
    now = _now().replace(microsecond=0)
    if "ref_day" in t:
        t["computed_date"] = t.ref_day
    else:
        t["computed_date"] = now.date()
    day_diff = t.dir * t.qty * {"week": 7, "day": 1}[t.units]
    t["date_delta"] = timedelta(days=day_diff)


# combine expressions for absolute and relative day references
day_reference = relative_day_reference | absolute_day_reference
day_reference.set_name("day reference")

@day_reference.add_parse_action
def _add_default_date_fields(t: pp.ParseResults) -> None:
    if "date_delta" not in t:
        t["date_delta"] = timedelta()


# combine date and time expressions into single overall parser
time_and_day = time_reference + time_ref_present + pp.Opt(
    pp.Opt(on_) + day_reference
) | day_reference + pp.Opt(pp.Opt(at_) + absolute_time_of_day + time_ref_present)
time_and_day.set_name("time and day")


# parse actions for total time_and_day expression
@time_and_day.add_parse_action
def _save_original_string(s: str, _: int, t: pp.ParseResults) -> None:
    # save original input string and reference time
    t["original"] = " ".join(s.strip().split())
    t["relative_to"] = _now().replace(microsecond=0)


@time_and_day.add_parse_action
def _compute_timestamp(t: pp.ParseResults) -> None:
    # accumulate values from parsed time and day subexpressions - fill in defaults for omitted parts
    now = _now().replace(microsecond=0)
    if "computed_time" not in t:
        t["computed_time"] = t.ref_time or now.time()
    if "abs_date" not in t:
        t["abs_date"] = now

    # roll up all fields and apply any time or day deltas
    t["computed_dt"] = (
        t.abs_date.replace(
            hour=t.computed_time.hour,
            minute=t.computed_time.minute,
            second=t.computed_time.second,
        )
        + (t.time_delta or timedelta(0))
        + (t.date_delta or timedelta(0))
    )

    # if time just given in terms of day expressions, zero out time fields
    if not t.time_ref_present:
        t["computed_dt"] = t.computed_dt.replace(hour=0, minute=0, second=0)

    # add results name compatible with previous version
    t["calculatedTime"] = t.computed_dt

    # add time_offset fields
    t["time_offset"] = t.computed_dt - t.relative_to


@time_and_day.add_parse_action
def _remove_temp_keys(t: pp.ParseResults) -> None:
    # strip out keys that are just used internally
    all_keys = list(t.keys())
    for k in all_keys:
        if k not in (
            "computed_dt",
            "original",
            "relative_to",
            "time_offset",
            "calculatedTime",
        ):
            del t[k]

    # delete list elements - just return keys
    del t[:]


time_expression = time_and_day

_GENERATE_DIAGRAM = False
if _GENERATE_DIAGRAM:
    pp.autoname_elements()
    time_expression.create_diagram("delta_time.html")


def demo():
    """
    Demonstrate using the time_expression parser, and accessing
    the parsed results.

    - parse a complex time expression
    - show all fields that are accessible in the results
    - show an example of using one of the results fields in Python
    """

    # - parse a complex time expression
    example_expr = "10 seconds before noon tomorrow"
    result = time_expression.parse_string(example_expr)

    # - show all fields that are accessible in the results
    print(f"\nDemo: Results of parsing {example_expr!r}", end="")
    print(result.dump(include_list=False))

    # - show an example of using one of the results fields in Python
    print("Computed time:", result.computed_dt)


def run_all_tests() -> bool:
    import itertools
    from typing import Dict

    def make_weekday_time_references() -> Dict[str, timedelta]:
        def offset_weekday(
            day_name: str, offset_dir: int, next_present: bool = False
        ) -> timedelta:
            """
            Compute a timedelta for a reference to a weekday by name, relative to
            the current weekday.

            If the current day is Monday:
               "next Monday" will be one week in the future
               "last Monday" will be one week in the past
               "Monday" will be the current day
               "next Tuesday" and "Tuesday" will be one day in the future
               "last Tuesday" will be 6 days in the past
               ... and similar for all other weekdays
            """
            to_day_num = _DAY_NUM_BY_NAME[day_name]
            from_day_num = current_time.weekday()

            if to_day_num != from_day_num:
                if offset_dir == 1:
                    return timedelta(days=(to_day_num + 7 - from_day_num) % 7)
                else:
                    return timedelta(days=-((from_day_num + 7 - to_day_num) % 7))
            else:
                if offset_dir == 1:
                    if next_present:
                        return timedelta(days=7)
                    else:
                        return timedelta()
                else:
                    return timedelta(days=-7)

        def next_weekday_by_name(
            day_name: str, *, next_present: bool = False
        ) -> timedelta:
            return offset_weekday(day_name, 1, next_present)

        def prev_weekday_by_name(day_name: str, **_) -> timedelta:
            return offset_weekday(day_name, -1)

        # add test_time_exprs for various times, forward and backward to a weekday by name
        # define lists of expression terms to generate permutations of times, weekdays,
        # and next/last
        times = [("noon", 12), ("2am", 2), ("2pm", 14), ("1500", 15)]
        rels = ["", "next", "last"]
        weekday_rel_func = {
            "": next_weekday_by_name,
            "next": next_weekday_by_name,
            "last": prev_weekday_by_name,
        }

        weekday_test_cases = {}
        for (timestr, timehours), rel, dayname in itertools.product(
            times, rels, _WEEKDAY_NAMES
        ):
            next_or_prev_weekday_func = weekday_rel_func[rel]
            expected_offset = (
                timedelta(hours=timehours) - time_of_day
            ) + next_or_prev_weekday_func(dayname, next_present=rel == "next")

            # times such as "noon last Friday" or just "noon Friday"
            weekday_test_cases[f"{timestr} {rel} {dayname}"] = expected_offset
            # times such as "next Tuesday at 4pm" or just "Tuesday at 4pm"
            weekday_test_cases[f"{rel} {dayname} at {timestr}"] = expected_offset
            # times such as "next Tuesday 4pm" or just "Tuesday 4pm"
            weekday_test_cases[f"{rel} {dayname} {timestr}"] = expected_offset

        return weekday_test_cases

    # get the current time as a timedelta, to compare with parsed times
    current_time = _now()
    time_of_day = timedelta(
        hours=current_time.hour,
        minutes=current_time.minute,
        seconds=current_time.second,
    )

    # generate a dict of time expressions and correspdoning offset from
    # the current time
    # fmt: off
    test_time_exprs = {
        "now": timedelta(0),
        "midnight": -time_of_day,
        "noon": timedelta(hours=12) - time_of_day,
        "today": -time_of_day,
        "tomorrow": timedelta(days=1) - time_of_day,
        "yesterday": timedelta(days=-1) - time_of_day,
        "10 seconds ago": timedelta(seconds=-10),
        "100 seconds ago": timedelta(seconds=-100),
        "1000 seconds ago": timedelta(seconds=-1000),
        "10000 seconds ago": timedelta(seconds=-10000),
        "10 minutes ago": timedelta(minutes=-10),
        "10 minutes from now": timedelta(minutes=10),
        "in 10 minutes": timedelta(minutes=10),
        "in a minute": timedelta(minutes=1),
        "in a couple of minutes": timedelta(minutes=2),
        "20 seconds ago": timedelta(seconds=-20),
        "in 30 seconds": timedelta(seconds=30),
        "in an hour": timedelta(hours=1),
        "in a couple hours": timedelta(hours=2),
        "a week from now": timedelta(days=7),
        "3 days from now": timedelta(days=3),
        "a couple of days from now": timedelta(days=2),
        "an hour ago": timedelta(hours=-1),
        "in a couple days": timedelta(days=2) - time_of_day,
        "a week from today": timedelta(days=7) - time_of_day,
        "three weeks ago": timedelta(days=-21) - time_of_day,
        "a day ago": timedelta(days=-1) - time_of_day,
        "in a couple of days": timedelta(days=2) - time_of_day,
        "a couple of days from today": timedelta(days=2) - time_of_day,
        "2 weeks after today": timedelta(days=14) - time_of_day,
        "in 2 weeks": timedelta(days=14) - time_of_day,
        "the day after tomorrow": timedelta(days=2) - time_of_day,
        "the day before yesterday": timedelta(days=-2) - time_of_day,
        "8am the day after tomorrow": timedelta(days=+2) - time_of_day + timedelta(hours=8),
        "in a day": timedelta(days=1) - time_of_day,
        "3 days ago": timedelta(days=-3) - time_of_day,
        "noon tomorrow": timedelta(days=1) - time_of_day + timedelta(hours=12),
        "6am tomorrow": timedelta(days=1) - time_of_day + timedelta(hours=6),
        "0800 yesterday": timedelta(days=-1) - time_of_day + timedelta(hours=8),
        "1700 tomorrow": timedelta(days=1) - time_of_day + timedelta(hours=17),
        "12:15 AM today": -time_of_day + timedelta(minutes=15),
        "3pm 2 days from today": timedelta(days=2) - time_of_day + timedelta(hours=15),
        "ten seconds before noon tomorrow": (
                timedelta(days=1)
                - time_of_day
                + timedelta(hours=12)
                + timedelta(seconds=-10)
        ),
        "20 seconds before noon": -time_of_day + timedelta(hours=12) + timedelta(seconds=-20),
        "in 3 days at 5pm": timedelta(days=3) - time_of_day + timedelta(hours=17),
        "20 hours from now": timedelta(hours=20),
        "twenty hours from now": timedelta(hours=20),
        "twenty-four hours from now": timedelta(days=1),
        "Twenty-four hours from now": timedelta(days=1),
        "just twenty-four hours from now": timedelta(days=1),
        "in just 10 seconds": timedelta(seconds=10),
        "in just a couple of hours": timedelta(hours=2),
        "in exactly 1 hour": timedelta(hours=1),
        "only one hour from now": timedelta(hours=1),
        "only a couple of days ago": timedelta(days=-2) - time_of_day,
    }
    # fmt: on

    # add expressions using weekday names
    test_time_exprs.update(make_weekday_time_references())

    def verify_offset(test_time_str: str, parsed: pp.ParseResults) -> None:
        """
        Function to compare computed offset time with expected offset as defined
        in times dict.
        """
        # allow up to a 1-second time discrepancy due to test processing time
        time_epsilon = timedelta(seconds=1)
        expected_offset = test_time_exprs[test_time_str]
        offset_error = parsed.time_offset - expected_offset

        # add helpful test results in case of a test failure
        parsed["_testing_expected_offset"] = expected_offset
        parsed["_testing_observed_offset"] = parsed.time_offset
        parsed["_testing_offset_error"] = offset_error
        parsed["_testing_abs_offset_error"] = abs(offset_error)

        if abs(offset_error) <= time_epsilon:
            parsed["_testing_verify_offset"] = "PASS"
        else:
            parsed["_testing_verify_offset"] = "FAIL"

    # run all test cases
    print(f"(relative to {_now()})")
    success, report = time_expression.run_tests(
        list(test_time_exprs), post_parse=verify_offset
    )
    assert success

    # collect all tests that failed to compute the expected time (relative to
    # the current time)
    fails = []
    for test, rpt in report:
        if rpt._testing_verify_offset != "PASS":
            fails.append((test, rpt))

    if fails:
        print(f"\nFAILED ({len(fails)}/{len(test_time_exprs)} tests)")
        print("\n".join(f"- {test}" for test, _ in fails))
    else:
        print(f"\nPASSED ({len(test_time_exprs)} tests)")

    return not fails


def main() -> int:
    tests_pass = run_all_tests()
    demo()
    return 0 if tests_pass else 1


if __name__ == "__main__":
    exit(main())