File: jit_libffi.py

package info (click to toggle)
pypy 2.4.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 86,992 kB
  • ctags: 170,715
  • sloc: python: 1,030,417; ansic: 43,437; cpp: 5,241; asm: 5,169; sh: 458; makefile: 408; xml: 231; lisp: 45
file content (288 lines) | stat: -rw-r--r-- 12,173 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

from rpython.rtyper.lltypesystem import lltype, rffi
from rpython.rtyper.extregistry import ExtRegistryEntry
from rpython.rlib import clibffi, jit
from rpython.rlib.rarithmetic import r_longlong, r_singlefloat
from rpython.rlib.nonconst import NonConstant


FFI_CIF = clibffi.FFI_CIFP.TO
FFI_TYPE = clibffi.FFI_TYPE_P.TO
FFI_TYPE_P = clibffi.FFI_TYPE_P
FFI_TYPE_PP = clibffi.FFI_TYPE_PP
FFI_ABI = clibffi.FFI_ABI
FFI_TYPE_STRUCT = clibffi.FFI_TYPE_STRUCT
SIZE_OF_FFI_ARG = rffi.sizeof(clibffi.ffi_arg)

# Usage: for each C function, make one CIF_DESCRIPTION block of raw
# memory.  Initialize it by filling all its fields apart from 'cif'.
# The 'atypes' points to an array of ffi_type pointers; a reasonable
# place to locate this array's memory is in the same block of raw
# memory, by allocating more than sizeof(CIF_DESCRIPTION).
#
# The four fields 'abi', 'nargs', 'rtype', 'atypes' are the same as
# the arguments to ffi_prep_cif().
#
# Following this, we find jit_libffi-specific information:
#
#  - 'exchange_size': an integer that tells how big a buffer we must
#    allocate to do the call; this buffer should have enough room at the
#    beginning for an array of NARGS pointers which is initialized
#    internally by jit_ffi_call().
#
#  - 'exchange_result': the offset in that buffer for the result of the call.
#    (this and the other offsets must be at least NARGS * sizeof(void*).)
#
#  - 'exchange_result_libffi': the actual offset passed to ffi_call().
#    Differs on big-endian machines if the result is an integer type smaller
#    than SIZE_OF_FFI_ARG (blame libffi).
#
#  - 'exchange_args[nargs]': the offset in that buffer for each argument.

CIF_DESCRIPTION = lltype.Struct(
    'CIF_DESCRIPTION',
    ('cif', FFI_CIF),
    ('abi', lltype.Signed),    # these 4 fields could also be read directly
    ('nargs', lltype.Signed),  # from 'cif', but doing so adds a dependency
    ('rtype', FFI_TYPE_P),     # on the exact fields available from ffi_cif.
    ('atypes', FFI_TYPE_PP),   #
    ('exchange_size', lltype.Signed),
    ('exchange_result', lltype.Signed),
    ('exchange_result_libffi', lltype.Signed),
    ('exchange_args', lltype.Array(lltype.Signed,
                          hints={'nolength': True, 'immutable': True})),
    hints={'immutable': True})

CIF_DESCRIPTION_P = lltype.Ptr(CIF_DESCRIPTION)


def jit_ffi_prep_cif(cif_description):
    """Minimal wrapper around ffi_prep_cif().  Call this after
    cif_description is initialized, in order to fill the last field: 'cif'.
    """
    res = clibffi.c_ffi_prep_cif(cif_description.cif,
                                 cif_description.abi,
                                 cif_description.nargs,
                                 cif_description.rtype,
                                 cif_description.atypes)
    return rffi.cast(lltype.Signed, res)


# =============================
# jit_ffi_call and its helpers
# =============================

## Problem: jit_ffi_call is turned into call_release_gil by pyjitpl. Before
## the refactor-call_release_gil branch, the resulting code looked like this:
##
##     buffer = ...
##     i0 = call_release_gil(...)
##     guard_not_forced()
##     setarray_item_raw(buffer, ..., i0)
##
## The problem is that the result box i0 was generated freshly inside pyjitpl,
## and the codewriter did not know about its liveness: the result was that i0
## was not in the fail_args of guard_not_forced. See
## test_fficall::test_guard_not_forced_fails for a more detalied explanation
## of the problem.
##
## The solution is to create a new separate operation libffi_save_result whose
## job is to write the result in the exchange_buffer: during normal execution
## this is a no-op because the buffer is already filled by libffi, but during
## jitting the behavior is to actually write into the buffer.
##
## The result is that now the jitcode looks like this:
##
##     %i0 = libffi_call_int(...)
##     -live-
##     libffi_save_result_int(..., %i0)
##
## the "-live-" is the key, because it make sure that the value is not lost if
## guard_not_forced fails.


def jit_ffi_call(cif_description, func_addr, exchange_buffer):
    """Wrapper around ffi_call().  Must receive a CIF_DESCRIPTION_P that
    describes the layout of the 'exchange_buffer'.
    """
    reskind = types.getkind(cif_description.rtype)
    if reskind == 'v':
        jit_ffi_call_impl_void(cif_description, func_addr, exchange_buffer)
    elif reskind == 'i' or reskind == 'u':
        _do_ffi_call_int(cif_description, func_addr, exchange_buffer)
    elif reskind == 'f':
        _do_ffi_call_float(cif_description, func_addr, exchange_buffer)
    elif reskind == 'L': # L is for longlongs, on 32bit
        _do_ffi_call_longlong(cif_description, func_addr, exchange_buffer)
    elif reskind == 'S': # SingleFloat
        _do_ffi_call_singlefloat(cif_description, func_addr, exchange_buffer)
    else:
        # the result kind is not supported: we disable the jit_ffi_call
        # optimization by calling directly jit_ffi_call_impl_any, so the JIT
        # does not see any libffi_call oopspec.
        #
        # Since call_release_gil is not generated, there is no need to
        # jit_ffi_save_result
        jit_ffi_call_impl_any(cif_description, func_addr, exchange_buffer)


def _do_ffi_call_int(cif_description, func_addr, exchange_buffer):
    result = jit_ffi_call_impl_int(cif_description, func_addr,
                                   exchange_buffer)
    jit_ffi_save_result('int', cif_description, exchange_buffer, result)

def _do_ffi_call_float(cif_description, func_addr, exchange_buffer):
    # a separate function in case the backend doesn't support floats
    result = jit_ffi_call_impl_float(cif_description, func_addr,
                                     exchange_buffer)
    jit_ffi_save_result('float', cif_description, exchange_buffer, result)

def _do_ffi_call_longlong(cif_description, func_addr, exchange_buffer):
    # a separate function in case the backend doesn't support longlongs
    result = jit_ffi_call_impl_longlong(cif_description, func_addr,
                                        exchange_buffer)
    jit_ffi_save_result('longlong', cif_description, exchange_buffer, result)

def _do_ffi_call_singlefloat(cif_description, func_addr, exchange_buffer):
    # a separate function in case the backend doesn't support singlefloats
    result = jit_ffi_call_impl_singlefloat(cif_description, func_addr,
                                           exchange_buffer)
    jit_ffi_save_result('singlefloat', cif_description, exchange_buffer,result)


# we must return a NonConstant else we get the constant -1 as the result of
# the flowgraph, and the codewriter does not produce a box for the
# result. Note that when not-jitted, the result is unused, but when jitted the
# box of the result contains the actual value returned by the C function.

@jit.oopspec("libffi_call(cif_description,func_addr,exchange_buffer)")
def jit_ffi_call_impl_int(cif_description, func_addr, exchange_buffer):
    jit_ffi_call_impl_any(cif_description, func_addr, exchange_buffer)
    return NonConstant(-1)

@jit.oopspec("libffi_call(cif_description,func_addr,exchange_buffer)")
def jit_ffi_call_impl_float(cif_description, func_addr, exchange_buffer):
    jit_ffi_call_impl_any(cif_description, func_addr, exchange_buffer)
    return NonConstant(-1.0)

@jit.oopspec("libffi_call(cif_description,func_addr,exchange_buffer)")
def jit_ffi_call_impl_longlong(cif_description, func_addr, exchange_buffer):
    jit_ffi_call_impl_any(cif_description, func_addr, exchange_buffer)
    return r_longlong(-1)

@jit.oopspec("libffi_call(cif_description,func_addr,exchange_buffer)")
def jit_ffi_call_impl_singlefloat(cif_description, func_addr, exchange_buffer):
    jit_ffi_call_impl_any(cif_description, func_addr, exchange_buffer)
    return r_singlefloat(-1.0)

@jit.oopspec("libffi_call(cif_description,func_addr,exchange_buffer)")
def jit_ffi_call_impl_void(cif_description, func_addr, exchange_buffer):
    jit_ffi_call_impl_any(cif_description, func_addr, exchange_buffer)
    return None

def jit_ffi_call_impl_any(cif_description, func_addr, exchange_buffer):
    """
    This is the function which actually calls libffi. All the rest if just
    infrastructure to convince the JIT to pass a typed result box to
    jit_ffi_save_result
    """
    buffer_array = rffi.cast(rffi.VOIDPP, exchange_buffer)
    for i in range(cif_description.nargs):
        data = rffi.ptradd(exchange_buffer, cif_description.exchange_args[i])
        buffer_array[i] = data
    resultdata = rffi.ptradd(exchange_buffer,
                             cif_description.exchange_result_libffi)
    clibffi.c_ffi_call(cif_description.cif, func_addr,
                       rffi.cast(rffi.VOIDP, resultdata),
                       buffer_array)
    return -1



def jit_ffi_save_result(kind, cif_description, exchange_buffer, result):
    """
    This is a no-op during normal execution, but actually fills the buffer
    when jitted
    """
    pass

class Entry(ExtRegistryEntry):
    _about_ = jit_ffi_save_result

    def compute_result_annotation(self, kind_s, *args_s):
        from rpython.annotator import model as annmodel
        assert isinstance(kind_s, annmodel.SomeString)
        assert kind_s.const in ('int', 'float', 'longlong', 'singlefloat')

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        vlist = hop.inputargs(lltype.Void, *hop.args_r[1:])
        return hop.genop('jit_ffi_save_result', vlist,
                         resulttype=lltype.Void)
    

# ____________________________________________________________

class types(object):
    """
    This namespace contains the mapping the JIT needs from ffi types to
    a less strict "kind" character.
    """

    @classmethod
    def _import(cls):
        prefix = 'ffi_type_'
        for key, value in clibffi.__dict__.iteritems():
            if key.startswith(prefix):
                name = key[len(prefix):]
                setattr(cls, name, value)
        cls.slong = clibffi.cast_type_to_ffitype(rffi.LONG)
        cls.ulong = clibffi.cast_type_to_ffitype(rffi.ULONG)
        cls.slonglong = clibffi.cast_type_to_ffitype(rffi.LONGLONG)
        cls.ulonglong = clibffi.cast_type_to_ffitype(rffi.ULONGLONG)
        cls.signed = clibffi.cast_type_to_ffitype(rffi.SIGNED)
        cls.wchar_t = clibffi.cast_type_to_ffitype(lltype.UniChar)
        del cls._import

    @staticmethod
    @jit.elidable
    def getkind(ffi_type):
        """Returns 'v' for void, 'f' for float, 'i' for signed integer,
        'u' for unsigned integer, 'S' for singlefloat, 'L' for long long
        integer (signed or unsigned), '*' for struct, or '?' for others
        (e.g. long double).
        """
        if   ffi_type == types.void:    return 'v'
        elif ffi_type == types.double:  return 'f'
        elif ffi_type == types.float:   return 'S'
        elif ffi_type == types.pointer: return 'u'
        #
        elif ffi_type == types.schar:   return 'i'
        elif ffi_type == types.uchar:   return 'u'
        elif ffi_type == types.sshort:  return 'i'
        elif ffi_type == types.ushort:  return 'u'
        elif ffi_type == types.sint:    return 'i'
        elif ffi_type == types.uint:    return 'u'
        elif ffi_type == types.slong:   return 'i'
        elif ffi_type == types.ulong:   return 'u'
        #
        elif ffi_type == types.sint8:   return 'i'
        elif ffi_type == types.uint8:   return 'u'
        elif ffi_type == types.sint16:  return 'i'
        elif ffi_type == types.uint16:  return 'u'
        elif ffi_type == types.sint32:  return 'i'
        elif ffi_type == types.uint32:  return 'u'
        ## (note that on 64-bit platforms, types.sint64 == types.slong and the
        ## case == caught above)
        elif ffi_type == types.sint64:  return 'L'
        elif ffi_type == types.uint64:  return 'L'
        #
        elif types.is_struct(ffi_type): return '*'
        return '?'

    @staticmethod
    @jit.elidable
    def is_struct(ffi_type):
        return rffi.getintfield(ffi_type, 'c_type') == FFI_TYPE_STRUCT

types._import()