File: ieee.py

package info (click to toggle)
pypy 2.4.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 86,992 kB
  • ctags: 170,715
  • sloc: python: 1,030,417; ansic: 43,437; cpp: 5,241; asm: 5,169; sh: 458; makefile: 408; xml: 231; lisp: 45
file content (275 lines) | stat: -rw-r--r-- 9,111 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
Packing and unpacking of floats in the IEEE 32-bit and 64-bit formats.
"""

import math

from rpython.rlib import rarithmetic, rfloat, objectmodel, jit
from rpython.rlib.rarithmetic import r_ulonglong

def round_to_nearest(x):
    """Python 3 style round:  round a float x to the nearest int, but
    unlike the builtin Python 2.x round function:

      - return an int, not a float
      - do round-half-to-even, not round-half-away-from-zero.

    We assume that x is finite and nonnegative; expect wrong results
    if you use this for negative x.

    """
    int_part = r_ulonglong(x)
    frac_part = x - int_part
    if frac_part > 0.5 or frac_part == 0.5 and int_part & 1:
        int_part += 1
    return int_part

def float_unpack(Q, size):
    """Convert a 16-bit, 32-bit, or 64-bit integer created
    by float_pack into a Python float."""
    if size == 8:
        MIN_EXP = -1021  # = sys.float_info.min_exp
        MAX_EXP = 1024   # = sys.float_info.max_exp
        MANT_DIG = 53    # = sys.float_info.mant_dig
        BITS = 64
    elif size == 4:
        MIN_EXP = -125   # C's FLT_MIN_EXP
        MAX_EXP = 128    # FLT_MAX_EXP
        MANT_DIG = 24    # FLT_MANT_DIG
        BITS = 32
    elif size == 2:
        MIN_EXP = -13
        MAX_EXP = 16
        MANT_DIG = 11
        BITS = 16
    else:
        raise ValueError("invalid size value")

    if not objectmodel.we_are_translated():
        # This tests generates wrong code when translated:
        # with gcc, shifting a 64bit int by 64 bits does
        # not change the value.
        if Q >> BITS:
            raise ValueError("input '%r' out of range '%r'" % (Q, Q>>BITS))

    # extract pieces with assumed 1.mant values
    one = r_ulonglong(1)
    sign = rarithmetic.intmask(Q >> BITS - 1)
    exp = rarithmetic.intmask((Q & ((one << BITS - 1) - (one << MANT_DIG - 1))) >> MANT_DIG - 1)
    mant = Q & ((one << MANT_DIG - 1) - 1)

    if exp == MAX_EXP - MIN_EXP + 2:
        # nan or infinity
        result = rfloat.NAN if mant else rfloat.INFINITY
    elif exp == 0:
        # subnormal or zero
        result = math.ldexp(mant, MIN_EXP - MANT_DIG)
    else:
        # normal: add implicit one value
        mant += one << MANT_DIG - 1
        result = math.ldexp(mant, exp + MIN_EXP - MANT_DIG - 1)
    return -result if sign else result

def float_unpack80(QQ, size):
    '''Unpack a (mant, exp) tuple of r_ulonglong in 80-bit extended format
    into a long double float
    '''
    if size == 10 or size == 12 or size == 16:
        MIN_EXP = -16381
        MAX_EXP = 16384
        MANT_DIG = 64
        TOP_BITS = 80 - 64
    else:
        raise ValueError("invalid size value")

    if len(QQ) != 2:
        raise ValueError("QQ must be two 64 bit uints")

    if not objectmodel.we_are_translated():
        # This tests generates wrong code when translated:
        # with gcc, shifting a 64bit int by 64 bits does
        # not change the value.
        if QQ[1] >> TOP_BITS:
            raise ValueError("input '%r' out of range '%r'" % (QQ, QQ[1]>>TOP_BITS))

    # extract pieces with explicit one in MANT_DIG
    one = r_ulonglong(1)
    sign = rarithmetic.intmask(QQ[1] >> TOP_BITS - 1)
    exp = rarithmetic.intmask((QQ[1] & ((one << TOP_BITS - 1) - 1)))
    mant = QQ[0]

    if exp == MAX_EXP - MIN_EXP + 2:
        # nan or infinity
        result = rfloat.NAN if mant &((one << MANT_DIG - 1) - 1) else rfloat.INFINITY
    else:
        # normal
        result = math.ldexp(mant, exp + MIN_EXP - MANT_DIG - 1)
    return -result if sign else result

def float_pack(x, size):
    """Convert a Python float x into a 64-bit unsigned integer
    with the same byte representation."""
    if size == 8:
        MIN_EXP = -1021  # = sys.float_info.min_exp
        MAX_EXP = 1024   # = sys.float_info.max_exp
        MANT_DIG = 53    # = sys.float_info.mant_dig
        BITS = 64
    elif size == 4:
        MIN_EXP = -125   # C's FLT_MIN_EXP
        MAX_EXP = 128    # FLT_MAX_EXP
        MANT_DIG = 24    # FLT_MANT_DIG
        BITS = 32
    elif size == 2:
        MIN_EXP = -13
        MAX_EXP = 16
        MANT_DIG = 11
        BITS = 16
    else:
        raise ValueError("invalid size value")

    sign = rfloat.copysign(1.0, x) < 0.0
    if not rfloat.isfinite(x):
        if rfloat.isinf(x):
            mant = r_ulonglong(0)
            exp = MAX_EXP - MIN_EXP + 2
        else:  # rfloat.isnan(x):
            mant = r_ulonglong(1) << (MANT_DIG-2) # other values possible
            exp = MAX_EXP - MIN_EXP + 2
    elif x == 0.0:
        mant = r_ulonglong(0)
        exp = 0
    else:
        m, e = math.frexp(abs(x))  # abs(x) == m * 2**e
        exp = e - (MIN_EXP - 1)
        if exp > 0:
            # Normal case.
            mant = round_to_nearest(m * (r_ulonglong(1) << MANT_DIG))
            mant -= r_ulonglong(1) << MANT_DIG - 1
        else:
            # Subnormal case.
            if exp + MANT_DIG - 1 >= 0:
                mant = round_to_nearest(m * (r_ulonglong(1) << exp + MANT_DIG - 1))
            else:
                mant = r_ulonglong(0)
            exp = 0

        # Special case: rounding produced a MANT_DIG-bit mantissa.
        if not objectmodel.we_are_translated():
            assert 0 <= mant <= 1 << MANT_DIG - 1
        if mant == r_ulonglong(1) << MANT_DIG - 1:
            mant = r_ulonglong(0)
            exp += 1

        # Raise on overflow (in some circumstances, may want to return
        # infinity instead).
        if exp >= MAX_EXP - MIN_EXP + 2:
            raise OverflowError("float too large to pack in this format")

    # check constraints
    if not objectmodel.we_are_translated():
        assert 0 <= mant < 1 << MANT_DIG - 1
        assert 0 <= exp <= MAX_EXP - MIN_EXP + 2
        assert 0 <= sign <= 1
    exp = r_ulonglong(exp)
    sign = r_ulonglong(sign)
    return ((sign << BITS - 1) | (exp << MANT_DIG - 1)) | mant

def float_pack80(x, size):
    """Convert a Python float or longfloat x into two 64-bit unsigned integers
    with 80 bit extended representation."""
    x = float(x) # longfloat not really supported
    if size == 10 or size == 12 or size == 16:
        MIN_EXP = -16381
        MAX_EXP = 16384
        MANT_DIG = 64
        BITS = 80
    else:
        raise ValueError("invalid size value")

    sign = rfloat.copysign(1.0, x) < 0.0
    if not rfloat.isfinite(x):
        if rfloat.isinf(x):
            mant = r_ulonglong(0)
            exp = MAX_EXP - MIN_EXP + 2
        else:  # rfloat.isnan(x):
            mant = (r_ulonglong(1) << (MANT_DIG-2)) - 1 # other values possible
            exp = MAX_EXP - MIN_EXP + 2
    elif x == 0.0:
        mant = r_ulonglong(0)
        exp = 0
    else:
        m, e = math.frexp(abs(x))  # abs(x) == m * 2**e
        exp = e - (MIN_EXP - 1)
        if exp > 0:
            # Normal case. Avoid uint64 overflow by using MANT_DIG-1
            mant = round_to_nearest(m * (r_ulonglong(1) << MANT_DIG - 1))
        else:
            # Subnormal case.
            if exp + MANT_DIG - 1 >= 0:
                mant = round_to_nearest(m * (r_ulonglong(1) << exp + MANT_DIG - 1))
            else:
                mant = r_ulonglong(0)
            exp = 0

        # Special case: rounding produced a MANT_DIG-bit mantissa.
        if mant == r_ulonglong(1) << MANT_DIG - 1:
            mant = r_ulonglong(0)
            exp += 1

        # Raise on overflow (in some circumstances, may want to return
        # infinity instead).
        if exp >= MAX_EXP - MIN_EXP + 2:
            raise OverflowError("float too large to pack in this format")

    # check constraints
    if not objectmodel.we_are_translated():
        assert 0 <= mant < 1 << MANT_DIG - 1
        assert 0 <= exp <= MAX_EXP - MIN_EXP + 2
        assert 0 <= sign <= 1
    mant = mant << 1
    exp = r_ulonglong(exp)
    sign = r_ulonglong(sign)
    return (mant, (sign << BITS - MANT_DIG - 1) | exp)

@jit.unroll_safe
def pack_float(result, x, size, be):
    l = []
    unsigned = float_pack(x, size)
    for i in range(size):
        l.append(chr((unsigned >> (i * 8)) & 0xFF))
    if be:
        l.reverse()
    result.append("".join(l))

@jit.unroll_safe
def pack_float80(result, x, size, be):
    l = []
    unsigned = float_pack80(x, size)
    for i in range(8):
        l.append(chr((unsigned[0] >> (i * 8)) & 0xFF))
    for i in range(2):
        l.append(chr((unsigned[1] >> (i * 8)) & 0xFF))
    for i in range(size - 10):
        l.append('\x00')
    if be:
        l.reverse()
    result.append("".join(l))

@jit.unroll_safe
def unpack_float(s, be):
    unsigned = r_ulonglong(0)
    for i in range(min(len(s), 8)):
        c = ord(s[-i - 1 if be else i])
        unsigned |= r_ulonglong(c) << (i * 8)
    return float_unpack(unsigned, len(s))

@jit.unroll_safe
def unpack_float80(s, be):
    QQ = [r_ulonglong(0), r_ulonglong(0)]
    for i in range(8):
        c = ord(s[-i - 1 if be else i])
        QQ[0] |= r_ulonglong(c) << (i * 8)
    for i in range(8, 10):
        c = ord(s[-i - 1 if be else i])
        QQ[1] |= r_ulonglong(c) << ((i - 8) * 8)
    return float_unpack80(QQ, len(s))