File: rordereddict.py

package info (click to toggle)
pypy 2.4.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 86,992 kB
  • ctags: 170,715
  • sloc: python: 1,030,417; ansic: 43,437; cpp: 5,241; asm: 5,169; sh: 458; makefile: 408; xml: 231; lisp: 45
file content (1088 lines) | stat: -rw-r--r-- 40,858 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
import sys
from rpython.tool.pairtype import pairtype
from rpython.flowspace.model import Constant
from rpython.rtyper.rdict import AbstractDictRepr, AbstractDictIteratorRepr
from rpython.rtyper.lltypesystem import lltype, llmemory, rffi
from rpython.rlib import objectmodel, jit, rgc
from rpython.rlib.objectmodel import specialize
from rpython.rlib.debug import ll_assert
from rpython.rlib.rarithmetic import r_uint, intmask
from rpython.rtyper import rmodel
from rpython.rtyper.error import TyperError
from rpython.rtyper.annlowlevel import llhelper


# ____________________________________________________________
#
#  generic implementation of RPython dictionary, with parametric DICTKEY and
#  DICTVALUE types. The basic implementation is a sparse array of indexes
#  plus a dense array of structs that contain keys and values. struct looks
#  like that:
#
#
#    struct dictentry {
#        DICTKEY key;
#        DICTVALUE value;
#        long f_hash;        # (optional) key hash, if hard to recompute
#        bool f_valid;      # (optional) the entry is filled
#    }
#
#    struct dicttable {
#        int num_items;
#        int num_used_items;
#        int resize_counter;
#        {byte, short, int, long} *indexes;
#        dictentry *entries;
#        lookup_function_no; # one of the four possible functions for different
#                         # size dicts
#        (Function DICTKEY, DICTKEY -> bool) *fnkeyeq;
#        (Function DICTKEY -> int) *fnkeyhash;
#    }
#
#

def ll_call_lookup_function(d, key, hash, flag):
    DICT = lltype.typeOf(d).TO
    fun = d.lookup_function_no
    if fun == FUNC_BYTE:
        return ll_dict_lookup(d, key, hash, flag, TYPE_BYTE)
    elif fun == FUNC_SHORT:
        return ll_dict_lookup(d, key, hash, flag, TYPE_SHORT)
    elif IS_64BIT and fun == FUNC_INT:
        return ll_dict_lookup(d, key, hash, flag, TYPE_INT)
    elif fun == FUNC_LONG:
        return ll_dict_lookup(d, key, hash, flag, TYPE_LONG)
    assert False

def get_ll_dict(DICTKEY, DICTVALUE, get_custom_eq_hash=None, DICT=None,
                ll_fasthash_function=None, ll_hash_function=None,
                ll_eq_function=None, method_cache={},
                dummykeyobj=None, dummyvalueobj=None, rtyper=None):
    # get the actual DICT type. if DICT is None, it's created, otherwise
    # forward reference is becoming DICT
    if DICT is None:
        DICT = lltype.GcForwardReference()
    # compute the shape of the DICTENTRY structure
    entryfields = []
    entrymeths = {
        'allocate': lltype.typeMethod(_ll_malloc_entries),
        'delete': _ll_free_entries,
        'must_clear_key':   (isinstance(DICTKEY, lltype.Ptr)
                             and DICTKEY._needsgc()),
        'must_clear_value': (isinstance(DICTVALUE, lltype.Ptr)
                             and DICTVALUE._needsgc()),
        }

    # * the key
    entryfields.append(("key", DICTKEY))

    # * the state of the entry - trying to encode it as dummy objects
    if dummykeyobj:
        # all the state can be encoded in the key
        entrymeths['dummy_obj'] = dummykeyobj
        entrymeths['valid'] = ll_valid_from_key
        entrymeths['mark_deleted'] = ll_mark_deleted_in_key
        # the key is overwritten by 'dummy' when the entry is deleted
        entrymeths['must_clear_key'] = False

    elif dummyvalueobj:
        # all the state can be encoded in the value
        entrymeths['dummy_obj'] = dummyvalueobj
        entrymeths['valid'] = ll_valid_from_value
        entrymeths['mark_deleted'] = ll_mark_deleted_in_value
        # value is overwritten by 'dummy' when entry is deleted
        entrymeths['must_clear_value'] = False

    else:
        # we need a flag to know if the entry was ever used
        entryfields.append(("f_valid", lltype.Bool))
        entrymeths['valid'] = ll_valid_from_flag
        entrymeths['mark_deleted'] = ll_mark_deleted_in_flag

    # * the value
    entryfields.append(("value", DICTVALUE))

    if ll_fasthash_function is None:
        entryfields.append(("f_hash", lltype.Signed))
        entrymeths['hash'] = ll_hash_from_cache
    else:
        entrymeths['hash'] = ll_hash_recomputed
        entrymeths['fasthashfn'] = ll_fasthash_function

    # Build the lltype data structures
    DICTENTRY = lltype.Struct("odictentry", *entryfields)
    DICTENTRYARRAY = lltype.GcArray(DICTENTRY,
                                    adtmeths=entrymeths)
    fields =          [ ("num_items", lltype.Signed),
                        ("num_used_items", lltype.Signed),
                        ("resize_counter", lltype.Signed),
                        ("indexes", llmemory.GCREF),
                        ("lookup_function_no", lltype.Signed),
                        ("entries", lltype.Ptr(DICTENTRYARRAY)) ]
    if get_custom_eq_hash is not None:
        r_rdict_eqfn, r_rdict_hashfn = get_custom_eq_hash()
        fields.extend([ ("fnkeyeq", r_rdict_eqfn.lowleveltype),
                        ("fnkeyhash", r_rdict_hashfn.lowleveltype) ])
        adtmeths = {
            'keyhash':        ll_keyhash_custom,
            'keyeq':          ll_keyeq_custom,
            'r_rdict_eqfn':   r_rdict_eqfn,
            'r_rdict_hashfn': r_rdict_hashfn,
            'paranoia':       True,
            }
    else:
        # figure out which functions must be used to hash and compare
        ll_keyhash = ll_hash_function
        ll_keyeq = ll_eq_function
        ll_keyhash = lltype.staticAdtMethod(ll_keyhash)
        if ll_keyeq is not None:
            ll_keyeq = lltype.staticAdtMethod(ll_keyeq)
        adtmeths = {
            'keyhash':  ll_keyhash,
            'keyeq':    ll_keyeq,
            'paranoia': False,
            }
    adtmeths['KEY']   = DICTKEY
    adtmeths['VALUE'] = DICTVALUE
    adtmeths['lookup_function'] = lltype.staticAdtMethod(ll_call_lookup_function)
    adtmeths['allocate'] = lltype.typeMethod(_ll_malloc_dict)

    DICT.become(lltype.GcStruct("dicttable", adtmeths=adtmeths,
                                *fields))
    return DICT


class OrderedDictRepr(AbstractDictRepr):

    def __init__(self, rtyper, key_repr, value_repr, dictkey, dictvalue,
                 custom_eq_hash=None, force_non_null=False):
        assert not force_non_null
        self.rtyper = rtyper
        self.finalized = False
        self.DICT = lltype.GcForwardReference()
        self.lowleveltype = lltype.Ptr(self.DICT)
        self.custom_eq_hash = custom_eq_hash is not None
        if not isinstance(key_repr, rmodel.Repr):  # not computed yet, done by setup()
            assert callable(key_repr)
            self._key_repr_computer = key_repr
        else:
            self.external_key_repr, self.key_repr = self.pickkeyrepr(key_repr)
        if not isinstance(value_repr, rmodel.Repr):  # not computed yet, done by setup()
            assert callable(value_repr)
            self._value_repr_computer = value_repr
        else:
            self.external_value_repr, self.value_repr = self.pickrepr(value_repr)
        self.dictkey = dictkey
        self.dictvalue = dictvalue
        self.dict_cache = {}
        self._custom_eq_hash_repr = custom_eq_hash
        # setup() needs to be called to finish this initialization

    def _externalvsinternal(self, rtyper, item_repr):
        return rmodel.externalvsinternal(self.rtyper, item_repr)

    def _setup_repr(self):
        if 'key_repr' not in self.__dict__:
            key_repr = self._key_repr_computer()
            self.external_key_repr, self.key_repr = self.pickkeyrepr(key_repr)
        if 'value_repr' not in self.__dict__:
            self.external_value_repr, self.value_repr = self.pickrepr(self._value_repr_computer())
        if isinstance(self.DICT, lltype.GcForwardReference):
            DICTKEY = self.key_repr.lowleveltype
            DICTVALUE = self.value_repr.lowleveltype
            # * we need an explicit flag if the key and the value is not
            #   able to store dummy values
            s_key   = self.dictkey.s_value
            s_value = self.dictvalue.s_value
            kwd = {}
            if self.custom_eq_hash:
                self.r_rdict_eqfn, self.r_rdict_hashfn = (
                    self._custom_eq_hash_repr())
                kwd['get_custom_eq_hash'] = self._custom_eq_hash_repr
            else:
                kwd['ll_hash_function'] = self.key_repr.get_ll_hash_function()
                kwd['ll_eq_function'] = self.key_repr.get_ll_eq_function()
                kwd['ll_fasthash_function'] = self.key_repr.get_ll_fasthash_function()
            kwd['dummykeyobj'] = self.key_repr.get_ll_dummyval_obj(self.rtyper,
                                                                   s_key)
            kwd['dummyvalueobj'] = self.value_repr.get_ll_dummyval_obj(
                self.rtyper, s_value)
            get_ll_dict(DICTKEY, DICTVALUE, DICT=self.DICT,
                        rtyper=self.rtyper, **kwd)


    def convert_const(self, dictobj):
        from rpython.rtyper.lltypesystem import llmemory
        # get object from bound dict methods
        #dictobj = getattr(dictobj, '__self__', dictobj)
        if dictobj is None:
            return lltype.nullptr(self.DICT)
        if not isinstance(dictobj, (dict, objectmodel.r_dict)):
            raise TypeError("expected a dict: %r" % (dictobj,))
        try:
            key = Constant(dictobj)
            return self.dict_cache[key]
        except KeyError:
            self.setup()
            self.setup_final()
            l_dict = ll_newdict_size(self.DICT, len(dictobj))
            self.dict_cache[key] = l_dict
            r_key = self.key_repr
            if r_key.lowleveltype == llmemory.Address:
                raise TypeError("No prebuilt dicts of address keys")
            r_value = self.value_repr
            if isinstance(dictobj, objectmodel.r_dict):
                if self.r_rdict_eqfn.lowleveltype != lltype.Void:
                    l_fn = self.r_rdict_eqfn.convert_const(dictobj.key_eq)
                    l_dict.fnkeyeq = l_fn
                if self.r_rdict_hashfn.lowleveltype != lltype.Void:
                    l_fn = self.r_rdict_hashfn.convert_const(dictobj.key_hash)
                    l_dict.fnkeyhash = l_fn

                for dictkeycontainer, dictvalue in dictobj._dict.items():
                    llkey = r_key.convert_const(dictkeycontainer.key)
                    llvalue = r_value.convert_const(dictvalue)
                    _ll_dict_insertclean(l_dict, llkey, llvalue,
                                         dictkeycontainer.hash)
                return l_dict

            else:
                for dictkey, dictvalue in dictobj.items():
                    llkey = r_key.convert_const(dictkey)
                    llvalue = r_value.convert_const(dictvalue)
                    _ll_dict_insertclean(l_dict, llkey, llvalue,
                                         l_dict.keyhash(llkey))
                return l_dict

    def rtype_len(self, hop):
        v_dict, = hop.inputargs(self)
        return hop.gendirectcall(ll_dict_len, v_dict)

    def rtype_bool(self, hop):
        v_dict, = hop.inputargs(self)
        return hop.gendirectcall(ll_dict_bool, v_dict)

    def make_iterator_repr(self, *variant):
        return DictIteratorRepr(self, *variant)

    def rtype_method_get(self, hop):
        v_dict, v_key, v_default = hop.inputargs(self, self.key_repr,
                                                 self.value_repr)
        hop.exception_cannot_occur()
        v_res = hop.gendirectcall(ll_dict_get, v_dict, v_key, v_default)
        return self.recast_value(hop.llops, v_res)

    def rtype_method_setdefault(self, hop):
        v_dict, v_key, v_default = hop.inputargs(self, self.key_repr,
                                                 self.value_repr)
        hop.exception_cannot_occur()
        v_res = hop.gendirectcall(ll_dict_setdefault, v_dict, v_key, v_default)
        return self.recast_value(hop.llops, v_res)

    def rtype_method_copy(self, hop):
        v_dict, = hop.inputargs(self)
        hop.exception_cannot_occur()
        return hop.gendirectcall(ll_dict_copy, v_dict)

    def rtype_method_update(self, hop):
        v_dic1, v_dic2 = hop.inputargs(self, self)
        hop.exception_cannot_occur()
        return hop.gendirectcall(ll_dict_update, v_dic1, v_dic2)

    def _rtype_method_kvi(self, hop, ll_func):
        v_dic, = hop.inputargs(self)
        r_list = hop.r_result
        cLIST = hop.inputconst(lltype.Void, r_list.lowleveltype.TO)
        hop.exception_cannot_occur()
        return hop.gendirectcall(ll_func, cLIST, v_dic)

    def rtype_method_keys(self, hop):
        return self._rtype_method_kvi(hop, ll_dict_keys)

    def rtype_method_values(self, hop):
        return self._rtype_method_kvi(hop, ll_dict_values)

    def rtype_method_items(self, hop):
        return self._rtype_method_kvi(hop, ll_dict_items)

    def rtype_method_iterkeys(self, hop):
        hop.exception_cannot_occur()
        return DictIteratorRepr(self, "keys").newiter(hop)

    def rtype_method_itervalues(self, hop):
        hop.exception_cannot_occur()
        return DictIteratorRepr(self, "values").newiter(hop)

    def rtype_method_iteritems(self, hop):
        hop.exception_cannot_occur()
        return DictIteratorRepr(self, "items").newiter(hop)

    def rtype_method_clear(self, hop):
        v_dict, = hop.inputargs(self)
        hop.exception_cannot_occur()
        return hop.gendirectcall(ll_dict_clear, v_dict)

    def rtype_method_popitem(self, hop):
        v_dict, = hop.inputargs(self)
        r_tuple = hop.r_result
        cTUPLE = hop.inputconst(lltype.Void, r_tuple.lowleveltype)
        hop.exception_is_here()
        return hop.gendirectcall(ll_dict_popitem, cTUPLE, v_dict)

    def rtype_method_pop(self, hop):
        if hop.nb_args == 2:
            v_args = hop.inputargs(self, self.key_repr)
            target = ll_dict_pop
        elif hop.nb_args == 3:
            v_args = hop.inputargs(self, self.key_repr, self.value_repr)
            target = ll_dict_pop_default
        hop.exception_is_here()
        v_res = hop.gendirectcall(target, *v_args)
        return self.recast_value(hop.llops, v_res)

class __extend__(pairtype(OrderedDictRepr, rmodel.Repr)):

    def rtype_getitem((r_dict, r_key), hop):
        v_dict, v_key = hop.inputargs(r_dict, r_dict.key_repr)
        if not r_dict.custom_eq_hash:
            hop.has_implicit_exception(KeyError)   # record that we know about it
        hop.exception_is_here()
        v_res = hop.gendirectcall(ll_dict_getitem, v_dict, v_key)
        return r_dict.recast_value(hop.llops, v_res)

    def rtype_delitem((r_dict, r_key), hop):
        v_dict, v_key = hop.inputargs(r_dict, r_dict.key_repr)
        if not r_dict.custom_eq_hash:
            hop.has_implicit_exception(KeyError)   # record that we know about it
        hop.exception_is_here()
        return hop.gendirectcall(ll_dict_delitem, v_dict, v_key)

    def rtype_setitem((r_dict, r_key), hop):
        v_dict, v_key, v_value = hop.inputargs(r_dict, r_dict.key_repr, r_dict.value_repr)
        if r_dict.custom_eq_hash:
            hop.exception_is_here()
        else:
            hop.exception_cannot_occur()
        hop.gendirectcall(ll_dict_setitem, v_dict, v_key, v_value)

    def rtype_contains((r_dict, r_key), hop):
        v_dict, v_key = hop.inputargs(r_dict, r_dict.key_repr)
        hop.exception_is_here()
        return hop.gendirectcall(ll_dict_contains, v_dict, v_key)

class __extend__(pairtype(OrderedDictRepr, OrderedDictRepr)):
    def convert_from_to((r_dict1, r_dict2), v, llops):
        # check that we don't convert from Dicts with
        # different key/value types
        if r_dict1.dictkey is None or r_dict2.dictkey is None:
            return NotImplemented
        if r_dict1.dictkey is not r_dict2.dictkey:
            return NotImplemented
        if r_dict1.dictvalue is None or r_dict2.dictvalue is None:
            return NotImplemented
        if r_dict1.dictvalue is not r_dict2.dictvalue:
            return NotImplemented
        return v

# ____________________________________________________________
#
#  Low-level methods.  These can be run for testing, but are meant to
#  be direct_call'ed from rtyped flow graphs, which means that they will
#  get flowed and annotated, mostly with SomePtr.

DICTINDEX_LONG = lltype.Ptr(lltype.GcArray(lltype.Unsigned))
DICTINDEX_INT = lltype.Ptr(lltype.GcArray(rffi.UINT))
DICTINDEX_SHORT = lltype.Ptr(lltype.GcArray(rffi.USHORT))
DICTINDEX_BYTE = lltype.Ptr(lltype.GcArray(rffi.UCHAR))

IS_64BIT = sys.maxint != 2 ** 31 - 1

if IS_64BIT:
    FUNC_BYTE, FUNC_SHORT, FUNC_INT, FUNC_LONG = range(4)
else:
    FUNC_BYTE, FUNC_SHORT, FUNC_LONG = range(3)
TYPE_BYTE  = rffi.UCHAR
TYPE_SHORT = rffi.USHORT
TYPE_INT   = rffi.UINT
TYPE_LONG  = lltype.Unsigned

def ll_malloc_indexes_and_choose_lookup(d, n):
    if n <= 256:
        d.indexes = lltype.cast_opaque_ptr(llmemory.GCREF,
                                           lltype.malloc(DICTINDEX_BYTE.TO, n,
                                                         zero=True))
        d.lookup_function_no = FUNC_BYTE
    elif n <= 65536:
        d.indexes = lltype.cast_opaque_ptr(llmemory.GCREF,
                                           lltype.malloc(DICTINDEX_SHORT.TO, n,
                                                         zero=True))
        d.lookup_function_no = FUNC_SHORT
    elif IS_64BIT and n <= 2 ** 32:
        d.indexes = lltype.cast_opaque_ptr(llmemory.GCREF,
                                           lltype.malloc(DICTINDEX_INT.TO, n,
                                                         zero=True))
        d.lookup_function_no = FUNC_INT
    else:
        d.indexes = lltype.cast_opaque_ptr(llmemory.GCREF,
                                           lltype.malloc(DICTINDEX_LONG.TO, n,
                                                         zero=True))
        d.lookup_function_no = FUNC_LONG

def ll_call_insert_clean_function(d, hash, i):
    DICT = lltype.typeOf(d).TO
    if d.lookup_function_no == FUNC_BYTE:
        ll_dict_store_clean(d, hash, i, TYPE_BYTE)
    elif d.lookup_function_no == FUNC_SHORT:
        ll_dict_store_clean(d, hash, i, TYPE_SHORT)
    elif IS_64BIT and d.lookup_function_no == FUNC_INT:
        ll_dict_store_clean(d, hash, i, TYPE_INT)
    elif d.lookup_function_no == FUNC_LONG:
        ll_dict_store_clean(d, hash, i, TYPE_LONG)
    else:
        assert False

def ll_valid_from_flag(entries, i):
    return entries[i].f_valid

def ll_valid_from_key(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    dummy = ENTRIES.dummy_obj.ll_dummy_value
    return entries[i].key != dummy

def ll_valid_from_value(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    dummy = ENTRIES.dummy_obj.ll_dummy_value
    return entries[i].value != dummy

def ll_mark_deleted_in_flag(entries, i):
    entries[i].f_valid = False

def ll_mark_deleted_in_key(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    dummy = ENTRIES.dummy_obj.ll_dummy_value
    entries[i].key = dummy

def ll_mark_deleted_in_value(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    dummy = ENTRIES.dummy_obj.ll_dummy_value
    entries[i].value = dummy

def ll_hash_from_cache(entries, i):
    return entries[i].f_hash

def ll_hash_recomputed(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    return ENTRIES.fasthashfn(entries[i].key)

def ll_keyhash_custom(d, key):
    DICT = lltype.typeOf(d).TO
    return objectmodel.hlinvoke(DICT.r_rdict_hashfn, d.fnkeyhash, key)

def ll_keyeq_custom(d, key1, key2):
    DICT = lltype.typeOf(d).TO
    return objectmodel.hlinvoke(DICT.r_rdict_eqfn, d.fnkeyeq, key1, key2)

def ll_dict_len(d):
    return d.num_items

def ll_dict_bool(d):
    # check if a dict is True, allowing for None
    return bool(d) and d.num_items != 0

def ll_dict_getitem(d, key):
    index = d.lookup_function(d, key, d.keyhash(key), FLAG_LOOKUP)
    if index != -1:
        return d.entries[index].value
    else:
        raise KeyError

def ll_dict_setitem(d, key, value):
    hash = d.keyhash(key)
    index = d.lookup_function(d, key, hash, FLAG_STORE)
    return _ll_dict_setitem_lookup_done(d, key, value, hash, index)

# It may be safe to look inside always, it has a few branches though, and their
# frequencies needs to be investigated.
@jit.look_inside_iff(lambda d, key, value, hash, i: jit.isvirtual(d) and jit.isconstant(key))
def _ll_dict_setitem_lookup_done(d, key, value, hash, i):
    ENTRY = lltype.typeOf(d.entries).TO.OF
    if i >= 0:
        entry = d.entries[i]
        entry.value = value
    else:
        if len(d.entries) == d.num_used_items:
            if ll_dict_grow(d):
                ll_call_insert_clean_function(d, hash, d.num_used_items)
        entry = d.entries[d.num_used_items]
        entry.key = key
        entry.value = value
        if hasattr(ENTRY, 'f_hash'):
            entry.f_hash = hash
        if hasattr(ENTRY, 'f_valid'):
            entry.f_valid = True
        d.num_used_items += 1
        d.num_items += 1
        rc = d.resize_counter - 3
        if rc <= 0:
            ll_dict_resize(d)
            rc = d.resize_counter - 3
            ll_assert(rc > 0, "ll_dict_resize failed?")
        d.resize_counter = rc

def _ll_dict_insertclean(d, key, value, hash):
    ENTRY = lltype.typeOf(d.entries).TO.OF
    ll_call_insert_clean_function(d, hash, d.num_used_items)
    entry = d.entries[d.num_used_items]
    entry.key = key
    entry.value = value
    if hasattr(ENTRY, 'f_hash'):
        entry.f_hash = hash
    if hasattr(ENTRY, 'f_valid'):
        entry.f_valid = True
    d.num_used_items += 1
    d.num_items += 1
    rc = d.resize_counter - 3
    d.resize_counter = rc

def _ll_len_of_d_indexes(d):
    # xxx Haaaack: returns len(d.indexes).  Works independently of
    # the exact type pointed to by d, using a forced cast...
    return len(rffi.cast(DICTINDEX_BYTE, d.indexes))

def _overallocate_entries_len(baselen):
    # This over-allocates proportional to the list size, making room
    # for additional growth.  The over-allocation is mild, but is
    # enough to give linear-time amortized behavior over a long
    # sequence of appends() in the presence of a poorly-performing
    # system malloc().
    # The growth pattern is:  0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...
    newsize = baselen + 1
    if newsize < 9:
        some = 3
    else:
        some = 6
    some += newsize >> 3
    return newsize + some

@jit.dont_look_inside
def ll_dict_grow(d):
    if d.num_items < d.num_used_items // 4:
        ll_dict_remove_deleted_items(d)
        return True

    new_allocated = _overallocate_entries_len(len(d.entries))

    # Detect an obscure case where the indexes numeric type is too
    # small to store all the entry indexes
    if (max(128, _ll_len_of_d_indexes(d)) - new_allocated
                   < MIN_INDEXES_MINUS_ENTRIES):
        ll_dict_remove_deleted_items(d)
        return True

    newitems = lltype.malloc(lltype.typeOf(d).TO.entries.TO, new_allocated)
    rgc.ll_arraycopy(d.entries, newitems, 0, 0, len(d.entries))
    d.entries = newitems
    return False

def ll_dict_remove_deleted_items(d):
    new_allocated = _overallocate_entries_len(d.num_items)
    if new_allocated < len(d.entries) // 2:
        newitems = lltype.malloc(lltype.typeOf(d).TO.entries.TO, new_allocated)
    else:
        newitems = d.entries
    #
    ENTRY = lltype.typeOf(d).TO.entries.TO.OF
    isrc = 0
    idst = 0
    while isrc < len(d.entries):
        if d.entries.valid(isrc):
            src = d.entries[isrc]
            dst = newitems[idst]
            dst.key = src.key
            dst.value = src.value
            if hasattr(ENTRY, 'f_hash'):
                dst.f_hash = src.f_hash
            if hasattr(ENTRY, 'f_valid'):
                assert src.f_valid
                dst.f_valid = True
            idst += 1
        isrc += 1
    d.entries = newitems
    assert d.num_items == idst
    d.num_used_items = idst

    ll_dict_reindex(d, _ll_len_of_d_indexes(d))


def ll_dict_delitem(d, key):
    index = d.lookup_function(d, key, d.keyhash(key), FLAG_DELETE)
    if index == -1:
        raise KeyError
    _ll_dict_del(d, index)

@jit.look_inside_iff(lambda d, i: jit.isvirtual(d) and jit.isconstant(i))
def _ll_dict_del(d, index):
    d.entries.mark_deleted(index)
    d.num_items -= 1
    # clear the key and the value if they are GC pointers
    ENTRIES = lltype.typeOf(d.entries).TO
    ENTRY = ENTRIES.OF
    entry = d.entries[index]
    if ENTRIES.must_clear_key:
        entry.key = lltype.nullptr(ENTRY.key.TO)
    if ENTRIES.must_clear_value:
        entry.value = lltype.nullptr(ENTRY.value.TO)
    #
    # The rest is commented out: like CPython we no longer shrink the
    # dictionary here.  It may shrink later if we try to append a number
    # of new items to it.  Unsure if this behavior was designed in
    # CPython or is accidental.  A design reason would be that if you
    # delete all items in a dictionary (e.g. with a series of
    # popitem()), then CPython avoids shrinking the table several times.
    #num_entries = len(d.entries)
    #if num_entries > DICT_INITSIZE and d.num_items <= num_entries / 4:
    #    ll_dict_resize(d)
    # A previous xxx: move the size checking and resize into a single
    # call which is opaque to the JIT when the dict isn't virtual, to
    # avoid extra branches.

def ll_dict_resize(d):
    # make a 'new_size' estimate and shrink it if there are many
    # deleted entry markers.  See CPython for why it is a good idea to
    # quadruple the dictionary size as long as it's not too big.
    num_items = d.num_items
    if num_items > 50000:
        new_estimate = num_items * 2
    else:
        new_estimate = num_items * 4
    new_size = DICT_INITSIZE
    while new_size <= new_estimate:
        new_size *= 2

    if new_size < _ll_len_of_d_indexes(d):
        ll_dict_remove_deleted_items(d)
    else:
        ll_dict_reindex(d, new_size)
ll_dict_resize.oopspec = 'odict.resize(d)'

def ll_dict_reindex(d, new_size):
    ll_malloc_indexes_and_choose_lookup(d, new_size)
    d.resize_counter = new_size * 2 - d.num_items * 3
    assert d.resize_counter > 0
    #
    entries = d.entries
    i = 0
    while i < d.num_used_items:
        if entries.valid(i):
            hash = entries.hash(i)
            ll_call_insert_clean_function(d, hash, i)
        i += 1
    #old_entries.delete() XXXX!

# ------- a port of CPython's dictobject.c's lookdict implementation -------
PERTURB_SHIFT = 5

FREE = 0
DELETED = 1
VALID_OFFSET = 2
MIN_INDEXES_MINUS_ENTRIES = VALID_OFFSET + 1

FLAG_LOOKUP = 0
FLAG_STORE = 1
FLAG_DELETE = 2
FLAG_DELETE_TRY_HARD = 3

@specialize.memo()
def _ll_ptr_to_array_of(T):
    return lltype.Ptr(lltype.GcArray(T))

def ll_kill_something(d, T):
    INDEXES = _ll_ptr_to_array_of(T)
    i = 0
    indexes = lltype.cast_opaque_ptr(INDEXES, d.indexes)
    while True:
        index = rffi.cast(lltype.Signed, indexes[i])
        if index >= VALID_OFFSET:
            indexes[i] = rffi.cast(T, DELETED)
            return index
        i += 1

@jit.look_inside_iff(lambda d, key, hash, store_flag, T:
                     jit.isvirtual(d) and jit.isconstant(key))
@jit.oopspec('ordereddict.lookup(d, key, hash, store_flag, T)')
def ll_dict_lookup(d, key, hash, store_flag, T):
    INDEXES = _ll_ptr_to_array_of(T)
    entries = d.entries
    indexes = lltype.cast_opaque_ptr(INDEXES, d.indexes)
    mask = len(indexes) - 1
    i = r_uint(hash & mask)
    # do the first try before any looping
    ENTRIES = lltype.typeOf(entries).TO
    direct_compare = not hasattr(ENTRIES, 'no_direct_compare')
    index = rffi.cast(lltype.Signed, indexes[intmask(i)])
    if index >= VALID_OFFSET:
        checkingkey = entries[index - VALID_OFFSET].key
        if direct_compare and checkingkey == key:
            if store_flag == FLAG_DELETE:
                indexes[i] = rffi.cast(T, DELETED)
            return index - VALID_OFFSET   # found the entry
        if d.keyeq is not None and entries.hash(index - VALID_OFFSET) == hash:
            # correct hash, maybe the key is e.g. a different pointer to
            # an equal object
            found = d.keyeq(checkingkey, key)
            #llop.debug_print(lltype.Void, "comparing keys", ll_debugrepr(checkingkey), ll_debugrepr(key), found)
            if d.paranoia:
                if (entries != d.entries or lltype.cast_opaque_ptr(llmemory.GCREF, indexes) != d.indexes or
                    not entries.valid(index - VALID_OFFSET) or
                    entries[index - VALID_OFFSET].key != checkingkey):
                    # the compare did major nasty stuff to the dict: start over
                    return ll_dict_lookup(d, key, hash, store_flag, T)
            if found:
                if store_flag == FLAG_DELETE:
                    indexes[i] = rffi.cast(T, DELETED)
                return index - VALID_OFFSET
        deletedslot = -1
    elif index == DELETED:
        deletedslot = intmask(i)
    else:
        # pristine entry -- lookup failed
        if store_flag == FLAG_STORE:
            indexes[i] = rffi.cast(T, d.num_used_items + VALID_OFFSET)
        elif d.paranoia and store_flag == FLAG_DELETE_TRY_HARD:
            return ll_kill_something(d, T)
        return -1

    # In the loop, a deleted entry (everused and not valid) is by far
    # (factor of 100s) the least likely outcome, so test for that last.
    perturb = r_uint(hash)
    while 1:
        # compute the next index using unsigned arithmetic
        i = (i << 2) + i + perturb + 1
        i = i & mask
        index = rffi.cast(lltype.Signed, indexes[intmask(i)])
        if index == FREE:
            if store_flag == FLAG_STORE:
                if deletedslot == -1:
                    deletedslot = intmask(i)
                indexes[deletedslot] = rffi.cast(T, d.num_used_items +
                                                 VALID_OFFSET)
            elif d.paranoia and store_flag == FLAG_DELETE_TRY_HARD:
                return ll_kill_something(d, T)
            return -1
        elif index >= VALID_OFFSET:
            checkingkey = entries[index - VALID_OFFSET].key
            if direct_compare and checkingkey == key:
                if store_flag == FLAG_DELETE:
                    indexes[i] = rffi.cast(T, DELETED)
                return index - VALID_OFFSET   # found the entry
            if d.keyeq is not None and entries.hash(index - VALID_OFFSET) == hash:
                # correct hash, maybe the key is e.g. a different pointer to
                # an equal object
                found = d.keyeq(checkingkey, key)
                if d.paranoia:
                    if (entries != d.entries or lltype.cast_opaque_ptr(llmemory.GCREF, indexes) != d.indexes or
                        not entries.valid(index - VALID_OFFSET) or
                        entries[index - VALID_OFFSET].key != checkingkey):
                        # the compare did major nasty stuff to the dict: start over
                        return ll_dict_lookup(d, key, hash, store_flag, T)
                if found:
                    if store_flag == FLAG_DELETE:
                        indexes[i] = rffi.cast(T, DELETED)
                    return index - VALID_OFFSET
        elif deletedslot == -1:
            deletedslot = intmask(i)
        perturb >>= PERTURB_SHIFT

def ll_dict_store_clean(d, hash, index, T):
    # a simplified version of ll_dict_lookup() which assumes that the
    # key is new, and the dictionary doesn't contain deleted entries.
    # It only finds the next free slot for the given hash.
    INDEXES = _ll_ptr_to_array_of(T)
    indexes = lltype.cast_opaque_ptr(INDEXES, d.indexes)
    mask = len(indexes) - 1
    i = r_uint(hash & mask)
    perturb = r_uint(hash)
    while rffi.cast(lltype.Signed, indexes[i]) != 0:
        i = (i << 2) + i + perturb + 1
        i = i & mask
        perturb >>= PERTURB_SHIFT
    indexes[i] = rffi.cast(T, index + VALID_OFFSET)

# ____________________________________________________________
#
#  Irregular operations.

DICT_INITSIZE = 8


@specialize.memo()
def _ll_empty_array(DICT):
    """Memo function: cache a single prebuilt allocated empty array."""
    return DICT.entries.TO.allocate(0)

def ll_newdict(DICT):
    d = DICT.allocate()
    d.entries = _ll_empty_array(DICT)
    ll_malloc_indexes_and_choose_lookup(d, DICT_INITSIZE)
    d.num_items = 0
    d.num_used_items = 0
    d.resize_counter = DICT_INITSIZE * 2
    return d

def ll_newdict_size(DICT, orig_length_estimate):
    length_estimate = (orig_length_estimate // 2) * 3
    n = DICT_INITSIZE
    while n < length_estimate:
        n *= 2
    d = DICT.allocate()
    d.entries = DICT.entries.TO.allocate(orig_length_estimate)
    ll_malloc_indexes_and_choose_lookup(d, n)
    d.num_items = 0
    d.num_used_items = 0
    d.resize_counter = n * 2
    return d

# rpython.memory.lldict uses a dict based on Struct and Array
# instead of GcStruct and GcArray, which is done by using different
# 'allocate' and 'delete' adtmethod implementations than the ones below
def _ll_malloc_dict(DICT):
    return lltype.malloc(DICT)
def _ll_malloc_entries(ENTRIES, n):
    return lltype.malloc(ENTRIES, n, zero=True)
def _ll_free_entries(entries):
    pass


def rtype_r_dict(hop):
    r_dict = hop.r_result
    if not r_dict.custom_eq_hash:
        raise TyperError("r_dict() call does not return an r_dict instance")
    v_eqfn = hop.inputarg(r_dict.r_rdict_eqfn, arg=0)
    v_hashfn = hop.inputarg(r_dict.r_rdict_hashfn, arg=1)
    cDICT = hop.inputconst(lltype.Void, r_dict.DICT)
    hop.exception_cannot_occur()
    v_result = hop.gendirectcall(ll_newdict, cDICT)
    if r_dict.r_rdict_eqfn.lowleveltype != lltype.Void:
        cname = hop.inputconst(lltype.Void, 'fnkeyeq')
        hop.genop('setfield', [v_result, cname, v_eqfn])
    if r_dict.r_rdict_hashfn.lowleveltype != lltype.Void:
        cname = hop.inputconst(lltype.Void, 'fnkeyhash')
        hop.genop('setfield', [v_result, cname, v_hashfn])
    return v_result

# ____________________________________________________________
#
#  Iteration.

def get_ll_dictiter(DICTPTR):
    return lltype.Ptr(lltype.GcStruct('dictiter',
                                      ('dict', DICTPTR),
                                      ('index', lltype.Signed)))

class DictIteratorRepr(AbstractDictIteratorRepr):

    def __init__(self, r_dict, variant="keys"):
        self.r_dict = r_dict
        self.variant = variant
        self.lowleveltype = get_ll_dictiter(r_dict.lowleveltype)
        self.ll_dictiter = ll_dictiter
        self._ll_dictnext = _ll_dictnext


def ll_dictiter(ITERPTR, d):
    iter = lltype.malloc(ITERPTR.TO)
    iter.dict = d
    iter.index = 0
    return iter

@jit.look_inside_iff(lambda iter: jit.isvirtual(iter)
                     and (iter.dict is None or
                          jit.isvirtual(iter.dict)))
@jit.oopspec("odictiter.next(iter)")
def _ll_dictnext(iter):
    dict = iter.dict
    if dict:
        entries = dict.entries
        index = iter.index
        assert index >= 0
        entries_len = dict.num_used_items
        while index < entries_len:
            nextindex = index + 1
            if entries.valid(index):
                iter.index = nextindex
                return index
            index = nextindex
        # clear the reference to the dict and prevent restarts
        iter.dict = lltype.nullptr(lltype.typeOf(iter).TO.dict.TO)
    raise StopIteration

# _____________________________________________________________
# methods

def ll_dict_get(dict, key, default):
    index = dict.lookup_function(dict, key, dict.keyhash(key), FLAG_LOOKUP)
    if index == -1:
        return default
    else:
        return dict.entries[index].value

def ll_dict_setdefault(dict, key, default):
    hash = dict.keyhash(key)
    index = dict.lookup_function(dict, key, hash, FLAG_STORE)
    if index == -1:
        _ll_dict_setitem_lookup_done(dict, key, default, hash, -1)
        return default
    else:
        return dict.entries[index].value

def ll_dict_copy(dict):
    DICT = lltype.typeOf(dict).TO
    newdict = DICT.allocate()
    newdict.entries = DICT.entries.TO.allocate(len(dict.entries))

    newdict.num_items = dict.num_items
    newdict.num_used_items = dict.num_used_items
    if hasattr(DICT, 'fnkeyeq'):
        newdict.fnkeyeq = dict.fnkeyeq
    if hasattr(DICT, 'fnkeyhash'):
        newdict.fnkeyhash = dict.fnkeyhash

    i = 0
    while i < newdict.num_used_items:
        d_entry = newdict.entries[i]
        entry = dict.entries[i]
        ENTRY = lltype.typeOf(newdict.entries).TO.OF
        d_entry.key = entry.key
        if hasattr(ENTRY, 'f_valid'):
            d_entry.f_valid = entry.f_valid
        d_entry.value = entry.value
        if hasattr(ENTRY, 'f_hash'):
            d_entry.f_hash = entry.f_hash
        i += 1

    ll_dict_reindex(newdict, _ll_len_of_d_indexes(dict))
    return newdict
ll_dict_copy.oopspec = 'odict.copy(dict)'

def ll_dict_clear(d):
    if d.num_used_items == 0:
        return
    DICT = lltype.typeOf(d).TO
    old_entries = d.entries
    d.entries = _ll_empty_array(DICT)
    ll_malloc_indexes_and_choose_lookup(d, DICT_INITSIZE)
    d.num_items = 0
    d.num_used_items = 0
    d.resize_counter = DICT_INITSIZE * 2
    # old_entries.delete() XXX
ll_dict_clear.oopspec = 'odict.clear(d)'

def ll_dict_update(dic1, dic2):
    i = 0
    while i < dic2.num_used_items:
        entries = dic2.entries
        if entries.valid(i):
            entry = entries[i]
            hash = entries.hash(i)
            key = entry.key
            value = entry.value
            index = dic1.lookup_function(dic1, key, hash, FLAG_STORE)
            _ll_dict_setitem_lookup_done(dic1, key, value, hash, index)
        i += 1
ll_dict_update.oopspec = 'odict.update(dic1, dic2)'

# this is an implementation of keys(), values() and items()
# in a single function.
# note that by specialization on func, three different
# and very efficient functions are created.

def recast(P, v):
    if isinstance(P, lltype.Ptr):
        return lltype.cast_pointer(P, v)
    else:
        return v

def _make_ll_keys_values_items(kind):
    def ll_kvi(LIST, dic):
        res = LIST.ll_newlist(dic.num_items)
        entries = dic.entries
        dlen = dic.num_used_items
        items = res.ll_items()
        i = 0
        p = 0
        while i < dlen:
            if entries.valid(i):
                ELEM = lltype.typeOf(items).TO.OF
                if ELEM is not lltype.Void:
                    entry = entries[i]
                    if kind == 'items':
                        r = lltype.malloc(ELEM.TO)
                        r.item0 = recast(ELEM.TO.item0, entry.key)
                        r.item1 = recast(ELEM.TO.item1, entry.value)
                        items[p] = r
                    elif kind == 'keys':
                        items[p] = recast(ELEM, entry.key)
                    elif kind == 'values':
                        items[p] = recast(ELEM, entry.value)
                p += 1
            i += 1
        assert p == res.ll_length()
        return res
    ll_kvi.oopspec = 'odict.%s(dic)' % kind
    return ll_kvi

ll_dict_keys   = _make_ll_keys_values_items('keys')
ll_dict_values = _make_ll_keys_values_items('values')
ll_dict_items  = _make_ll_keys_values_items('items')

def ll_dict_contains(d, key):
    i = d.lookup_function(d, key, d.keyhash(key), FLAG_LOOKUP)
    return i != -1

def _ll_getnextitem(dic):
    if dic.num_items == 0:
        raise KeyError

    entries = dic.entries

    while True:
        i = dic.num_used_items - 1
        if entries.valid(i):
            break
        dic.num_used_items -= 1

    key = entries[i].key
    index = dic.lookup_function(dic, key, entries.hash(i),
                                FLAG_DELETE_TRY_HARD)
    # if the lookup function returned me a random strange thing,
    # don't care about deleting the item
    if index == dic.num_used_items - 1:
        dic.num_used_items -= 1
    else:
        assert index != -1
    return index

def ll_dict_popitem(ELEM, dic):
    i = _ll_getnextitem(dic)
    entry = dic.entries[i]
    r = lltype.malloc(ELEM.TO)
    r.item0 = recast(ELEM.TO.item0, entry.key)
    r.item1 = recast(ELEM.TO.item1, entry.value)
    _ll_dict_del(dic, i)
    return r

def ll_dict_pop(dic, key):
    index = dic.lookup_function(dic, key, dic.keyhash(key), FLAG_DELETE)
    if index == -1:
        raise KeyError
    value = dic.entries[index].value
    _ll_dict_del(dic, index)
    return value

def ll_dict_pop_default(dic, key, dfl):
    index = dic.lookup_function(dic, key, dic.keyhash(key), FLAG_DELETE)
    if index == -1:
        return dfl
    value = dic.entries[index].value
    _ll_dict_del(dic, index)
    return value