1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
|
import py
from rpython.jit.metainterp.compile import ResumeGuardDescr
from rpython.jit.metainterp.history import (ConstInt, INT, REF,
FLOAT, VECTOR, TargetToken)
from rpython.jit.backend.llsupport.descr import (ArrayDescr, CallDescr,
unpack_arraydescr, unpack_fielddescr, unpack_interiorfielddescr)
from rpython.jit.backend.llsupport.regalloc import get_scale
from rpython.jit.metainterp.resoperation import (rop, ResOperation,
VectorOp, VectorGuardOp)
from rpython.rlib.objectmodel import we_are_translated
from rpython.rtyper.lltypesystem.lloperation import llop
from rpython.rtyper.lltypesystem import lltype
from rpython.jit.backend.ppc.locations import imm, RegisterLocation
from rpython.jit.backend.ppc.arch import IS_BIG_ENDIAN
from rpython.jit.backend.ppc.arch import PARAM_SAVE_AREA_OFFSET, WORD
import rpython.jit.backend.ppc.register as r
import rpython.jit.backend.ppc.condition as c
import rpython.jit.backend.ppc.locations as l
from rpython.jit.backend.llsupport.asmmemmgr import MachineDataBlockWrapper
from rpython.rtyper.lltypesystem import lltype, rffi
from rpython.jit.codewriter import longlong
from rpython.jit.backend.ppc.detect_feature import detect_vsx
from rpython.rlib.objectmodel import always_inline
from rpython.jit.backend.llsupport.vector_ext import (VectorExt,
OpRestrict, TR_INT64_2)
def not_implemented(msg):
msg = '[ppc/vector_ext] %s\n' % msg
if we_are_translated():
llop.debug_print(lltype.Void, msg)
raise NotImplementedError(msg)
@always_inline
def permi(v1, v2):
""" permute immediate for big and little endian """
# if v1 == 0 unpacks index 0 of param 1
# if v1 == 1 unpacks index 1 of param 1
# if v2 == 0 unpacks index 0 of param 2
# if v2 == 1 unpacks index 1 of param 2
mask = 0
if v1 == 0: mask |= 0b01
if v1 == 1: mask |= 0b00
if v2 == 0: mask |= 0b10
if v2 == 1: mask |= 0b00
return mask
def flush_vec_cc(asm, regalloc, condition, size, result_loc):
# After emitting an instruction that leaves a boolean result in
# a condition code (cc), call this. In the common case, result_loc
# will be set to SPP by the regalloc, which in this case means
# "propagate it between this operation and the next guard by keeping
# it in the cc". In the uncommon case, result_loc is another
# register, and we emit a load from the cc into this register.
# Possibly invert the bit in the CR
bit, invert = c.encoding[condition]
assert 24 <= bit <= 27
if invert == 12:
pass
elif invert == 4:
asm.mc.crnor(bit, bit, bit)
else:
assert 0
assert asm.guard_success_cc == c.cond_none
#
if result_loc is r.SPP:
asm.guard_success_cc = condition
else:
resval = result_loc.value
# either doubleword integer 1 (2x) or word integer 1 (4x)
ones = regalloc.vrm.get_scratch_reg(type=INT).value
zeros = regalloc.vrm.get_scratch_reg(type=INT).value
asm.mc.vxor(zeros, zeros, zeros)
if size == 4:
asm.mc.vspltisw(ones, 1)
else:
assert size == 8
tloc = regalloc.rm.get_scratch_reg()
asm.mc.load_imm(tloc, asm.VEC_DOUBLE_WORD_ONES)
asm.mc.lvx(ones, 0, tloc.value)
asm.mc.vsel(resval, zeros, ones, resval)
class AltiVectorExt(VectorExt):
def setup_once(self, asm):
if detect_vsx():
self.enable(16, accum=True)
asm.setup_once_vector()
self._setup = True
AltiVectorExt.TR_MAPPING[rop.VEC_CAST_INT_TO_FLOAT] = OpRestrict([TR_INT64_2])
class VectorAssembler(object):
_mixin_ = True
VEC_DOUBLE_WORD_ONES = 0
def setup_once_vector(self):
if IS_BIG_ENDIAN:
# 2x 64 bit signed integer(1) BE
data = (b'\x00' * 7 + b'\x01') * 2
else:
# 2x 64 bit signed integer(1) LE
data = (b'\x01' + b'\x00' * 7) * 2
datablockwrapper = MachineDataBlockWrapper(self.cpu.asmmemmgr, [])
mem = datablockwrapper.malloc_aligned(len(data), alignment=16)
datablockwrapper.done()
addr = rffi.cast(rffi.CArrayPtr(lltype.Char), mem)
for i in range(len(data)):
addr[i] = data[i]
self.VEC_DOUBLE_WORD_ONES = mem
def emit_vec_load_f(self, op, arglocs, regalloc):
resloc, baseloc, indexloc, size_loc, ofs, integer_loc = arglocs
indexloc = self._apply_offset(indexloc, ofs)
itemsize = size_loc.value
if integer_loc.value:
self.mc.lxvd2x(resloc.value, indexloc.value, baseloc.value)
elif itemsize == 4:
self.mc.lxvw4x(resloc.value, indexloc.value, baseloc.value)
elif itemsize == 8:
self.mc.lxvd2x(resloc.value, indexloc.value, baseloc.value)
else:
not_implemented("vec_load_f itemsize %d" % itemsize)
emit_vec_load_i = emit_vec_load_f
def emit_vec_store(self, op, arglocs, regalloc):
baseloc, indexloc, valueloc, sizeloc, baseofs, \
integer_loc = arglocs
indexloc = self._apply_offset(indexloc, baseofs)
assert baseofs.value == 0
if integer_loc.value:
self.mc.stxvd2x(valueloc.value, indexloc.value, baseloc.value)
else:
itemsize = sizeloc.value
if itemsize == 4:
self.mc.stxvw4x(valueloc.value, indexloc.value, baseloc.value)
elif itemsize == 8:
self.mc.stxvd2x(valueloc.value, indexloc.value, baseloc.value)
else:
not_implemented("vec_store itemsize %d" % itemsize)
def emit_vec_int_add(self, op, arglocs, regalloc):
resloc, loc0, loc1, size_loc = arglocs
size = size_loc.value
if size == 1:
self.mc.vaddubm(resloc.value, loc0.value, loc1.value)
elif size == 2:
self.mc.vadduhm(resloc.value, loc0.value, loc1.value)
elif size == 4:
self.mc.vadduwm(resloc.value, loc0.value, loc1.value)
elif size == 8:
self.mc.vaddudm(resloc.value, loc0.value, loc1.value)
def emit_vec_int_sub(self, op, arglocs, regalloc):
resloc, loc0, loc1, size_loc = arglocs
size = size_loc.value
if size == 1:
self.mc.vsububm(resloc.value, loc0.value, loc1.value)
elif size == 2:
self.mc.vsubuhm(resloc.value, loc0.value, loc1.value)
elif size == 4:
self.mc.vsubuwm(resloc.value, loc0.value, loc1.value)
elif size == 8:
self.mc.vsubudm(resloc.value, loc0.value, loc1.value)
def emit_vec_float_add(self, op, arglocs, regalloc):
resloc, loc0, loc1, itemsize_loc = arglocs
itemsize = itemsize_loc.value
if itemsize == 4:
self.mc.xvaddsp(resloc.value, loc0.value, loc1.value)
elif itemsize == 8:
self.mc.xvadddp(resloc.value, loc0.value, loc1.value)
def emit_vec_float_sub(self, op, arglocs, regalloc):
resloc, loc0, loc1, itemsize_loc = arglocs
itemsize = itemsize_loc.value
if itemsize == 4:
self.mc.xvsubsp(resloc.value, loc0.value, loc1.value)
elif itemsize == 8:
self.mc.xvsubdp(resloc.value, loc0.value, loc1.value)
def emit_vec_float_mul(self, op, arglocs, regalloc):
resloc, loc0, loc1, itemsize_loc = arglocs
itemsize = itemsize_loc.value
if itemsize == 4:
self.mc.xvmulsp(resloc.value, loc0.value, loc1.value)
elif itemsize == 8:
self.mc.xvmuldp(resloc.value, loc0.value, loc1.value)
def emit_vec_float_truediv(self, op, arglocs, regalloc):
resloc, loc0, loc1, itemsize_loc = arglocs
itemsize = itemsize_loc.value
if itemsize == 4:
self.mc.xvdivsp(resloc.value, loc0.value, loc1.value)
elif itemsize == 8:
self.mc.xvdivdp(resloc.value, loc0.value, loc1.value)
def emit_vec_int_mul(self, op, arglocs, regalloc):
not_implemented("vec_int_mul must never be emitted by the backend")
def emit_vec_int_and(self, op, arglocs, regalloc):
resloc, loc0, loc1, sizeloc = arglocs
self.mc.vand(resloc.value, loc0.value, loc1.value)
def emit_vec_int_or(self, op, arglocs, regalloc):
resloc, loc0, loc1, sizeloc = arglocs
self.mc.vor(resloc.value, loc0.value, loc1.value)
def emit_vec_int_xor(self, op, arglocs, regalloc):
resloc, loc0, loc1, sizeloc = arglocs
self.mc.vxor(resloc.value, loc0.value, loc1.value)
def emit_vec_int_signext(self, op, arglocs, regalloc):
resloc, loc0, osizeloc, nsizeloc = arglocs
# signext is only allowed if the data type sizes do not change.
# e.g. [byte,byte] = sign_ext([byte, byte]), a simple move is sufficient!
src = loc0.value
res = resloc.value
osize = osizeloc.value
nsize = nsizeloc.value
if osize == nsize:
self.regalloc_mov(loc0, resloc)
else:
assert (osize == 4 and nsize == 8) or (osize == 8 and nsize == 4)
self.mc.load_imm(r.SCRATCH2, PARAM_SAVE_AREA_OFFSET)
self.mc.stvx(src, r.SCRATCH2.value, r.SP.value)
self.mc.load_imm(r.SCRATCH2, PARAM_SAVE_AREA_OFFSET+16)
self.mc.stvx(res, r.SCRATCH2.value, r.SP.value)
for j in range(2): # at most 2 operations
off = PARAM_SAVE_AREA_OFFSET
i = j
if not IS_BIG_ENDIAN:
i = (16 // osize) - 1 - i
off += osize * i
self._load_from_sp(r.SCRATCH.value, osize, off)
off = PARAM_SAVE_AREA_OFFSET
i = j
if not IS_BIG_ENDIAN:
i = (16 // nsize) - 1 - i
off += nsize * i
self._store_to_sp(r.SCRATCH.value, nsize, off+16)
self.mc.lvx(res, r.SCRATCH2.value, r.SP.value)
def emit_vec_float_abs(self, op, arglocs, regalloc):
resloc, argloc, sizeloc = arglocs
size = sizeloc.value
if size == 4:
self.mc.xvabssp(resloc.value, argloc.value)
elif size == 8:
self.mc.xvabsdp(resloc.value, argloc.value)
else:
not_implemented("float abs for size %d" % size)
def emit_vec_float_neg(self, op, arglocs, regalloc):
resloc, argloc, sizeloc = arglocs
size = sizeloc.value
if size == 4:
self.mc.xvnegsp(resloc.value, argloc.value)
elif size == 8:
self.mc.xvnegdp(resloc.value, argloc.value)
else:
not_implemented("float neg for size %d" % size)
def emit_vec_guard_true(self, guard_op, arglocs, regalloc):
self._emit_guard(guard_op, arglocs)
def emit_vec_guard_false(self, guard_op, arglocs, regalloc):
self.guard_success_cc = c.negate(self.guard_success_cc)
self._emit_guard(guard_op, arglocs)
def _update_at_exit(self, fail_locs, fail_args, faildescr, regalloc):
""" If accumulation is done in this loop, at the guard exit
some vector registers must be adjusted to yield the correct value
"""
if not isinstance(faildescr, ResumeGuardDescr):
return
accum_info = faildescr.rd_vector_info
while accum_info:
pos = accum_info.getpos_in_failargs()
scalar_loc = fail_locs[pos]
vector_loc = accum_info.location
# the upper elements will be lost if saved to the stack!
scalar_arg = accum_info.getoriginal()
orig_scalar_loc = scalar_loc
if not scalar_loc.is_reg():
if scalar_arg.type == FLOAT:
scalar_loc = r.FP_SCRATCH
else:
scalar_loc = r.SCRATCH
self.regalloc_mov(orig_scalar_loc, scalar_loc)
assert scalar_arg is not None
op = accum_info.accum_operation
self._accum_reduce(op, scalar_arg, vector_loc, scalar_loc)
if orig_scalar_loc is not scalar_loc:
self.regalloc_mov(scalar_loc, orig_scalar_loc)
accum_info = accum_info.next()
def _accum_reduce(self, op, arg, accumloc, targetloc):
# Currently the accumulator can ONLY be the biggest
# 64 bit float/int
tgt = targetloc.value
acc = accumloc.value
if arg.type == FLOAT:
# r = (r[0]+r[1],r[0]+r[1])
self.mc.xxpermdi(tgt, acc, acc, 0b10)
if op == '+':
self.mc.xsadddp(tgt, tgt, acc)
elif op == '*':
self.mc.xsmuldp(tgt, tgt, acc)
else:
not_implemented("sum not implemented")
return
else:
assert arg.type == INT
self.mc.load_imm(r.SCRATCH2, PARAM_SAVE_AREA_OFFSET)
self.mc.stvx(acc, r.SCRATCH2.value, r.SP.value)
self.mc.load(tgt, r.SP.value, PARAM_SAVE_AREA_OFFSET)
self.mc.load(r.SCRATCH2.value, r.SP.value, PARAM_SAVE_AREA_OFFSET+8)
if op == '+':
self.mc.add(tgt, tgt, r.SCRATCH2.value)
elif op == '*':
self.mc.mulld(tgt, tgt, r.SCRATCH2.value)
else:
not_implemented("sum not implemented")
return
not_implemented("reduce sum for %s not impl." % arg)
def emit_vec_int_is_true(self, op, arglocs, regalloc):
assert isinstance(op, VectorOp)
resloc, argloc, sizeloc = arglocs
size = sizeloc.value
tmp = regalloc.vrm.get_scratch_reg(type=INT).value
self.mc.vxor(tmp, tmp, tmp)
# argloc[i] > 0:
# For an unsigned integer that is equivalent to argloc[i] != 0
if size == 1:
self.mc.vcmpgtubx(resloc.value, argloc.value, tmp)
elif size == 2:
self.mc.vcmpgtuhx(resloc.value, argloc.value, tmp)
elif size == 4:
self.mc.vcmpgtuwx(resloc.value, argloc.value, tmp)
elif size == 8:
self.mc.vcmpgtudx(resloc.value, argloc.value, tmp)
flush_vec_cc(self, regalloc, c.VNEI, op.bytesize, resloc)
def emit_vec_float_eq(self, op, arglocs, regalloc):
assert isinstance(op, VectorOp)
resloc, loc1, loc2, sizeloc = arglocs
size = sizeloc.value
tmp = regalloc.vrm.get_scratch_reg().value
offloc = regalloc.rm.get_scratch_reg()
off = offloc.value
# SP is always 16 byte aligned, and PARAM_SAVE_AREA_OFFSET % 16 == 0
self.mc.load_imm(offloc, PARAM_SAVE_AREA_OFFSET)
if size == 4:
self.mc.xvcmpeqspx(tmp, loc1.value, loc2.value)
self.mc.stxvw4x(tmp, off, r.SP.value)
elif size == 8:
self.mc.xvcmpeqdpx(tmp, loc1.value, loc2.value)
self.mc.stxvd2x(tmp, off, r.SP.value)
else:
not_implemented("[ppc/assembler] float == for size %d" % size)
self.mc.lvx(resloc.value, off, r.SP.value)
flush_vec_cc(self, regalloc, c.VEQI, op.bytesize, resloc)
def emit_vec_float_xor(self, op, arglocs, regalloc):
resloc, l0, l1, sizeloc = arglocs
res = resloc.value
r0 = l0.value
r1 = l1.value
self.mc.xxlxor(res, r0, r1)
def emit_vec_float_ne(self, op, arglocs, regalloc):
assert isinstance(op, VectorOp)
resloc, loc1, loc2, sizeloc = arglocs
size = sizeloc.value
tmp = regalloc.vrm.get_scratch_reg().value
offloc = regalloc.rm.get_scratch_reg()
off = offloc.value
# SP is always 16 byte aligned, and PARAM_SAVE_AREA_OFFSET % 16 == 0
self.mc.load_imm(offloc, PARAM_SAVE_AREA_OFFSET)
if size == 4:
self.mc.xvcmpeqspx(tmp, loc1.value, loc2.value)
self.mc.stxvw4x(tmp, off, r.SP.value)
elif size == 8:
self.mc.xvcmpeqdpx(tmp, loc1.value, loc2.value)
self.mc.stxvd2x(tmp, off, r.SP.value)
else:
not_implemented("float == for size %d" % size)
res = resloc.value
self.mc.lvx(res, off, r.SP.value)
self.mc.vnor(res, res, res) # complement
flush_vec_cc(self, regalloc, c.VNEI, op.bytesize, resloc)
def emit_vec_cast_int_to_float(self, op, arglocs, regalloc):
res, l0 = arglocs
offloc = regalloc.rm.get_scratch_reg()
off = offloc.value
# SP is always 16 byte aligned, and PARAM_SAVE_AREA_OFFSET % 16 == 0
self.mc.load_imm(offloc, PARAM_SAVE_AREA_OFFSET)
self.mc.stvx(l0.value, off, r.SP.value)
self.mc.lxvd2x(res.value, off, r.SP.value)
self.mc.xvcvsxddp(res.value, res.value)
def emit_vec_int_eq(self, op, arglocs, regalloc):
assert isinstance(op, VectorOp)
res, l0, l1, sizeloc = arglocs
size = sizeloc.value
if size == 1:
self.mc.vcmpequbx(res.value, l0.value, l1.value)
elif size == 2:
self.mc.vcmpequhx(res.value, l0.value, l1.value)
elif size == 4:
self.mc.vcmpequwx(res.value, l0.value, l1.value)
elif size == 8:
self.mc.vcmpequdx(res.value, l0.value, l1.value)
flush_vec_cc(self, regalloc, c.VEQI, op.bytesize, res)
def emit_vec_int_ne(self, op, arglocs, regalloc):
assert isinstance(op, VectorOp)
res, l0, l1, sizeloc = arglocs
size = sizeloc.value
tmp = regalloc.vrm.get_scratch_reg(type=INT).value
self.mc.vxor(tmp, tmp, tmp)
if size == 1:
self.mc.vcmpequbx(res.value, res.value, tmp)
elif size == 2:
self.mc.vcmpequhx(res.value, res.value, tmp)
elif size == 4:
self.mc.vcmpequwx(res.value, res.value, tmp)
elif size == 8:
self.mc.vcmpequdx(res.value, res.value, tmp)
self.mc.vnor(res.value, res.value, res.value)
flush_vec_cc(self, regalloc, c.VEQI, op.bytesize, res)
def emit_vec_expand_f(self, op, arglocs, regalloc):
assert isinstance(op, VectorOp)
resloc, srcloc = arglocs
size = op.bytesize
res = resloc.value
if isinstance(srcloc, l.ConstFloatLoc):
# they are aligned!
assert size == 8
tloc = regalloc.rm.get_scratch_reg()
self.mc.load_imm(tloc, srcloc.value)
self.mc.lxvd2x(res, 0, tloc.value)
elif size == 8:
# splat the low of src to both slots in res
src = srcloc.value
self.mc.xxspltdl(res, src, src)
else:
not_implemented("vec expand in this combination not supported")
def emit_vec_expand_i(self, op, arglocs, regalloc):
assert isinstance(op, VectorOp)
res, l0, off = arglocs
size = op.bytesize
idx = 0
size = op.bytesize
if not IS_BIG_ENDIAN:
idx = (16 // size) - 1 - idx
idx *= size
self._store_to_sp(l0.value, size, idx+PARAM_SAVE_AREA_OFFSET)
if size == 8:
idx = 1
if not IS_BIG_ENDIAN:
idx = (16 // size) - 1 - idx
idx *= size
self._store_to_sp(l0.value, size, idx+PARAM_SAVE_AREA_OFFSET)
self.mc.load_imm(r.SCRATCH2, off.value)
self.mc.lvx(res.value, r.SCRATCH2.value, r.SP.value)
if size == 1:
self.mc.vspltb(res.value, res.value, 0b0000)
elif size == 2:
self.mc.vsplth(res.value, res.value, 0b000)
elif size == 4:
self.mc.vspltw(res.value, res.value, 0b00)
elif size == 8:
pass
else:
not_implemented("expand int size not impl")
def emit_vec_pack_i(self, op, arglocs, regalloc):
assert isinstance(op, VectorOp)
resultloc, vloc, sourceloc, residxloc, srcidxloc, countloc = arglocs
residx = residxloc.value
count = countloc.value
res = resultloc.value
vector = vloc.value
src = sourceloc.value
size = op.bytesize
assert resultloc.is_vector_reg() # vector <- reg
self.mc.load_imm(r.SCRATCH2, PARAM_SAVE_AREA_OFFSET)
self.mc.stvx(vector, r.SCRATCH2.value, r.SP.value)
idx = residx
if size == 8:
if not IS_BIG_ENDIAN:
idx = (16 // size) - 1 - idx
self.mc.store(src, r.SP.value, PARAM_SAVE_AREA_OFFSET+8*idx)
elif size == 4:
for j in range(count):
idx = j + residx
if not IS_BIG_ENDIAN:
idx = (16 // size) - 1 - idx
self.mc.stw(src, r.SP.value, PARAM_SAVE_AREA_OFFSET+4*idx)
elif size == 2:
for j in range(count):
idx = j + residx
if not IS_BIG_ENDIAN:
idx = (16 // size) - 1 - idx
self.mc.sth(src, r.SP.value, PARAM_SAVE_AREA_OFFSET+2*idx)
elif size == 1:
for j in range(count):
idx = j + residx
if not IS_BIG_ENDIAN:
idx = (16 // size) - 1 - idx
self.mc.stb(src, r.SP.value, PARAM_SAVE_AREA_OFFSET+idx)
self.mc.lvx(res, r.SCRATCH2.value, r.SP.value)
def _load_from_sp(self, res, size, off):
if size == 8:
self.mc.load(res, r.SP.value, off)
return True
elif size == 4:
self.mc.lwa(res, r.SP.value, off)
return True
elif size == 2:
self.mc.lha(res, r.SP.value, off)
return True
elif size == 1:
self.mc.lbz(res, r.SP.value, off)
self.mc.extsb(res, res)
return True
return False
def _store_to_sp(self, res, size, off):
if size == 8:
self.mc.store(res, r.SP.value, off)
return True
elif size == 4:
self.mc.stw(res, r.SP.value, off)
return True
elif size == 2:
self.mc.sth(res, r.SP.value, off)
return True
elif size == 1:
self.mc.stb(res, r.SP.value, off)
return True
return False
def emit_vec_unpack_i(self, op, arglocs, regalloc):
assert isinstance(op, VectorOp)
resloc, srcloc, idxloc, countloc, sizeloc = arglocs
idx = idxloc.value
res = resloc.value
src = srcloc.value
size = sizeloc.value
count = countloc.value
newsize = op.bytesize
if count == 1:
assert srcloc.is_vector_reg()
assert not resloc.is_vector_reg()
off = PARAM_SAVE_AREA_OFFSET
self.mc.load_imm(r.SCRATCH2, off)
self.mc.stvx(src, r.SCRATCH2.value, r.SP.value)
if not IS_BIG_ENDIAN:
idx = (16 // size) - 1 - idx
off += size * idx
if self._load_from_sp(res, size, off):
return
else:
# count is not 1, but only 2 is supported for i32
# 4 for i16 and 8 for i8.
src = srcloc.value
res = resloc.value
self.mc.load_imm(r.SCRATCH2, PARAM_SAVE_AREA_OFFSET)
self.mc.stvx(src, r.SCRATCH2.value, r.SP.value)
self.mc.load_imm(r.SCRATCH2, PARAM_SAVE_AREA_OFFSET+16)
self.mc.stvx(res, r.SCRATCH2.value, r.SP.value)
for j in range(count):
off = PARAM_SAVE_AREA_OFFSET
i = j+idx
if not IS_BIG_ENDIAN:
i = (16 // size) - 1 - i
off += size * i
self._load_from_sp(r.SCRATCH.value, size, off)
off = PARAM_SAVE_AREA_OFFSET
i = j
if not IS_BIG_ENDIAN:
i = (16 // size) - 1 - i
off += size * i
self._store_to_sp(r.SCRATCH.value, newsize, off+16)
self.mc.lvx(res, r.SCRATCH2.value, r.SP.value)
return
not_implemented("%d bit integer, count %d" % \
(size*8, count))
def emit_vec_pack_f(self, op, arglocs, regalloc):
assert isinstance(op, VectorOp)
resloc, vloc, srcloc, residxloc, srcidxloc, countloc = arglocs
vec = vloc.value
res = resloc.value
src = srcloc.value
residx = residxloc.value
srcidx = srcidxloc.value
# srcloc is always a floating point register f, this means it is
# vsr[0] == valueof(f)
if srcidx == 0:
if residx == 0:
# r = (s[0], v[1])
self.mc.xxpermdi(res, src, vec, permi(0,1))
else:
assert residx == 1
# r = (v[0], s[0])
self.mc.xxpermdi(res, vec, src, permi(1,1))
else:
assert srcidx == 1
if residx == 0:
# r = (s[1], v[1])
self.mc.xxpermdi(res, src, vec, permi(1,1))
else:
assert residx == 1
# r = (v[0], s[1])
self.mc.xxpermdi(res, vec, src, permi(0,1))
def emit_vec_unpack_f(self, op, arglocs, regalloc):
assert isinstance(op, VectorOp)
resloc, srcloc, srcidxloc, countloc = arglocs
res = resloc.value
src = srcloc.value
srcidx = srcidxloc.value
size = op.bytesize
# srcloc is always a floating point register f, this means it is
# vsr[0] == valueof(f)
if srcidx == 0:
# r = (s[0], s[1])
self.mc.xxpermdi(res, src, src, permi(0,1))
return
else:
# r = (s[1], s[0])
self.mc.xxpermdi(res, src, src, permi(1,0))
return
not_implemented("unpack for combination src %d -> res %d" % (srcidx, residx))
def emit_vec_cast_float_to_int(self, op, arglocs, regalloc):
res, l0 = arglocs
offloc = regalloc.rm.get_scratch_reg()
v0 = regalloc.vrm.get_scratch_reg(type=INT)
off = offloc.value
# SP is always 16 byte aligned, and PARAM_SAVE_AREA_OFFSET % 16 == 0
self.mc.load_imm(offloc, PARAM_SAVE_AREA_OFFSET)
self.mc.xvcvdpsxds(res.value, l0.value)
# needed as soon as PPC's support_singlefloat is implemented!
#def genop_vec_cast_singlefloat_to_float(self, op, arglocs, regalloc):
# self.mc.CVTPS2PD(resloc, arglocs[0])
def emit_vec_f(self, op, arglocs, regalloc):
pass
emit_vec_i = emit_vec_f
class VectorRegalloc(object):
_mixin_ = True
def force_allocate_vector_reg(self, op):
forbidden_vars = self.vrm.temp_boxes
return self.vrm.force_allocate_reg(op, forbidden_vars)
def force_allocate_vector_reg_or_cc(self, op):
assert op.type == INT
if self.next_op_can_accept_cc(self.operations, self.rm.position):
# hack: return the SPP location to mean "lives in CC". This
# SPP will not actually be used, and the location will be freed
# after the next op as usual.
self.rm.force_allocate_frame_reg(op)
return r.SPP
else:
return self.force_allocate_vector_reg(op)
def ensure_vector_reg(self, box):
return self.vrm.make_sure_var_in_reg(box,
forbidden_vars=self.vrm.temp_boxes)
def _prepare_load(self, op):
descr = op.getdescr()
assert isinstance(descr, ArrayDescr)
assert not descr.is_array_of_pointers() and \
not descr.is_array_of_structs()
itemsize, ofs, _ = unpack_arraydescr(descr)
integer = not (descr.is_array_of_floats() or descr.getconcrete_type() == FLOAT)
args = op.getarglist()
a0 = op.getarg(0)
a1 = op.getarg(1)
base_loc = self.ensure_reg(a0)
ofs_loc = self.ensure_reg(a1)
result_loc = self.force_allocate_vector_reg(op)
return [result_loc, base_loc, ofs_loc, imm(itemsize), imm(ofs),
imm(integer)]
prepare_vec_load_i = _prepare_load
prepare_vec_load_f = _prepare_load
def prepare_vec_arith(self, op):
assert isinstance(op, VectorOp)
a0 = op.getarg(0)
a1 = op.getarg(1)
size = op.bytesize
args = op.getarglist()
loc0 = self.ensure_vector_reg(a0)
loc1 = self.ensure_vector_reg(a1)
resloc = self.force_allocate_vector_reg(op)
return [resloc, loc0, loc1, imm(size)]
prepare_vec_int_add = prepare_vec_arith
prepare_vec_int_sub = prepare_vec_arith
prepare_vec_int_mul = prepare_vec_arith
prepare_vec_float_add = prepare_vec_arith
prepare_vec_float_sub = prepare_vec_arith
prepare_vec_float_mul = prepare_vec_arith
prepare_vec_float_truediv = prepare_vec_arith
# logic functions
prepare_vec_int_and = prepare_vec_arith
prepare_vec_int_or = prepare_vec_arith
prepare_vec_int_xor = prepare_vec_arith
prepare_vec_float_xor = prepare_vec_arith
del prepare_vec_arith
def prepare_vec_bool(self, op):
assert isinstance(op, VectorOp)
a0 = op.getarg(0)
a1 = op.getarg(1)
size = op.bytesize
args = op.getarglist()
loc0 = self.ensure_vector_reg(a0)
loc1 = self.ensure_vector_reg(a1)
resloc = self.force_allocate_vector_reg_or_cc(op)
return [resloc, loc0, loc1, imm(size)]
prepare_vec_float_eq = prepare_vec_bool
prepare_vec_float_ne = prepare_vec_bool
prepare_vec_int_eq = prepare_vec_bool
prepare_vec_int_ne = prepare_vec_bool
del prepare_vec_bool
def prepare_vec_store(self, op):
descr = op.getdescr()
assert isinstance(descr, ArrayDescr)
assert not descr.is_array_of_pointers() and \
not descr.is_array_of_structs()
itemsize, ofs, _ = unpack_arraydescr(descr)
a0 = op.getarg(0)
a1 = op.getarg(1)
a2 = op.getarg(2)
baseloc = self.ensure_reg(a0)
ofsloc = self.ensure_reg(a1)
valueloc = self.ensure_vector_reg(a2)
integer = not (descr.is_array_of_floats() or descr.getconcrete_type() == FLOAT)
return [baseloc, ofsloc, valueloc,
imm(itemsize), imm(ofs), imm(integer)]
def prepare_vec_int_signext(self, op):
assert isinstance(op, VectorOp)
a0 = op.getarg(0)
assert isinstance(a0, VectorOp)
loc0 = self.ensure_vector_reg(a0)
resloc = self.force_allocate_vector_reg(op)
return [resloc, loc0, imm(a0.bytesize), imm(op.bytesize)]
def prepare_vec_arith_unary(self, op):
assert isinstance(op, VectorOp)
a0 = op.getarg(0)
loc0 = self.ensure_vector_reg(a0)
resloc = self.force_allocate_vector_reg(op)
sizeloc = imm(op.bytesize)
return [resloc, loc0, sizeloc]
prepare_vec_float_neg = prepare_vec_arith_unary
prepare_vec_float_abs = prepare_vec_arith_unary
del prepare_vec_arith_unary
def prepare_vec_pack_i(self, op):
# new_res = vec_pack_i(res, src, index, count)
assert isinstance(op, VectorOp)
arg = op.getarg(1)
index = op.getarg(2)
count = op.getarg(3)
assert isinstance(index, ConstInt)
assert isinstance(count, ConstInt)
vloc = self.ensure_vector_reg(op.getarg(0))
srcloc = self.ensure_reg(arg)
resloc = self.force_allocate_vector_reg(op)
residx = index.value # where to put it in result?
srcidx = 0
return [resloc, vloc, srcloc, imm(residx), imm(srcidx), imm(count.value)]
def prepare_vec_pack_f(self, op):
# new_res = vec_pack_f(res, src, index, count)
assert isinstance(op, VectorOp)
arg = op.getarg(1)
index = op.getarg(2)
count = op.getarg(3)
assert isinstance(index, ConstInt)
assert isinstance(count, ConstInt)
assert not arg.is_vector()
srcloc = self.ensure_reg(arg)
vloc = self.ensure_vector_reg(op.getarg(0))
if op.is_vector():
resloc = self.force_allocate_vector_reg(op)
else:
resloc = self.force_allocate_reg(op)
residx = index.value # where to put it in result?
srcidx = 0
return [resloc, vloc, srcloc, imm(residx), imm(srcidx), imm(count.value)]
def prepare_vec_unpack_f(self, op):
index = op.getarg(1)
count = op.getarg(2)
assert isinstance(index, ConstInt)
assert isinstance(count, ConstInt)
srcloc = self.ensure_vector_reg(op.getarg(0))
resloc = self.force_allocate_reg(op)
return [resloc, srcloc, imm(index.value), imm(count.value)]
def prepare_vec_unpack_i(self, op):
assert isinstance(op, VectorOp)
index = op.getarg(1)
count = op.getarg(2)
assert isinstance(index, ConstInt)
assert isinstance(count, ConstInt)
arg = op.getarg(0)
if arg.is_vector():
srcloc = self.ensure_vector_reg(arg)
assert isinstance(arg, VectorOp)
size = arg.bytesize
else:
# unpack
srcloc = self.ensure_reg(arg)
size = WORD
if op.is_vector():
resloc = self.force_allocate_vector_reg(op)
else:
resloc = self.force_allocate_reg(op)
return [resloc, srcloc, imm(index.value), imm(count.value), imm(size)]
def expand_float(self, size, box):
adr = self.assembler.datablockwrapper.malloc_aligned(16, 16)
fs = box.getfloatstorage()
rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[0] = fs
rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[1] = fs
return l.ConstFloatLoc(adr)
def prepare_vec_expand_f(self, op):
assert isinstance(op, VectorOp)
arg = op.getarg(0)
if arg.is_constant():
l0 = self.expand_float(op.bytesize, arg)
res = self.force_allocate_vector_reg(op)
else:
l0 = self.ensure_reg(arg)
res = self.force_allocate_vector_reg(op)
return [res, l0]
def prepare_vec_expand_i(self, op):
assert isinstance(op, VectorOp)
arg = op.getarg(0)
mc = self.assembler.mc
if arg.is_constant():
assert isinstance(arg, ConstInt)
l0 = self.rm.get_scratch_reg()
mc.load_imm(l0, arg.value)
else:
l0 = self.ensure_reg(arg)
res = self.force_allocate_vector_reg(op)
return [res, l0, imm(PARAM_SAVE_AREA_OFFSET)]
def prepare_vec_int_is_true(self, op):
assert isinstance(op, VectorOp)
arg = op.getarg(0)
assert isinstance(arg, VectorOp)
argloc = self.ensure_vector_reg(arg)
resloc = self.force_allocate_vector_reg_or_cc(op)
return [resloc, argloc, imm(arg.bytesize)]
def _prepare_vec(self, op):
# pseudo instruction, needed to allocate a register for a new variable
return [self.force_allocate_vector_reg(op)]
prepare_vec_i = _prepare_vec
prepare_vec_f = _prepare_vec
def prepare_vec_cast_float_to_int(self, op):
l0 = self.ensure_vector_reg(op.getarg(0))
res = self.force_allocate_vector_reg(op)
return [res, l0]
prepare_vec_cast_int_to_float = prepare_vec_cast_float_to_int
def prepare_vec_guard_true(self, op):
self.assembler.guard_success_cc = c.VEQ
return self._prepare_guard(op)
def prepare_vec_guard_false(self, op):
self.assembler.guard_success_cc = c.VNE
return self._prepare_guard(op)
|