1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
import py
from rpython.jit.metainterp.compile import ResumeGuardDescr
from rpython.jit.metainterp.history import (ConstInt, INT, REF,
FLOAT, VECTOR, TargetToken)
from rpython.jit.backend.llsupport.descr import (ArrayDescr, CallDescr,
unpack_arraydescr, unpack_fielddescr, unpack_interiorfielddescr)
from rpython.jit.backend.x86.regloc import (FrameLoc, RegLoc, ConstFloatLoc,
FloatImmedLoc, ImmedLoc, imm, imm0, imm1, ecx, eax, edx, ebx, esi, edi,
ebp, r8, r9, r10, r11, r12, r13, r14, r15, xmm0, xmm1, xmm2, xmm3, xmm4,
xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14,
X86_64_SCRATCH_REG, X86_64_XMM_SCRATCH_REG, AddressLoc)
from rpython.jit.backend.llsupport.vector_ext import VectorExt
from rpython.jit.backend.llsupport.regalloc import (get_scale, TempVar,
NoVariableToSpill)
from rpython.jit.metainterp.resoperation import (rop, ResOperation,
VectorOp, VectorGuardOp)
from rpython.rlib.objectmodel import we_are_translated, always_inline
from rpython.rtyper.lltypesystem.lloperation import llop
from rpython.rtyper.lltypesystem import lltype
from rpython.jit.backend.x86 import rx86, detect_feature
# duplicated for easy migration, def in assembler.py as well
# DUP START
def addr_add(reg_or_imm1, reg_or_imm2, offset=0, scale=0):
return AddressLoc(reg_or_imm1, reg_or_imm2, scale, offset)
def heap(addr):
return AddressLoc(ImmedLoc(addr), imm0, 0, 0)
def not_implemented(msg):
msg = '[x86/vector_ext] %s\n' % msg
if we_are_translated():
llop.debug_print(lltype.Void, msg)
raise NotImplementedError(msg)
# DUP END
class TempVector(TempVar):
def __init__(self, type):
self.type = type
def is_vector(self):
return True
def __repr__(self):
return "<TempVector at %s>" % (id(self),)
class TempInt(TempVar):
type = INT
def __repr__(self):
return "<TempInt at %s>" % (id(self),)
class X86VectorExt(VectorExt):
should_align_unroll = True
def setup_once(self, asm):
if detect_feature.detect_sse4_1():
self.enable(16, accum=True)
asm.setup_once_vector()
self._setup = True
class VectorAssemblerMixin(object):
_mixin_ = True
def setup_once_vector(self):
pass
def genop_guard_vec_guard_true(self, guard_op, guard_token, locs, resloc):
self.implement_guard(guard_token)
def genop_guard_vec_guard_false(self, guard_op, guard_token, locs, resloc):
self.guard_success_cc = rx86.invert_condition(self.guard_success_cc)
self.implement_guard(guard_token)
def guard_vector(self, guard_op, loc, true):
assert isinstance(guard_op, VectorGuardOp)
arg = guard_op.getarg(0)
assert isinstance(arg, VectorOp)
size = arg.bytesize
temp = X86_64_XMM_SCRATCH_REG
ve = self.cpu.vector_ext
assert ve is not None # MUST hold, optimize_vector is never entered if vector_ext is entered
load = arg.bytesize * arg.count - ve.register_size
assert load <= 0
if true:
self.mc.PXOR(temp, temp)
# if the vector is not fully packed blend 1s
if load < 0:
self.mc.PCMPEQQ(temp, temp) # fill with ones
self._blend_unused_slots(loc, arg, temp)
# reset to zeros
self.mc.PXOR(temp, temp)
# cmp with zeros (in temp) creates ones at each slot where it is zero
self.mc.PCMPEQ(loc, temp, size)
# temp converted to ones
self.mc.PCMPEQQ(temp, temp)
# test if all slots are zero
self.mc.PTEST(loc, temp)
self.guard_success_cc = rx86.Conditions['Z']
else:
# if the vector is not fully packed blend 1s
if load < 0:
temp = X86_64_XMM_SCRATCH_REG
self.mc.PXOR(temp, temp)
self._blend_unused_slots(loc, arg, temp)
self.mc.PTEST(loc, loc)
self.guard_success_cc = rx86.Conditions['NZ']
def _blend_unused_slots(self, loc, arg, temp):
select = 0
bits_used = (arg.count * arg.bytesize * 8)
index = bits_used // 16
while index < 8:
select |= (1 << index)
index += 1
self.mc.PBLENDW_xxi(loc.value, temp.value, select)
def _update_at_exit(self, fail_locs, fail_args, faildescr, regalloc):
""" If accumulation is done in this loop, at the guard exit
some vector registers must be adjusted to yield the correct value
"""
if not isinstance(faildescr, ResumeGuardDescr):
return
assert regalloc is not None
accum_info = faildescr.rd_vector_info
while accum_info:
pos = accum_info.getpos_in_failargs()
scalar_loc = fail_locs[pos]
vector_loc = accum_info.location
# the upper elements will be lost if saved to the stack!
scalar_arg = accum_info.getoriginal()
assert isinstance(vector_loc, RegLoc)
assert scalar_arg is not None
orig_scalar_loc = scalar_loc
tmpvar = None
if not isinstance(scalar_loc, RegLoc):
# scalar loc might live in memory, use scratch register and save it back later
if scalar_arg.type == FLOAT:
scalar_loc = X86_64_XMM_SCRATCH_REG
else:
tmpvar = TempInt()
scalar_loc = regalloc.rm.try_allocate_reg(tmpvar)
self.mov(orig_scalar_loc, scalar_loc)
if accum_info.accum_operation == '+':
self._accum_reduce_sum(scalar_arg, vector_loc, scalar_loc)
elif accum_info.accum_operation == '*':
self._accum_reduce_mul(scalar_arg, vector_loc, scalar_loc)
else:
not_implemented("accum operator %s not implemented" %
(accum_info.accum_operation))
if tmpvar:
regalloc.rm.possibly_free_var(tmpvar)
if scalar_loc is not orig_scalar_loc:
self.mov(scalar_loc, orig_scalar_loc)
accum_info = accum_info.next()
def _accum_reduce_mul(self, arg, accumloc, targetloc):
self.mov(accumloc, targetloc)
# swap the two elements
self.mc.SHUFPD_xxi(targetloc.value, targetloc.value, 0x01)
self.mc.MULSD(targetloc, accumloc)
def _accum_reduce_sum(self, arg, accumloc, targetloc):
# Currently the accumulator can ONLY be the biggest
# size for X86 -> 64 bit float/int
if arg.type == FLOAT:
# r = (r[0]+r[1],r[0]+r[1])
self.mc.HADDPD(accumloc, accumloc)
# upper bits (> 64) are dirty (but does not matter)
if accumloc is not targetloc:
self.mov(accumloc, targetloc)
return
elif arg.type == INT:
scratchloc = X86_64_SCRATCH_REG
self.mc.PEXTRQ_rxi(targetloc.value, accumloc.value, 0)
self.mc.PEXTRQ_rxi(scratchloc.value, accumloc.value, 1)
self.mc.ADD(targetloc, scratchloc)
return
not_implemented("reduce sum for %s not impl." % arg)
def _genop_vec_load(self, op, arglocs, resloc):
base_loc, ofs_loc, size_loc, scale, ofs, integer_loc = arglocs
src_addr = addr_add(base_loc, ofs_loc, ofs.value, scale.value)
self._vec_load(resloc, src_addr, integer_loc.value,
size_loc.value, False)
genop_vec_load_i = _genop_vec_load
genop_vec_load_f = _genop_vec_load
@always_inline
def _vec_load(self, resloc, src_addr, integer, itemsize, aligned):
if integer:
if aligned:
self.mc.MOVDQA(resloc, src_addr)
else:
self.mc.MOVDQU(resloc, src_addr)
else:
if itemsize == 4:
self.mc.MOVUPS(resloc, src_addr)
elif itemsize == 8:
self.mc.MOVUPD(resloc, src_addr)
def genop_discard_vec_store(self, op, arglocs):
base_loc, ofs_loc, value_loc, size_loc, scale,\
baseofs, integer_loc = arglocs
dest_loc = addr_add(base_loc, ofs_loc, baseofs.value, scale.value)
self._vec_store(dest_loc, value_loc, integer_loc.value,
size_loc.value, False)
@always_inline
def _vec_store(self, dest_loc, value_loc, integer, itemsize, aligned):
if integer:
if aligned:
self.mc.MOVDQA(dest_loc, value_loc)
else:
self.mc.MOVDQU(dest_loc, value_loc)
else:
if itemsize == 4:
self.mc.MOVUPS(dest_loc, value_loc)
elif itemsize == 8:
self.mc.MOVUPD(dest_loc, value_loc)
def genop_vec_int_is_true(self, op, arglocs, resloc):
loc, sizeloc = arglocs
temp = X86_64_XMM_SCRATCH_REG
self.mc.PXOR(temp, temp)
# every entry that is non zero -> becomes zero
# zero entries become ones
self.mc.PCMPEQ(loc, temp, sizeloc.value)
# a second time -> every zero entry (corresponding to non zero
# entries before) become ones
self.mc.PCMPEQ(loc, temp, sizeloc.value)
def genop_vec_int_mul(self, op, arglocs, resloc):
loc0, loc1, itemsize_loc = arglocs
itemsize = itemsize_loc.value
if itemsize == 2:
self.mc.PMULLW(loc0, loc1)
elif itemsize == 4:
self.mc.PMULLD(loc0, loc1)
else:
# NOTE see http://stackoverflow.com/questions/8866973/can-long-integer-routines-benefit-from-sse/8867025#8867025
# There is no 64x64 bit packed mul. For 8 bit either. It is questionable if it gives any benefit?
not_implemented("int8/64 mul")
def genop_vec_int_add(self, op, arglocs, resloc):
loc0, loc1, size_loc = arglocs
size = size_loc.value
if size == 1:
self.mc.PADDB(loc0, loc1)
elif size == 2:
self.mc.PADDW(loc0, loc1)
elif size == 4:
self.mc.PADDD(loc0, loc1)
elif size == 8:
self.mc.PADDQ(loc0, loc1)
def genop_vec_int_sub(self, op, arglocs, resloc):
loc0, loc1, size_loc = arglocs
size = size_loc.value
if size == 1:
self.mc.PSUBB(loc0, loc1)
elif size == 2:
self.mc.PSUBW(loc0, loc1)
elif size == 4:
self.mc.PSUBD(loc0, loc1)
elif size == 8:
self.mc.PSUBQ(loc0, loc1)
def genop_vec_int_and(self, op, arglocs, resloc):
self.mc.PAND(resloc, arglocs[0])
def genop_vec_int_or(self, op, arglocs, resloc):
self.mc.POR(resloc, arglocs[0])
def genop_vec_int_xor(self, op, arglocs, resloc):
self.mc.PXOR(resloc, arglocs[0])
genop_vec_float_xor = genop_vec_int_xor
genop_vec_float_arith = """
def genop_vec_float_{type}(self, op, arglocs, resloc):
loc0, loc1, itemsize_loc = arglocs
itemsize = itemsize_loc.value
if itemsize == 4:
self.mc.{p_op_s}(loc0, loc1)
elif itemsize == 8:
self.mc.{p_op_d}(loc0, loc1)
"""
for op in ['add','mul','sub']:
OP = op.upper()
_source = genop_vec_float_arith.format(type=op,
p_op_s=OP+'PS',
p_op_d=OP+'PD')
exec py.code.Source(_source).compile()
del genop_vec_float_arith
def genop_vec_float_truediv(self, op, arglocs, resloc):
loc0, loc1, sizeloc = arglocs
size = sizeloc.value
if size == 4:
self.mc.DIVPS(loc0, loc1)
elif size == 8:
self.mc.DIVPD(loc0, loc1)
def genop_vec_float_abs(self, op, arglocs, resloc):
src, sizeloc = arglocs
size = sizeloc.value
if size == 4:
self.mc.ANDPS(src, heap(self.single_float_const_abs_addr))
elif size == 8:
self.mc.ANDPD(src, heap(self.float_const_abs_addr))
def genop_vec_float_neg(self, op, arglocs, resloc):
src, sizeloc = arglocs
size = sizeloc.value
if size == 4:
self.mc.XORPS(src, heap(self.single_float_const_neg_addr))
elif size == 8:
self.mc.XORPD(src, heap(self.float_const_neg_addr))
def genop_vec_float_eq(self, op, arglocs, resloc):
lhsloc, rhsloc, sizeloc = arglocs
size = sizeloc.value
if size == 4:
self.mc.CMPPS_xxi(lhsloc.value, rhsloc.value, 0) # 0 means equal
else:
self.mc.CMPPD_xxi(lhsloc.value, rhsloc.value, 0)
self.flush_vec_cc(rx86.Conditions["E"], lhsloc, resloc, sizeloc.value)
def flush_vec_cc(self, rev_cond, lhsloc, resloc, size):
# After emitting an instruction that leaves a boolean result in
# a condition code (cc), call this. In the common case, result_loc
# will be set to SPP by the regalloc, which in this case means
# "propagate it between this operation and the next guard by keeping
# it in the cc". In the uncommon case, result_loc is another
# register, and we emit a load from the cc into this register.
if resloc is ebp:
self.guard_success_cc = rev_cond
else:
assert lhsloc is xmm0
maskloc = X86_64_XMM_SCRATCH_REG
self.mc.MOVAPD(maskloc, heap(self.element_ones[get_scale(size)]))
self.mc.PXOR(resloc, resloc)
# note that resloc contains true false for each element by the last compare operation
self.mc.PBLENDVB_xx(resloc.value, maskloc.value)
def genop_vec_float_ne(self, op, arglocs, resloc):
lhsloc, rhsloc, sizeloc = arglocs
size = sizeloc.value
# b(100) == 1 << 2 means not equal
if size == 4:
self.mc.CMPPS_xxi(lhsloc.value, rhsloc.value, 1 << 2)
else:
self.mc.CMPPD_xxi(lhsloc.value, rhsloc.value, 1 << 2)
self.flush_vec_cc(rx86.Conditions["NE"], lhsloc, resloc, sizeloc.value)
def genop_vec_int_eq(self, op, arglocs, resloc):
lhsloc, rhsloc, sizeloc = arglocs
size = sizeloc.value
self.mc.PCMPEQ(lhsloc, rhsloc, size)
self.flush_vec_cc(rx86.Conditions["E"], lhsloc, resloc, sizeloc.value)
def genop_vec_int_ne(self, op, arglocs, resloc):
lhsloc, rhsloc, sizeloc = arglocs
size = sizeloc.value
self.mc.PCMPEQ(resloc, rhsloc, size)
temp = X86_64_XMM_SCRATCH_REG
self.mc.PCMPEQQ(temp, temp) # set all bits to one
# need to invert the value in resloc
self.mc.PXOR(resloc, temp)
# 11 00 11 11
# 11 11 11 11
# ----------- pxor
# 00 11 00 00
self.flush_vec_cc(rx86.Conditions["NE"], lhsloc, resloc, sizeloc.value)
def genop_vec_int_signext(self, op, arglocs, resloc):
srcloc, sizeloc, tosizeloc = arglocs
size = sizeloc.value
tosize = tosizeloc.value
if size == tosize:
return # already the right size
if size == 4 and tosize == 8:
scratch = X86_64_SCRATCH_REG.value
self.mc.PEXTRD_rxi(scratch, srcloc.value, 1)
self.mc.PINSRQ_xri(resloc.value, scratch, 1)
self.mc.PEXTRD_rxi(scratch, srcloc.value, 0)
self.mc.PINSRQ_xri(resloc.value, scratch, 0)
elif size == 8 and tosize == 4:
# is there a better sequence to move them?
scratch = X86_64_SCRATCH_REG.value
self.mc.PEXTRQ_rxi(scratch, srcloc.value, 0)
self.mc.PINSRD_xri(resloc.value, scratch, 0)
self.mc.PEXTRQ_rxi(scratch, srcloc.value, 1)
self.mc.PINSRD_xri(resloc.value, scratch, 1)
else:
# note that all other conversions are not implemented
# on purpose. it needs many x86 op codes to implement
# the missing combinations. even if they are implemented
# the speedup might only be modest...
# the optimization does not emit such code!
msg = "vec int signext (%d->%d)" % (size, tosize)
not_implemented(msg)
def genop_vec_expand_f(self, op, arglocs, resloc):
srcloc, sizeloc = arglocs
size = sizeloc.value
if isinstance(srcloc, ConstFloatLoc):
# they are aligned!
self.mc.MOVAPD(resloc, srcloc)
elif size == 4:
# the register allocator forces src to be the same as resloc
# r = (s[0], s[0], r[0], r[0])
# since resloc == srcloc: r = (r[0], r[0], r[0], r[0])
self.mc.SHUFPS_xxi(resloc.value, srcloc.value, 0)
elif size == 8:
self.mc.MOVDDUP(resloc, srcloc)
else:
raise AssertionError("float of size %d not supported" % (size,))
def genop_vec_expand_i(self, op, arglocs, resloc):
srcloc, sizeloc = arglocs
if not isinstance(srcloc, RegLoc):
self.mov(srcloc, X86_64_SCRATCH_REG)
srcloc = X86_64_SCRATCH_REG
assert not srcloc.is_xmm
size = sizeloc.value
if size == 1:
self.mc.PINSRB_xri(resloc.value, srcloc.value, 0)
self.mc.PSHUFB(resloc, heap(self.expand_byte_mask_addr))
elif size == 2:
self.mc.PINSRW_xri(resloc.value, srcloc.value, 0)
self.mc.PINSRW_xri(resloc.value, srcloc.value, 4)
self.mc.PSHUFLW_xxi(resloc.value, resloc.value, 0)
self.mc.PSHUFHW_xxi(resloc.value, resloc.value, 0)
elif size == 4:
self.mc.PINSRD_xri(resloc.value, srcloc.value, 0)
self.mc.PSHUFD_xxi(resloc.value, resloc.value, 0)
elif size == 8:
self.mc.PINSRQ_xri(resloc.value, srcloc.value, 0)
self.mc.PINSRQ_xri(resloc.value, srcloc.value, 1)
else:
raise AssertionError("cannot handle size %d (int expand)" % (size,))
def genop_vec_pack_i(self, op, arglocs, resloc):
resultloc, sourceloc, residxloc, srcidxloc, countloc, sizeloc = arglocs
assert isinstance(resultloc, RegLoc)
assert isinstance(sourceloc, RegLoc)
size = sizeloc.value
srcidx = srcidxloc.value
residx = residxloc.value
count = countloc.value
# for small data type conversion this can be quite costy
# NOTE there might be some combinations that can be handled
# more efficiently! e.g.
# v2 = pack(v0,v1,4,4)
si = srcidx
ri = residx
k = count
while k > 0:
if size == 8:
if resultloc.is_xmm and sourceloc.is_xmm: # both xmm
self.mc.PEXTRQ_rxi(X86_64_SCRATCH_REG.value, sourceloc.value, si)
self.mc.PINSRQ_xri(resultloc.value, X86_64_SCRATCH_REG.value, ri)
elif resultloc.is_xmm: # xmm <- reg
self.mc.PINSRQ_xri(resultloc.value, sourceloc.value, ri)
else: # reg <- xmm
self.mc.PEXTRQ_rxi(resultloc.value, sourceloc.value, si)
elif size == 4:
if resultloc.is_xmm and sourceloc.is_xmm:
self.mc.PEXTRD_rxi(X86_64_SCRATCH_REG.value, sourceloc.value, si)
self.mc.PINSRD_xri(resultloc.value, X86_64_SCRATCH_REG.value, ri)
elif resultloc.is_xmm:
self.mc.PINSRD_xri(resultloc.value, sourceloc.value, ri)
else:
self.mc.PEXTRD_rxi(resultloc.value, sourceloc.value, si)
elif size == 2:
if resultloc.is_xmm and sourceloc.is_xmm:
self.mc.PEXTRW_rxi(X86_64_SCRATCH_REG.value, sourceloc.value, si)
self.mc.PINSRW_xri(resultloc.value, X86_64_SCRATCH_REG.value, ri)
elif resultloc.is_xmm:
self.mc.PINSRW_xri(resultloc.value, sourceloc.value, ri)
else:
self.mc.PEXTRW_rxi(resultloc.value, sourceloc.value, si)
elif size == 1:
if resultloc.is_xmm and sourceloc.is_xmm:
self.mc.PEXTRB_rxi(X86_64_SCRATCH_REG.value, sourceloc.value, si)
self.mc.PINSRB_xri(resultloc.value, X86_64_SCRATCH_REG.value, ri)
elif resultloc.is_xmm:
self.mc.PINSRB_xri(resultloc.value, sourceloc.value, ri)
else:
self.mc.PEXTRB_rxi(resultloc.value, sourceloc.value, si)
si += 1
ri += 1
k -= 1
genop_vec_unpack_i = genop_vec_pack_i
def genop_vec_pack_f(self, op, arglocs, resultloc):
resloc, srcloc, residxloc, srcidxloc, countloc, sizeloc = arglocs
assert isinstance(resloc, RegLoc)
assert isinstance(srcloc, RegLoc)
count = countloc.value
residx = residxloc.value
srcidx = srcidxloc.value
size = sizeloc.value
if size == 4:
si = srcidx
ri = residx
k = count
while k > 0:
if resloc.is_xmm:
src = srcloc.value
if not srcloc.is_xmm:
# if source is a normal register (unpack)
assert count == 1
assert si == 0
self.mov(srcloc, X86_64_XMM_SCRATCH_REG)
src = X86_64_XMM_SCRATCH_REG.value
select = ((si & 0x3) << 6)|((ri & 0x3) << 4)
self.mc.INSERTPS_xxi(resloc.value, src, select)
else:
self.mc.PEXTRD_rxi(resloc.value, srcloc.value, si)
si += 1
ri += 1
k -= 1
elif size == 8:
assert resloc.is_xmm
if srcloc.is_xmm:
if srcidx == 0:
if residx == 0:
# r = (s[0], r[1])
self.mc.MOVSD(resloc, srcloc)
else:
assert residx == 1
# r = (r[0], s[0])
self.mc.UNPCKLPD(resloc, srcloc)
else:
assert srcidx == 1
if residx == 0:
# r = (s[1], r[1])
if resloc != srcloc:
self.mc.UNPCKHPD(resloc, srcloc)
self.mc.SHUFPD_xxi(resloc.value, resloc.value, 1)
else:
assert residx == 1
# r = (r[0], s[1])
if resloc != srcloc:
self.mc.SHUFPD_xxi(resloc.value, resloc.value, 1)
self.mc.UNPCKHPD(resloc, srcloc)
# if they are equal nothing is to be done
else:
not_implemented("pack/unpack for size %d" % size)
genop_vec_unpack_f = genop_vec_pack_f
def genop_vec_cast_float_to_singlefloat(self, op, arglocs, resloc):
self.mc.CVTPD2PS(resloc, arglocs[0])
def genop_vec_cast_float_to_int(self, op, arglocs, resloc):
self.mc.CVTPD2DQ(resloc, arglocs[0])
def genop_vec_cast_int_to_float(self, op, arglocs, resloc):
self.mc.CVTDQ2PD(resloc, arglocs[0])
def genop_vec_cast_singlefloat_to_float(self, op, arglocs, resloc):
self.mc.CVTPS2PD(resloc, arglocs[0])
class VectorRegallocMixin(object):
_mixin_ = True
def _consider_vec_load(self, op):
descr = op.getdescr()
assert isinstance(descr, ArrayDescr)
assert not descr.is_array_of_pointers() and \
not descr.is_array_of_structs()
itemsize, _, _ = unpack_arraydescr(descr)
integer = not (descr.is_array_of_floats() or descr.getconcrete_type() == FLOAT)
args = op.getarglist()
scale = get_scale(op.getarg(2).getint())
ofs = op.getarg(3).getint()
base_loc = self.rm.make_sure_var_in_reg(op.getarg(0), args)
ofs_loc = self.rm.make_sure_var_in_reg(op.getarg(1), args)
result_loc = self.force_allocate_reg(op)
self.perform(op, [base_loc, ofs_loc, imm(itemsize), imm(scale),
imm(ofs), imm(integer)], result_loc)
consider_vec_load_i = _consider_vec_load
consider_vec_load_f = _consider_vec_load
def consider_vec_store(self, op):
# TODO
descr = op.getdescr()
assert isinstance(descr, ArrayDescr)
assert not descr.is_array_of_pointers() and \
not descr.is_array_of_structs()
itemsize, _, _ = unpack_arraydescr(descr)
args = op.getarglist()
base_loc = self.rm.make_sure_var_in_reg(op.getarg(0), args)
value_loc = self.make_sure_var_in_reg(op.getarg(2), args)
ofs_loc = self.rm.make_sure_var_in_reg(op.getarg(1), args)
scale = get_scale(op.getarg(3).getint())
ofs = op.getarg(4).getint()
integer = not (descr.is_array_of_floats() or \
descr.getconcrete_type() == FLOAT)
self.perform_discard(op, [base_loc, ofs_loc, value_loc, imm(itemsize),
imm(scale), imm(ofs), imm(integer)])
def consider_vec_arith(self, op):
lhs = op.getarg(0)
assert isinstance(op, VectorOp)
size = op.bytesize
args = op.getarglist()
loc1 = self.make_sure_var_in_reg(op.getarg(1), args)
loc0 = self.xrm.force_result_in_reg(op, op.getarg(0), args)
self.perform(op, [loc0, loc1, imm(size)], loc0)
consider_vec_int_add = consider_vec_arith
consider_vec_int_sub = consider_vec_arith
consider_vec_int_mul = consider_vec_arith
consider_vec_float_add = consider_vec_arith
consider_vec_float_sub = consider_vec_arith
consider_vec_float_mul = consider_vec_arith
consider_vec_float_truediv = consider_vec_arith
del consider_vec_arith
def consider_vec_arith_unary(self, op):
lhs = op.getarg(0)
assert isinstance(lhs, VectorOp)
args = op.getarglist()
res = self.xrm.force_result_in_reg(op, op.getarg(0), args)
self.perform(op, [res, imm(lhs.bytesize)], res)
consider_vec_float_neg = consider_vec_arith_unary
consider_vec_float_abs = consider_vec_arith_unary
del consider_vec_arith_unary
def consider_vec_logic(self, op):
lhs = op.getarg(0)
assert isinstance(lhs, VectorOp)
args = op.getarglist()
source = self.make_sure_var_in_reg(op.getarg(1), args)
result = self.xrm.force_result_in_reg(op, op.getarg(0), args)
self.perform(op, [source, imm(lhs.bytesize)], result)
def consider_vec_float_eq(self, op):
assert isinstance(op, VectorOp)
lhs = op.getarg(0)
assert isinstance(lhs, VectorOp)
args = op.getarglist()
# we need to use xmm0
lhsloc = self.enforce_var_in_vector_reg(op.getarg(0), args, selected_reg=xmm0)
rhsloc = self.make_sure_var_in_reg(op.getarg(1), args)
resloc = self.force_allocate_vector_reg_or_cc(op)
self.perform(op, [lhsloc, rhsloc, imm(lhs.bytesize)], resloc)
def enforce_var_in_vector_reg(self, arg, forbidden_vars, selected_reg):
""" Enforce the allocation in a specific register. This can even be a forbidden
register. If it is forbidden, it will be moved to another register.
Use with caution, currently this is only used for the vectorization backend
instructions.
"""
xrm = self.xrm
curloc = self.loc(arg)
if curloc is selected_reg:
# nothing to do, it is already in the correct register
return selected_reg
if selected_reg not in xrm.free_regs:
# we need to move some registers
variable = None
candidate_to_spill = None
for var, reg in self.xrm.reg_bindings.items():
if reg is selected_reg:
variable = var
else:
if var not in forbidden_vars:
candidate_to_spill = var
# do we have a free register?
if len(xrm.free_regs) == 0:
# spill a non forbidden variable
if not candidate_to_spill:
raise NoVariableToSpill
reg = xrm.reg_bindings[candidate_to_spill]
xrm._spill_var(candidate_to_spill, forbidden_vars, None)
xrm.free_regs.append(reg)
loc = xrm.free_regs.pop()
self.assembler.mov(selected_reg, loc)
reg = xrm.reg_bindings.get(arg, None)
if reg:
xrm.free_regs.append(reg)
self.assembler.mov(reg, selected_reg)
xrm.reg_bindings[arg] = selected_reg
xrm.reg_bindings[variable] = loc
return selected_reg
return self.make_sure_var_in_reg(arg, forbidden_vars, selected_reg=selected_reg)
def force_allocate_vector_reg_or_cc(self, var):
assert var.type == INT
if self.next_op_can_accept_cc(self.operations, self.rm.position):
# hack: return the ebp location to mean "lives in CC". This
# ebp will not actually be used, and the location will be freed
# after the next op as usual.
self.xrm.force_allocate_frame_reg(var)
return ebp
else:
# else, return a regular register (not ebp).
return self.xrm.force_allocate_reg(var)
consider_vec_float_ne = consider_vec_float_eq
consider_vec_int_eq = consider_vec_float_eq
consider_vec_int_ne = consider_vec_float_eq
consider_vec_int_and = consider_vec_logic
consider_vec_int_or = consider_vec_logic
consider_vec_int_xor = consider_vec_logic
consider_vec_float_xor = consider_vec_logic
del consider_vec_logic
def consider_vec_pack_i(self, op):
# new_res = vec_pack_i(res, src, index, count)
assert isinstance(op, VectorOp)
arg = op.getarg(1)
index = op.getarg(2)
count = op.getarg(3)
assert isinstance(index, ConstInt)
assert isinstance(count, ConstInt)
args = op.getarglist()
srcloc = self.make_sure_var_in_reg(arg, args)
resloc = self.xrm.force_result_in_reg(op, op.getarg(0), args)
residx = index.value # where to put it in result?
srcidx = 0
arglocs = [resloc, srcloc, imm(residx), imm(srcidx),
imm(count.value), imm(op.bytesize)]
self.perform(op, arglocs, resloc)
consider_vec_pack_f = consider_vec_pack_i
def consider_vec_unpack_i(self, op):
assert isinstance(op, VectorOp)
index = op.getarg(1)
count = op.getarg(2)
assert isinstance(index, ConstInt)
assert isinstance(count, ConstInt)
args = op.getarglist()
srcloc = self.make_sure_var_in_reg(op.getarg(0), args)
if op.is_vector():
resloc = self.xrm.force_result_in_reg(op, op.getarg(0), args)
size = op.bytesize
else:
# unpack into iX box
resloc = self.force_allocate_reg(op, args)
arg = op.getarg(0)
assert isinstance(arg, VectorOp)
size = arg.bytesize
residx = 0
args = op.getarglist()
arglocs = [resloc, srcloc, imm(residx), imm(index.value), imm(count.value), imm(size)]
self.perform(op, arglocs, resloc)
consider_vec_unpack_f = consider_vec_unpack_i
def consider_vec_expand_f(self, op):
assert isinstance(op, VectorOp)
arg = op.getarg(0)
args = op.getarglist()
if arg.is_constant():
resloc = self.xrm.force_allocate_reg(op)
srcloc = self.xrm.expand_float(op.bytesize, arg)
else:
resloc = self.xrm.force_result_in_reg(op, arg, args)
srcloc = resloc
self.perform(op, [srcloc, imm(op.bytesize)], resloc)
def consider_vec_expand_i(self, op):
assert isinstance(op, VectorOp)
arg = op.getarg(0)
args = op.getarglist()
if arg.is_constant():
srcloc = self.rm.convert_to_imm(arg)
else:
srcloc = self.make_sure_var_in_reg(arg, args)
resloc = self.xrm.force_allocate_reg(op, args)
self.perform(op, [srcloc, imm(op.bytesize)], resloc)
def consider_vec_int_signext(self, op):
assert isinstance(op, VectorOp)
args = op.getarglist()
resloc = self.xrm.force_result_in_reg(op, op.getarg(0), args)
arg = op.getarg(0)
assert isinstance(arg, VectorOp)
size = arg.bytesize
assert size > 0
self.perform(op, [resloc, imm(size), imm(op.bytesize)], resloc)
def consider_vec_int_is_true(self, op):
args = op.getarglist()
arg = op.getarg(0)
assert isinstance(arg, VectorOp)
argloc = self.loc(arg)
resloc = self.xrm.force_result_in_reg(op, arg, args)
self.perform(op, [resloc,imm(arg.bytesize)], None)
def _consider_vec(self, op):
# pseudo instruction, needed to create a new variable
self.xrm.force_allocate_reg(op)
consider_vec_i = _consider_vec
consider_vec_f = _consider_vec
def consider_vec_cast_float_to_int(self, op):
args = op.getarglist()
srcloc = self.make_sure_var_in_reg(op.getarg(0), args)
resloc = self.xrm.force_result_in_reg(op, op.getarg(0), args)
self.perform(op, [srcloc], resloc)
consider_vec_cast_int_to_float = consider_vec_cast_float_to_int
consider_vec_cast_float_to_singlefloat = consider_vec_cast_float_to_int
consider_vec_cast_singlefloat_to_float = consider_vec_cast_float_to_int
def consider_vec_guard_true(self, op):
arg = op.getarg(0)
loc = self.loc(arg)
self.assembler.guard_vector(op, self.loc(arg), True)
self.perform_guard(op, [], None)
def consider_vec_guard_false(self, op):
arg = op.getarg(0)
loc = self.loc(arg)
self.assembler.guard_vector(op, self.loc(arg), False)
self.perform_guard(op, [], None)
|