File: dependency.py

package info (click to toggle)
pypy 5.6.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 97,040 kB
  • ctags: 185,069
  • sloc: python: 1,147,862; ansic: 49,642; cpp: 5,245; asm: 5,169; makefile: 529; sh: 481; xml: 232; lisp: 45
file content (1218 lines) | stat: -rw-r--r-- 44,527 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
import py

from rpython.jit.metainterp import compile
from rpython.jit.metainterp.optimizeopt.util import make_dispatcher_method
from rpython.jit.metainterp.resoperation import (rop, GuardResOp, ResOperation)
from rpython.jit.codewriter.effectinfo import EffectInfo
from rpython.jit.metainterp.history import (ConstPtr, ConstInt,Const,
        AbstractValue, AbstractFailDescr)
from rpython.rtyper.lltypesystem import llmemory
from rpython.rlib.unroll import unrolling_iterable
from rpython.rlib.objectmodel import we_are_translated

MODIFY_COMPLEX_OBJ = [ (rop.SETARRAYITEM_GC, 0, 1)
                     , (rop.SETARRAYITEM_RAW, 0, 1)
                     , (rop.RAW_STORE, 0, 1)
                     , (rop.VEC_STORE, 0, 1)
                     , (rop.SETINTERIORFIELD_GC, 0, -1)
                     , (rop.SETINTERIORFIELD_RAW, 0, -1)
                     , (rop.SETFIELD_GC, 0, -1)
                     , (rop.SETFIELD_RAW, 0, -1)
                     , (rop.ZERO_ARRAY, 0, -1)
                     , (rop.STRSETITEM, 0, -1)
                     , (rop.UNICODESETITEM, 0, -1)
                     ]

UNROLLED_MODIFY_COMPLEX_OBJ = unrolling_iterable(MODIFY_COMPLEX_OBJ)

LOAD_COMPLEX_OBJ = [ (rop.GETARRAYITEM_GC_I, 0, 1)
                   , (rop.GETARRAYITEM_GC_F, 0, 1)
                   , (rop.GETARRAYITEM_GC_R, 0, 1)
                   , (rop.GETARRAYITEM_RAW_I, 0, 1)
                   , (rop.GETARRAYITEM_RAW_F, 0, 1)
                   , (rop.RAW_LOAD_I, 0, 1)
                   , (rop.RAW_LOAD_F, 0, 1)
                   , (rop.VEC_LOAD_I, 0, 1)
                   , (rop.VEC_LOAD_F, 0, 1)
                   , (rop.GETINTERIORFIELD_GC_I, 0, 1)
                   , (rop.GETINTERIORFIELD_GC_F, 0, 1)
                   , (rop.GETINTERIORFIELD_GC_R, 0, 1)
                   , (rop.GETFIELD_GC_I, 0, -1)
                   , (rop.GETFIELD_GC_F, 0, -1)
                   , (rop.GETFIELD_GC_R, 0, -1)
                   , (rop.GETFIELD_RAW_I, 0, -1)
                   , (rop.GETFIELD_RAW_F, 0, -1)
                   , (rop.GETFIELD_RAW_R, 0, -1)
                   ]

UNROLLED_LOAD_COMPLEX_OBJ = unrolling_iterable(LOAD_COMPLEX_OBJ)

class Path(object):
    def __init__(self,path):
        self.path = path

    def second(self):
        if len(self.path) <= 1:
            return None
        return self.path[1]

    def last_but_one(self):
        if len(self.path) < 2:
            return None
        return self.path[-2]

    def last(self):
        if len(self.path) < 1:
            return None
        return self.path[-1]

    def first(self):
        return self.path[0]

    def is_always_pure(self, exclude_first=False, exclude_last=False):
        last = len(self.path)-1
        count = len(self.path)
        i = 0
        if exclude_first:
            i += 1
        if exclude_last:
            count -= 1
        while i < count: 
            node = self.path[i]
            if node.is_imaginary():
                i += 1
                continue
            op = node.getoperation()
            if rop.is_guard(op.opnum):
                descr = op.getdescr()
                if not descr:
                    return False
                assert isinstance(descr, AbstractFailDescr)
                if not descr.exits_early():
                    return False
            elif not rop.is_always_pure(op.opnum):
                return False
            i += 1
        return True

    def set_schedule_priority(self, p):
        for node in self.path:
            node.setpriority(p)

    def walk(self, node):
        self.path.append(node)

    def cut_off_at(self, index):
        self.path = self.path[:index]

    def check_acyclic(self):
        """NOT_RPYTHON"""
        seen = set()
        for segment in self.path:
            if segment in seen:
                print "path:"
                for segment in self.path:
                    print " ->", segment
                print ""
                assert 0, "segment %s was already seen. this makes the path cyclic!" % segment
            else:
                seen.add(segment)
        return True

    def clone(self):
        return Path(self.path[:])

    def as_str(self):
        """ NOT_RPYTHON """
        return ' -> '.join([str(p) for p in self.path])

class Node(object):
    def __init__(self, op, opidx):
        self.op = op
        self.opidx = opidx
        self.adjacent_list = []
        self.adjacent_list_back = []
        self.memory_ref = None
        self.pack = None
        self.pack_position = -1
        self.emitted = False
        self.schedule_position = -1
        self.priority = 0
        self._stack = False
        self.delayed = None

    def is_imaginary(self):
        return False

    def getoperation(self):
        return self.op

    def getindex(self):
        return self.opidx

    def getopnum(self):
        return self.op.getopnum()

    def getopname(self):
        return self.op.getopname()

    def setpriority(self, value):
        self.priority = value

    def can_be_relaxed(self):
        return self.op.getopnum() in (rop.GUARD_TRUE, rop.GUARD_FALSE)

    def is_pure(self):
        return rop.is_always_pure(self.op.getopnum())

    def edge_to(self, to, arg=None, failarg=False, label=None):
        if self is to:
            return
        dep = self.depends_on(to)
        if not dep:
            #if force or self.independent(idx_from, idx_to):
            dep = Dependency(self, to, arg, failarg)
            self.adjacent_list.append(dep)
            dep_back = Dependency(to, self, arg, failarg)
            dep.backward = dep_back
            to.adjacent_list_back.append(dep_back)
            if not we_are_translated():
                if label is None:
                    label = ''
                dep.label = label
        else:
            if not dep.because_of(arg):
                dep.add_dependency(self,to,arg)
            # if a fail argument is overwritten by another normal
            # dependency it will remove the failarg flag
            if not (dep.is_failarg() and failarg):
                dep.set_failarg(False)
            if not we_are_translated() and label is not None:
                _label = getattr(dep, 'label', '')
                dep.label = _label + ", " + label
        return dep

    def clear_dependencies(self):
        self.adjacent_list = []
        self.adjacent_list_back = []

    def exits_early(self):
        if self.op.is_guard():
            descr = self.op.getdescr()
            return descr.exits_early()
        return False

    def loads_from_complex_object(self):
        return rop._ALWAYS_PURE_LAST <= self.op.getopnum() < rop._MALLOC_FIRST

    def modifies_complex_object(self):
        return rop.SETARRAYITEM_GC <= self.op.getopnum() <= rop.UNICODESETITEM

    def side_effect_arguments(self):
        # if an item in array p0 is modified or a call contains an argument
        # it can modify it is returned in the destroyed list.
        args = []
        op = self.op
        if self.modifies_complex_object():
            for opnum, i, j in UNROLLED_MODIFY_COMPLEX_OBJ: #unrolling_iterable(MODIFY_COMPLEX_OBJ):
                if op.getopnum() == opnum:
                    op_args = op.getarglist()
                    if j == -1:
                        args.append((op.getarg(i), None, True))
                        for j in range(i+1,len(op_args)):
                            args.append((op.getarg(j), None, False))
                    else:
                        args.append((op.getarg(i), op.getarg(j), True))
                        for x in range(j+1,len(op_args)):
                            args.append((op.getarg(x), None, False))
                    return args
        # assume this destroys every argument... can be enhanced by looking
        # at the effect info of a call for instance
        for arg in op.getarglist():
            # if it is a constant argument it cannot be destroyed.
            # neither can a box float be destroyed. BoxInt can
            # contain a reference thus it is assumed to be destroyed
            if arg.is_constant() or arg.type == 'f':
                args.append((arg, None, False))
            else:
                args.append((arg, None, True))
        return args

    def provides_count(self):
        return len(self.adjacent_list)

    def provides(self):
        return self.adjacent_list

    def depends_count(self):
        return len(self.adjacent_list_back)

    def depends(self):
        return self.adjacent_list_back

    def depends_on(self, to):
        """ Does there exist a dependency from the instruction to another?
            Returns None if there is no dependency or the Dependency object in
            any other case.
        """
        for edge in self.adjacent_list:
            if edge.to is to:
                return edge
        return None 

    def dependencies(self):
        return self.adjacent_list[:] + self.adjacent_list_back[:] # COPY

    def is_after(self, other):
        return self.opidx > other.opidx

    def is_before(self, other):
        return self.opidx < other.opidx

    def independent(self, other):
        """ An instruction depends on another if there is a path from
        self to other. """
        if self == other:
            return True
        # forward
        worklist = [self]
        while len(worklist) > 0:
            node = worklist.pop()
            for dep in node.provides():
                if dep.to.is_after(other):
                    continue
                if dep.points_to(other):
                    # dependent. There is a path from self to other
                    return False
                worklist.append(dep.to)
        # backward
        worklist = [self]
        while len(worklist) > 0:
            node = worklist.pop()
            for dep in node.depends():
                if dep.to.is_before(other):
                    continue
                if dep.points_to(other):
                    # dependent. There is a path from self to other
                    return False
                worklist.append(dep.to)
        return True

    def iterate_paths(self, to, backwards=False, path_max_len=-1, blacklist=False):
        """ Yield all nodes from self leading to 'to'.
            
            backwards: Determines the iteration direction.
            blacklist: Marks nodes that have already been visited.
                       It comes in handy if a property must hold for every path.
                       Not *every* possible instance must be iterated, but trees
                       that have already been visited can be ignored after the
                       first visit.
        """
        if self is to:
            return
        blacklist_visit = {}
        path = Path([self])
        worklist = [(0, self, 1)]
        while len(worklist) > 0:
            index,node,pathlen = worklist.pop()
            if backwards:
                iterdir = node.depends()
            else:
                iterdir = node.provides()
            if index >= len(iterdir):
                if to is None and index == 0:
                    yield Path(path.path[:])
                if blacklist:
                    blacklist_visit[node] = None
                continue
            else:
                next_dep = iterdir[index]
                next_node = next_dep.to
                index += 1
                if index < len(iterdir):
                    worklist.append((index, node, pathlen))
                else:
                    blacklist_visit[node] = None
                path.cut_off_at(pathlen)
                path.walk(next_node)
                if blacklist and next_node in blacklist_visit:
                    yield Path(path.path[:])
                    continue
                pathlen += 1

                if next_node is to or \
                   (path_max_len > 0 and pathlen >= path_max_len):
                    yield Path(path.path[:])
                    # note that the destiantion node ``to'' is never blacklisted
                    #if blacklist:
                    #    blacklist_visit[next_node] = None
                else:
                    worklist.append((0, next_node, pathlen))

    def remove_edge_to(self, node):
        i = 0
        while i < len(self.adjacent_list):
            dep = self.adjacent_list[i]
            if dep.to is node:
                del self.adjacent_list[i]
                break
            i += 1
        i = 0
        while i < len(node.adjacent_list_back):
            dep = node.adjacent_list_back[i]
            if dep.to is self:
                del node.adjacent_list_back[i]
                break
            i += 1

    def getedge_to(self, other):
        for dep in self.adjacent_list:
            if dep.to == other:
                return dep
        return None

    def __repr__(self):
        pack = ''
        if self.pack:
            pack = "p: %d" % self.pack.numops()
        return "Node(%s,%s i: %d)" % (self.op, pack, self.opidx)

    def getdotlabel(self):
        """ NOT_RPTYHON """
        op_str = str(self.op)
        if self.op.is_guard():
            args_str = []
            for arg in self.op.getfailargs():
                name = 'None'
                if arg:
                    name = arg.repr_short(arg._repr_memo)
                args_str.append(name)
            op_str += " " + ','.join(args_str)
        return "[%d] %s" % (self.opidx, op_str)

class ImaginaryNode(Node):
    _index = 987654321 # big enough? :)
    def __init__(self, label):
        index = -1
        if not we_are_translated():
            self.dotlabel = label
            index = ImaginaryNode._index
            ImaginaryNode._index += 1
        Node.__init__(self, None, index)

    def is_imaginary(self):
        return True

    def getdotlabel(self):
        """ NOT_RPTYHON """
        return self.dotlabel

class Dependency(object):
    def __init__(self, at, to, arg, failarg=False):
        assert at != to
        self.args = [] 
        if arg is not None:
            self.add_dependency(at, to, arg)
        self.at = at
        self.to = to
        self.failarg = failarg
        self.backward = None

    def because_of(self, var):
        for arg in self.args:
            if arg[1] == var:
                return True
        return False

    def target_node(self):
        return self.to

    def origin_node(self):
        return self.at

    def to_index(self):
        return self.to.getindex()
    def at_index(self):
        return self.at.getindex()

    def points_after_to(self, to):
        return self.to.opidx < to.opidx
    def points_above_at(self, at):
        return self.at.opidx < at.opidx
    def i_points_above_at(self, idx):
        return self.at.opidx < idx

    def points_to(self, to):
        return self.to == to
    def points_at(self, at):
        return self.at == at

    def add_dependency(self, at, to, arg):
        self.args.append((at,arg))

    def set_failarg(self, value):
        self.failarg = value
        if self.backward:
            self.backward.failarg = value

    def is_failarg(self):
        return self.failarg

    def reverse_direction(self, ref):
        """ if the parameter index is the same as idx_to then
        this edge is in reverse direction.
        """
        return self.to == ref

    def __repr__(self):
        return 'Dep(T[%d] -> T[%d], arg: %s)' \
                % (self.at.opidx, self.to.opidx, self.args)

class DefTracker(object):
    def __init__(self, graph):
        self.graph = graph
        self.defs = {}
        self.non_pure = []

    def add_non_pure(self, node):
        self.non_pure.append(node)

    def define(self, arg, node, argcell=None):
        if isinstance(arg, Const):
            return
        if arg in self.defs:
            self.defs[arg].append((node,argcell))
        else:
            self.defs[arg] = [(node,argcell)]

    def redefinitions(self, arg):
        for _def in self.defs[arg]:
            yield _def[0]

    def is_defined(self, arg):
        return arg in self.defs

    def definition(self, arg, node=None, argcell=None):
        if arg.is_constant():
            return None
        def_chain = self.defs.get(arg,None)
        if not def_chain:
            return None
        if not argcell:
            return def_chain[-1][0]
        else:
            assert node is not None
            i = len(def_chain)-1
            try:
                mref = node.memory_ref
                while i >= 0:
                    def_node = def_chain[i][0]
                    oref = def_node.memory_ref
                    if oref is not None and mref.alias(oref):
                        return def_node
                    elif oref is None:
                        return def_node
                    i -= 1
                return None
            except KeyError:
                # when a key error is raised, this means
                # no information is available, safe default
                pass
            return def_chain[-1][0]

    def depends_on_arg(self, arg, to, argcell=None):
        try:
            at = self.definition(arg, to, argcell)
            if at is None:
                return
            at.edge_to(to, arg)
        except KeyError:
            if not we_are_translated():
                if not isinstance(arg, Const):
                    assert False, "arg %s must be defined" % arg


class DependencyGraph(object):
    """ A graph that represents one of the following dependencies:
          * True dependency
          * Anti dependency (not present in SSA traces)
          * Ouput dependency (not present in SSA traces)
        Traces in RPython are not in SSA form when it comes to complex
        object modification such as array or object side effects.
        Representation is an adjacent list. The number of edges between the
        vertices is expected to be small.
        Note that adjacent lists order their dependencies. They are ordered
        by the target instruction they point to if the instruction is
        a dependency.

        memory_refs: a dict that contains indices of memory references
        (load,store,getarrayitem,...). If none provided, the construction
        is conservative. It will never dismiss dependencies of two
        modifications of one array even if the indices can never point to
        the same element.
    """
    def __init__(self, loop):
        self.loop = loop
        label = loop.prefix_label or loop.label
        self.label = Node(label, 0)
        self.nodes = [ Node(op,0) for op in loop.operations if not rop.is_jit_debug(op.opnum) ]
        for i,node in enumerate(self.nodes):
            node.opidx = i+1
        self.inodes = [] # imaginary nodes
        self.jump = Node(loop.jump, len(self.nodes)+1)
        self.invariant_vars = {}
        self.update_invariant_vars(label)
        self.memory_refs = {}
        self.schedulable_nodes = []
        self.index_vars = {}
        self.comparison_vars = {}
        self.guards = []
        self.build_dependencies()

    def getnode(self, i):
        return self.nodes[i]

    def imaginary_node(self, label):
        node = ImaginaryNode(label)
        self.inodes.append(node)
        return node

    def update_invariant_vars(self, label_op=None):
        if not label_op:
            label_op = self.label.getoperation()
        jump_op = self.jump.getoperation()
        assert label_op.numargs() == jump_op.numargs()
        for i in range(label_op.numargs()):
            label_box = label_op.getarg(i)
            jump_box = jump_op.getarg(i)
            if label_box == jump_box:
                self.invariant_vars[label_box] = None

    def box_is_invariant(self, box):
        return box in self.invariant_vars

    def build_dependencies(self):
        """ This is basically building the definition-use chain and saving this
            information in a graph structure. This is the same as calculating
            the reaching definitions and the 'looking back' whenever it is used.

            Write After Read, Write After Write dependencies are not possible,
            the operations are in SSA form
        """
        tracker = DefTracker(self)
        #
        label_pos = 0
        jump_pos = len(self.nodes)-1
        intformod = IntegralForwardModification(self.memory_refs, self.index_vars,
                                                self.comparison_vars, self.invariant_vars)
        # pass 1
        for i,node in enumerate(self.nodes):
            op = node.op
            if rop.is_always_pure(op.opnum):
                node.setpriority(1)
            if rop.is_guard(op.opnum):
                node.setpriority(2)
            # the label operation defines all operations at the
            # beginning of the loop

            intformod.inspect_operation(op,node)
            # definition of a new variable
            if op.type != 'v':
                # In SSA form. Modifications get a new variable
                tracker.define(op, node)
            # usage of defined variables
            if rop.is_always_pure(op.opnum) or rop.is_final(op.opnum):
                # normal case every arguments definition is set
                for arg in op.getarglist():
                    tracker.depends_on_arg(arg, node)
            elif rop.is_guard(op.opnum):
                if node.exits_early():
                    pass
                else:
                    # consider cross iterations?
                    if len(self.guards) > 0:
                        last_guard = self.guards[-1]
                        last_guard.edge_to(node, failarg=True, label="guardorder")
                    for nonpure in tracker.non_pure:
                        nonpure.edge_to(node, failarg=True, label="nonpure")
                    tracker.non_pure = []
                self.guards.append(node)
                self.build_guard_dependencies(node, tracker)
            else:
                self.build_non_pure_dependencies(node, tracker)

    def guard_argument_protection(self, guard_node, tracker):
        """ the parameters the guard protects are an indicator for
            dependencies. Consider the example:
            i3 = ptr_eq(p1,p2)
            guard_true(i3) [...]

            guard_true|false are exceptions because they do not directly
            protect the arguments, but a comparison function does.
        """
        guard_op = guard_node.getoperation()
        guard_opnum = guard_op.getopnum()
        for arg in guard_op.getarglist():
            if not arg.is_constant() and arg.type not in ('i','f'):
                # redefine pointers, consider the following example
                # guard_nonnull(r1)
                # i1 = getfield(r1, ...)
                # guard must be emitted before the getfield, thus
                # redefine r1 at guard_nonnull
                tracker.define(arg, guard_node)
        if guard_opnum == rop.GUARD_NOT_FORCED_2:
            # must be emitted before finish, thus delayed the longest
            guard_node.setpriority(-10)
        elif guard_opnum in (rop.GUARD_OVERFLOW, rop.GUARD_NO_OVERFLOW):
            # previous operation must be an ovf_operation
            guard_node.setpriority(100)
            i = guard_node.getindex()-1
            while i >= 0:
                node = self.nodes[i]
                op = node.getoperation()
                if op.is_ovf():
                    break
                i -= 1
            else:
                raise AssertionError("(no)overflow: no overflowing op present")
            node.edge_to(guard_node, None, label='overflow')
        elif guard_opnum in (rop.GUARD_NO_EXCEPTION, rop.GUARD_EXCEPTION, rop.GUARD_NOT_FORCED):
            # previous op must be one that can raise or a not forced guard
            guard_node.setpriority(100)
            i = guard_node.getindex() - 1
            while i >= 0:
                node = self.nodes[i]
                op = node.getoperation()
                if op.can_raise():
                    node.edge_to(guard_node, None, label='exception/notforced')
                    break
                if op.is_guard():
                    node.edge_to(guard_node, None, label='exception/notforced')
                    break
                i -= 1
            else:
                raise AssertionError("(no)exception/not_forced: not op raises for them")
        else:
            pass # not invalidated, future condition!

    def guard_exit_dependence(self, guard_node, var, tracker):
        def_node = tracker.definition(var)
        if def_node is None:
            return
        for dep in def_node.provides():
            if guard_node.is_before(dep.to) and dep.because_of(var):
                guard_node.edge_to(dep.to, var, label='guard_exit('+str(var)+')')

    def build_guard_dependencies(self, guard_node, tracker):
        guard_op = guard_node.op
        if guard_op.getopnum() >= rop.GUARD_FUTURE_CONDITION:
            # ignore invalidated & future condition guard & early exit
            return
        # true dependencies
        for arg in guard_op.getarglist():
            tracker.depends_on_arg(arg, guard_node)
        # dependencies to uses of arguments it protects
        self.guard_argument_protection(guard_node, tracker)
        #
        descr = guard_op.getdescr()
        if descr.exits_early():
            return
        # handle fail args
        if guard_op.getfailargs():
            for i,arg in enumerate(guard_op.getfailargs()):
                if arg is None:
                    continue
                if not tracker.is_defined(arg):
                    continue
                try:
                    for at in tracker.redefinitions(arg):
                        # later redefinitions are prohibited
                        if at.is_before(guard_node):
                            at.edge_to(guard_node, arg, failarg=True, label="fail")
                except KeyError:
                    assert False

    def build_non_pure_dependencies(self, node, tracker):
        op = node.op
        if node.loads_from_complex_object():
            # If this complex object load operation loads an index that has been
            # modified, the last modification should be used to put a def-use edge.
            for opnum, i, j in UNROLLED_LOAD_COMPLEX_OBJ:
                if opnum == op.getopnum():
                    cobj = op.getarg(i)
                    if j != -1:
                        index_var = op.getarg(j)
                        tracker.depends_on_arg(cobj, node, index_var)
                        tracker.depends_on_arg(index_var, node)
                    else:
                        tracker.depends_on_arg(cobj, node)
                    break
        else:
            for arg, argcell, destroyed in node.side_effect_arguments():
                if argcell is not None:
                    # tracks the exact cell that is modified
                    tracker.depends_on_arg(arg, node, argcell)
                    tracker.depends_on_arg(argcell, node)
                else:
                    if destroyed:
                        # cannot be sure that only a one cell is modified
                        # assume all cells are (equivalent to a redefinition)
                        try:
                            # A trace is not entirely in SSA form. complex object
                            # modification introduces WAR/WAW dependencies
                            def_node = tracker.definition(arg)
                            if def_node:
                                for dep in def_node.provides():
                                    if dep.to != node:
                                        dep.to.edge_to(node, argcell, label='war')
                                def_node.edge_to(node, argcell)
                        except KeyError:
                            pass
                    else:
                        # not destroyed, just a normal use of arg
                        tracker.depends_on_arg(arg, node)
                if destroyed:
                    tracker.define(arg, node, argcell=argcell)
            # it must be assumed that a side effect operation must not be executed
            # before the last guard operation
            if len(self.guards) > 0:
                last_guard = self.guards[-1]
                last_guard.edge_to(node, label="sideeffect")
            # and the next guard instruction
            tracker.add_non_pure(node)

    def cycles(self):
        """ NOT_RPYTHON """
        stack = []
        for node in self.nodes:
            node._stack = False
        #
        label = self.nodes[0]
        if _first_cycle(stack, label):
            return stack
        return None

    def __repr__(self):
        graph = "graph([\n"
        for node in self.nodes:
            graph += "       " + str(node.opidx) + ": "
            for dep in node.provides():
                graph += "=>" + str(dep.to.opidx) + ","
            graph += " | "
            for dep in node.depends():
                graph += "<=" + str(dep.to.opidx) + ","
            graph += "\n"
        return graph + "      ])"

    def view(self):
        """ NOT_RPYTHON """
        from rpython.translator.tool.graphpage import GraphPage
        page = GraphPage()
        page.source = self.as_dot()
        page.links = []
        page.display()

    def as_dot(self):
        """ NOT_RPTYHON """
        if not we_are_translated():
            dot = "digraph dep_graph {\n"
            for node in self.nodes + self.inodes:
                dot += " n%d [label=\"%s\"];\n" % (node.getindex(),node.getdotlabel())
            dot += "\n"
            for node in self.nodes + self.inodes:
                for dep in node.provides():
                    label = ''
                    if getattr(dep, 'label', None):
                        label = '[label="%s"]' % dep.label
                    dot += " n%d -> n%d %s;\n" % (node.getindex(),dep.to_index(),label)
            dot += "\n}\n"
            return dot
        raise NotImplementedError("dot only for debug purpose")

def _first_cycle(stack, node):
    node._stack = True
    stack.append(node)

    for dep in node.provides():
        succ = dep.to
        if succ._stack:
            # found cycle!
            while stack[0] is not succ:
                del stack[0]
            return True
        else:
            return _first_cycle(stack, succ)

    return False

def _strongly_connect(index, stack, cycles, node):
    """ currently unused """
    node._scc_index = index
    node._scc_lowlink = index
    index += 1
    stack.append(node)
    node._scc_stack = True

    for dep in node.provides():
        succ = dep.to
        if succ._scc_index == -1:
            index = _strongly_connect(index, stack, cycles, succ)
            node._scc_lowlink = min(node._scc_lowlink, succ._scc_lowlink)
        elif succ._scc_stack:
            node._scc_lowlink = min(node._scc_lowlink, succ._scc_index)

    if node._scc_lowlink == node._scc_index:
        cycle = []
        while True:
            w = stack.pop()
            w._scc_stack = False
            cycle.append(w)
            if w is node:
                break
        cycles.append(cycle)
    return index

class IntegralForwardModification(object):
    """ Calculates integral modifications on integer boxes. """
    def __init__(self, memory_refs, index_vars, comparison_vars, invariant_vars):
        self.index_vars = index_vars
        self.comparison_vars = comparison_vars
        self.memory_refs = memory_refs
        self.invariant_vars = invariant_vars

    def is_const_integral(self, box):
        if isinstance(box, ConstInt):
            return True
        return False

    def get_or_create(self, arg):
        var = self.index_vars.get(arg, None)
        if not var:
            var = self.index_vars[arg] = IndexVar(arg)
        return var

    additive_func_source = """
    def operation_{name}(self, op, node):
        box_r = op
        box_a0 = op.getarg(0)
        box_a1 = op.getarg(1)
        if self.is_const_integral(box_a0) and self.is_const_integral(box_a1):
            idx_ref = IndexVar(box_r)
            idx_ref.constant = box_a0.getint() {op} box_a1.getint()
            self.index_vars[box_r] = idx_ref 
        elif self.is_const_integral(box_a0):
            idx_ref = self.get_or_create(box_a1)
            idx_ref = idx_ref.clone()
            idx_ref.constant {op}= box_a0.getint()
            self.index_vars[box_r] = idx_ref
        elif self.is_const_integral(box_a1):
            idx_ref = self.get_or_create(box_a0)
            idx_ref = idx_ref.clone()
            idx_ref.constant {op}= box_a1.getint()
            self.index_vars[box_r] = idx_ref
    """
    exec py.code.Source(additive_func_source
            .format(name='INT_ADD', op='+')).compile()
    exec py.code.Source(additive_func_source
            .format(name='INT_SUB', op='-')).compile()
    del additive_func_source

    multiplicative_func_source = """
    def operation_{name}(self, op, node):
        box_r = op
        if not box_r:
            return
        box_a0 = op.getarg(0)
        box_a1 = op.getarg(1)
        if self.is_const_integral(box_a0) and self.is_const_integral(box_a1):
            idx_ref = IndexVar(box_r)
            idx_ref.constant = box_a0.getint() {cop} box_a1.getint()
            self.index_vars[box_r] = idx_ref 
        elif self.is_const_integral(box_a0):
            idx_ref = self.get_or_create(box_a1)
            idx_ref = idx_ref.clone()
            idx_ref.coefficient_{tgt} *= box_a0.getint()
            idx_ref.constant {cop}= box_a0.getint()
            self.index_vars[box_r] = idx_ref
        elif self.is_const_integral(box_a1):
            idx_ref = self.get_or_create(box_a0)
            idx_ref = idx_ref.clone()
            idx_ref.coefficient_{tgt} {op}= box_a1.getint()
            idx_ref.constant {cop}= box_a1.getint()
            self.index_vars[box_r] = idx_ref
    """
    exec py.code.Source(multiplicative_func_source
            .format(name='INT_MUL', op='*', tgt='mul', cop='*')).compile()
    del multiplicative_func_source

    array_access_source = """
    def operation_{name}(self, op, node):
        descr = op.getdescr()
        idx_ref = self.get_or_create(op.getarg(1))
        if descr and descr.is_array_of_primitives():
            node.memory_ref = MemoryRef(op, idx_ref, {raw_access})
            self.memory_refs[node] = node.memory_ref
    """
    exec py.code.Source(array_access_source
           .format(name='RAW_LOAD_I',raw_access=True)).compile()
    exec py.code.Source(array_access_source
           .format(name='RAW_LOAD_F',raw_access=True)).compile()
    exec py.code.Source(array_access_source
           .format(name='RAW_STORE',raw_access=True)).compile()
    exec py.code.Source(array_access_source
           .format(name='GETARRAYITEM_RAW_I',raw_access=False)).compile()
    exec py.code.Source(array_access_source
           .format(name='GETARRAYITEM_RAW_F',raw_access=False)).compile()
    exec py.code.Source(array_access_source
           .format(name='SETARRAYITEM_RAW',raw_access=False)).compile()
    exec py.code.Source(array_access_source
           .format(name='GETARRAYITEM_GC_I',raw_access=False)).compile()
    exec py.code.Source(array_access_source
           .format(name='GETARRAYITEM_GC_F',raw_access=False)).compile()
    exec py.code.Source(array_access_source
           .format(name='SETARRAYITEM_GC',raw_access=False)).compile()
    del array_access_source
integral_dispatch_opt = make_dispatcher_method(IntegralForwardModification, 'operation_')
IntegralForwardModification.inspect_operation = integral_dispatch_opt
del integral_dispatch_opt

class IndexVar(AbstractValue):
    """ IndexVar is an AbstractValue only to ensure that a box can be assigned
        to the same variable as an index var.
    """
    def __init__(self, var, coeff_mul=1, coeff_div=1, constant=0):
        self.var = var
        self.coefficient_mul = coeff_mul
        self.coefficient_div = coeff_div
        self.constant = constant
        # saves the next modification that uses a variable
        self.next_nonconst = None
        self.current_end = None

    def calculated_by(self, op):
        # quick check to indicate if this operation is not directly expressable using
        # the operation in the op parameter.
        if op.getopnum() == rop.INT_ADD:
            a0 = op.getarg(0)
            a1 = op.getarg(1)
            if a0 is self.var and a1.is_constant() and a1.getint() == self.constant:
                return True
            if a1 is self.var and a0.is_constant() and a0.getint() == self.constant:
                return True
        if op.getopnum() == rop.INT_SUB:
            a0 = op.getarg(0)
            a1 = op.getarg(1)
            if a0 is self.var and a1.is_constant() and a1.getint() == self.constant:
                return True
        return False

    def stride_const(self):
        return self.next_nonconst is None

    def add_const(self, number):
        if self.current_end is None:
            self.constant += number
        else:
            self.current_end.constant += number

    def set_next_nonconst_mod(self, idxvar):
        if self.current_end is None:
            self.next_nonconst = idxvar
        else:
            self.current_end.next_nonconst = idxvar
        self.current_end = idxvar

    def getvariable(self):
        return self.var

    def is_identity(self):
        return self.coefficient_mul == 1 and \
               self.coefficient_div == 1 and \
               self.constant == 0

    def clone(self):
        c = IndexVar(self.var)
        c.coefficient_mul = self.coefficient_mul
        c.coefficient_div = self.coefficient_div
        c.constant = self.constant
        return c

    def same_variable(self, other):
        assert isinstance(other, IndexVar)
        return other.var == self.var

    def same_mulfactor(self, other):
        coeff = self.coefficient_mul == other.coefficient_mul
        coeff = coeff and (self.coefficient_div == other.coefficient_div)
        if not coeff:
            # if not equal, try to check if they divide without rest
            selfmod = self.coefficient_mul % self.coefficient_div
            othermod = other.coefficient_mul % other.coefficient_div
            if selfmod == 0 and othermod == 0:
                # yet another chance for them to be equal
                selfdiv = self.coefficient_mul // self.coefficient_div
                otherdiv = other.coefficient_mul // other.coefficient_div
                coeff = selfdiv == otherdiv
        return coeff

    def constant_diff(self, other):
        """ calculates the difference as a second parameter """
        assert isinstance(other, IndexVar)
        return self.constant - other.constant

    def get_operations(self):
        var = self.var
        tolist = []
        if self.coefficient_mul != 1:
            args = [var, ConstInt(self.coefficient_mul)]
            var = ResOperation(rop.INT_MUL, args)
            tolist.append(var)
        if self.coefficient_div != 1:
            assert 0   # should never be the case with handling
                       # of INT_PY_DIV commented out in this file...
        if self.constant > 0:
            args = [var, ConstInt(self.constant)]
            var = ResOperation(rop.INT_ADD, args)
            tolist.append(var)
        if self.constant < 0:
            args = [var, ConstInt(-self.constant)]
            var = ResOperation(rop.INT_SUB, args)
            tolist.append(var)
        return tolist

    def emit_operations(self, opt, result_box=None):
        var = self.var
        if self.is_identity():
            return var
        last = None
        for op in self.get_operations():
            opt.emit_operation(op)
            last = op
        return last

    def compare(self, other):
        """ Returns if the two are compareable as a first result
            and a number (-1,0,1) of the ordering
        """
        coeff = self.coefficient_mul == other.coefficient_mul
        coeff = coeff and (self.coefficient_div == other.coefficient_div)
        if not coeff:
            # if not equal, try to check if they divide without rest
            selfmod = self.coefficient_mul % self.coefficient_div
            othermod = other.coefficient_mul % other.coefficient_div
            if selfmod == 0 and othermod == 0:
                # yet another chance for them to be equal
                selfdiv = self.coefficient_mul // self.coefficient_div
                otherdiv = other.coefficient_mul // other.coefficient_div
                coeff = selfdiv == otherdiv
        #
        if not coeff:
            return False, 0
        #
        c = (self.constant - other.constant)
        svar = self.var
        ovar = other.var
        if isinstance(svar, ConstInt) and isinstance(ovar, ConstInt):
            return True, (svar.getint() - ovar.getint())
        if svar.same_box(ovar):
            return True, c
        return False, 0

    def __eq__(self, other):
        if not self.same_variable(other):
            return False
        if not self.same_mulfactor(other):
            return False
        return self.constant_diff(other) == 0

    def __ne__(self, other):
        return not self.__eq__(other)

    def __repr__(self):
        if self.is_identity():
            return 'idx(%s)' % (self.var,)

        return 'idx(%s*(%s/%s)+%s)' % (self.var, self.coefficient_mul,
                                            self.coefficient_div, self.constant)

class MemoryRef(object):
    """ a memory reference to an array object. IntegralForwardModification is able
    to propagate changes to this object if applied in backwards direction.
    Example:

    i1 = int_add(i0,1)
    i2 = int_mul(i1,2)
    setarrayitem_gc(p0, i2, 1, ...)

    will result in the linear combination i0 * (2/1) + 2
    """
    def __init__(self, op, index_var, raw_access=False):
        assert op.getdescr() is not None
        self.array = op.getarg(0)
        self.descr = op.getdescr()
        self.index_var = index_var
        self.raw_access = raw_access

    def is_adjacent_to(self, other):
        """ this is a symmetric relation """
        if not self.same_array(other):
            return False
        if not self.index_var.same_variable(other.index_var):
            return False
        if not self.index_var.same_mulfactor(other.index_var):
            return False
        stride = self.stride()
        return abs(self.index_var.constant_diff(other.index_var)) - stride == 0

    def is_adjacent_after(self, other):
        """ the asymetric relation to is_adjacent_to """
        if not self.same_array(other):
            return False
        if not self.index_var.same_variable(other.index_var):
            return False
        if not self.index_var.same_mulfactor(other.index_var):
            return False
        stride = self.stride()
        return other.index_var.constant_diff(self.index_var) == stride

    def alias(self, other):
        """ is this reference an alias to other?
            they can alias iff self.origin != other.origin, or their
            linear combination point to the same element.
        """
        assert other is not None
        if not self.same_array(other):
            return False
        svar = self.index_var
        ovar = other.index_var
        if not svar.same_variable(ovar):
            return True
        if not svar.same_mulfactor(ovar):
            return True
        return abs(svar.constant_diff(ovar)) < self.stride()

    def same_array(self, other):
        return self.array is other.array and self.descr == other.descr

    def __eq__(self, other):
        """ NOT_RPYTHON """
        if not self.same_array(other):
            return False
        if not self.index_var.same_variable(other.index_var):
            return False
        if not self.index_var.same_mulfactor(other.index_var):
            return False
        stride = self.stride()
        return other.index_var.constant_diff(self.index_var) == 0

    #def __ne__(self, other):
    #    return not self.__eq__(other)

    def stride(self):
        """ the stride in bytes """
        if not self.raw_access:
            return 1
        return self.descr.get_item_size_in_bytes()

    def __repr__(self):
        return 'MemRef(%s,%s)' % (self.array, self.index_var)