1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
from rpython.jit.metainterp.optimizeopt.intutils import IntBound, IntUpperBound, \
IntLowerBound, IntUnbounded
from rpython.jit.metainterp.optimizeopt.intbounds import next_pow2_m1
from copy import copy
import sys
from rpython.rlib.rarithmetic import LONG_BIT
def bound(a,b):
if a is None and b is None:
return IntUnbounded()
elif a is None:
return IntUpperBound(b)
elif b is None:
return IntLowerBound(a)
else:
return IntBound(a,b)
def const(a):
return bound(a,a)
def some_bounds():
brd = [None] + range(-2, 3)
for lower in brd:
for upper in brd:
if lower is not None and upper is not None and lower > upper:
continue
yield (lower, upper, bound(lower, upper))
nbr = range(-5, 6)
def test_known():
for lower, upper, b in some_bounds():
inside = []
border = []
for n in nbr:
if (lower is None or n >= lower) and \
(upper is None or n <= upper):
if n == lower or n ==upper:
border.append(n)
else:
inside.append(n)
for n in nbr:
c = const(n)
if n in inside:
assert b.contains(n)
assert not b.known_lt(c)
assert not b.known_gt(c)
assert not b.known_le(c)
assert not b.known_ge(c)
elif n in border:
assert b.contains(n)
if n == upper:
assert b.known_le(const(upper))
else:
assert b.known_ge(const(lower))
else:
assert not b.contains(n)
some = (border + inside)[0]
if n < some:
assert b.known_gt(c)
else:
assert b.known_lt(c)
def test_make():
for _, _, b1 in some_bounds():
for _, _, b2 in some_bounds():
lt = IntUnbounded()
lt.make_lt(b1)
lt.make_lt(b2)
for n in nbr:
c = const(n)
if b1.known_le(c) or b2.known_le(c):
assert lt.known_lt(c)
else:
assert not lt.known_lt(c)
assert not lt.known_gt(c)
assert not lt.known_ge(c)
gt = IntUnbounded()
gt.make_gt(b1)
gt.make_gt(b2)
for n in nbr:
c = const(n)
if b1.known_ge(c) or b2.known_ge(c):
assert gt.known_gt(c)
else:
assert not gt.known_gt(c)
assert not gt.known_lt(c)
assert not gt.known_le(c)
le = IntUnbounded()
le.make_le(b1)
le.make_le(b2)
for n in nbr:
c = const(n)
if b1.known_le(c) or b2.known_le(c):
assert le.known_le(c)
else:
assert not le.known_le(c)
assert not le.known_gt(c)
assert not le.known_ge(c)
ge = IntUnbounded()
ge.make_ge(b1)
ge.make_ge(b2)
for n in nbr:
c = const(n)
if b1.known_ge(c) or b2.known_ge(c):
assert ge.known_ge(c)
else:
assert not ge.known_ge(c)
assert not ge.known_lt(c)
assert not ge.known_le(c)
gl = IntUnbounded()
gl.make_ge(b1)
gl.make_le(b2)
for n in nbr:
c = const(n)
if b1.known_ge(c):
assert gl.known_ge(c)
else:
assert not gl.known_ge(c)
assert not gl.known_gt(c)
if b2.known_le(c):
assert gl.known_le(c)
else:
assert not gl.known_le(c)
assert not gl.known_lt(c)
def test_intersect():
for _, _, b1 in some_bounds():
for _, _, b2 in some_bounds():
b = copy(b1)
b.intersect(b2)
for n in nbr:
if b1.contains(n) and b2.contains(n):
assert b.contains(n)
else:
assert not b.contains(n)
def test_add():
for _, _, b1 in some_bounds():
for n1 in nbr:
b2 = b1.add(n1)
for n2 in nbr:
c1 = const(n2)
c2 = const(n2 + n1)
if b1.known_le(c1):
assert b2.known_le(c2)
else:
assert not b2.known_le(c2)
if b1.known_ge(c1):
assert b2.known_ge(c2)
else:
assert not b2.known_ge(c2)
if b1.known_le(c1):
assert b2.known_le(c2)
else:
assert not b2.known_lt(c2)
if b1.known_lt(c1):
assert b2.known_lt(c2)
else:
assert not b2.known_lt(c2)
if b1.known_gt(c1):
assert b2.known_gt(c2)
else:
assert not b2.known_gt(c2)
def test_add_bound():
for _, _, b1 in some_bounds():
for _, _, b2 in some_bounds():
b3 = b1.add_bound(b2)
for n1 in nbr:
for n2 in nbr:
if b1.contains(n1) and b2.contains(n2):
assert b3.contains(n1 + n2)
a=bound(2, 4).add_bound(bound(1, 2))
assert not a.contains(2)
assert not a.contains(7)
def test_mul_bound():
for _, _, b1 in some_bounds():
for _, _, b2 in some_bounds():
b3 = b1.mul_bound(b2)
for n1 in nbr:
for n2 in nbr:
if b1.contains(n1) and b2.contains(n2):
assert b3.contains(n1 * n2)
a=bound(2, 4).mul_bound(bound(1, 2))
assert not a.contains(1)
assert not a.contains(9)
a=bound(-3, 2).mul_bound(bound(1, 2))
assert not a.contains(-7)
assert not a.contains(5)
assert a.contains(-6)
assert a.contains(4)
a=bound(-3, 2).mul(-1)
for i in range(-2,4):
assert a.contains(i)
assert not a.contains(4)
assert not a.contains(-3)
def test_shift_bound():
for _, _, b1 in some_bounds():
for _, _, b2 in some_bounds():
bleft = b1.lshift_bound(b2)
bright = b1.rshift_bound(b2)
for n1 in nbr:
for n2 in range(10):
if b1.contains(n1) and b2.contains(n2):
assert bleft.contains(n1 << n2)
assert bright.contains(n1 >> n2)
def test_shift_overflow():
b10 = IntBound(0, 10)
b100 = IntBound(0, 100)
bmax = IntBound(0, sys.maxint/2)
assert not b10.lshift_bound(b100).has_upper
assert not bmax.lshift_bound(b10).has_upper
assert b10.lshift_bound(b10).has_upper
for b in (b10, b100, bmax, IntBound(0, 0)):
for shift_count_bound in (IntBound(7, LONG_BIT), IntBound(-7, 7)):
#assert not b.lshift_bound(shift_count_bound).has_upper
assert not b.rshift_bound(shift_count_bound).has_upper
def test_div_bound():
from rpython.rtyper.lltypesystem import lltype
from rpython.rtyper.lltypesystem.lloperation import llop
for _, _, b1 in some_bounds():
for _, _, b2 in some_bounds():
b3 = b1.py_div_bound(b2)
for n1 in nbr:
for n2 in nbr:
if b1.contains(n1) and b2.contains(n2):
if n2 != 0:
assert b3.contains(n1 / n2) # Python-style div
a=bound(2, 4).py_div_bound(bound(1, 2))
assert not a.contains(0)
assert not a.contains(5)
a=bound(-3, 2).py_div_bound(bound(1, 2))
assert not a.contains(-4)
assert not a.contains(3)
assert a.contains(-3)
assert a.contains(0)
def test_sub_bound():
for _, _, b1 in some_bounds():
for _, _, b2 in some_bounds():
b3 = b1.sub_bound(b2)
for n1 in nbr:
for n2 in nbr:
if b1.contains(n1) and b2.contains(n2):
assert b3.contains(n1 - n2)
a=bound(2, 4).sub_bound(bound(1, 2))
assert not a.contains(-1)
assert not a.contains(4)
def test_next_pow2_m1():
assert next_pow2_m1(0) == 0
assert next_pow2_m1(1) == 1
assert next_pow2_m1(7) == 7
assert next_pow2_m1(256) == 511
assert next_pow2_m1(255) == 255
assert next_pow2_m1(80) == 127
assert next_pow2_m1((1 << 32) - 5) == (1 << 32) - 1
assert next_pow2_m1((1 << 64) - 1) == (1 << 64) - 1
|