1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
|
""" MiniMark GC.
Environment variables can be used to fine-tune the following parameters:
PYPY_GC_NURSERY The nursery size. Defaults to 1/2 of your cache or
'4M'. Small values
(like 1 or 1KB) are useful for debugging.
PYPY_GC_NURSERY_CLEANUP The interval at which nursery is cleaned up. Must
be smaller than the nursery size and bigger than the
biggest object we can allotate in the nursery.
PYPY_GC_MAJOR_COLLECT Major collection memory factor. Default is '1.82',
which means trigger a major collection when the
memory consumed equals 1.82 times the memory
really used at the end of the previous major
collection.
PYPY_GC_GROWTH Major collection threshold's max growth rate.
Default is '1.4'. Useful to collect more often
than normally on sudden memory growth, e.g. when
there is a temporary peak in memory usage.
PYPY_GC_MAX The max heap size. If coming near this limit, it
will first collect more often, then raise an
RPython MemoryError, and if that is not enough,
crash the program with a fatal error. Try values
like '1.6GB'.
PYPY_GC_MAX_DELTA The major collection threshold will never be set
to more than PYPY_GC_MAX_DELTA the amount really
used after a collection. Defaults to 1/8th of the
total RAM size (which is constrained to be at most
2/3/4GB on 32-bit systems). Try values like '200MB'.
PYPY_GC_MIN Don't collect while the memory size is below this
limit. Useful to avoid spending all the time in
the GC in very small programs. Defaults to 8
times the nursery.
PYPY_GC_DEBUG Enable extra checks around collections that are
too slow for normal use. Values are 0 (off),
1 (on major collections) or 2 (also on minor
collections).
"""
# XXX Should find a way to bound the major collection threshold by the
# XXX total addressable size. Maybe by keeping some minimarkpage arenas
# XXX pre-reserved, enough for a few nursery collections? What about
# XXX raw-malloced memory?
import sys
from rpython.rtyper.lltypesystem import lltype, llmemory, llarena, llgroup
from rpython.rtyper.lltypesystem.lloperation import llop
from rpython.rtyper.lltypesystem.llmemory import raw_malloc_usage
from rpython.memory.gc.base import GCBase, MovingGCBase
from rpython.memory.gc import env
from rpython.memory.support import mangle_hash
from rpython.rlib.rarithmetic import ovfcheck, LONG_BIT, intmask, r_uint
from rpython.rlib.rarithmetic import LONG_BIT_SHIFT
from rpython.rlib.debug import ll_assert, debug_print, debug_start, debug_stop
from rpython.rlib.objectmodel import specialize
#
# Handles the objects in 2 generations:
#
# * young objects: allocated in the nursery if they are not too large, or
# raw-malloced otherwise. The nursery is a fixed-size memory buffer of
# 4MB by default. When full, we do a minor collection;
# the surviving objects from the nursery are moved outside, and the
# non-surviving raw-malloced objects are freed. All surviving objects
# become old.
#
# * old objects: never move again. These objects are either allocated by
# minimarkpage.py (if they are small), or raw-malloced (if they are not
# small). Collected by regular mark-n-sweep during major collections.
#
WORD = LONG_BIT // 8
NULL = llmemory.NULL
first_gcflag = 1 << (LONG_BIT//2)
# The following flag is set on objects if we need to do something to
# track the young pointers that it might contain. The flag is not set
# on young objects (unless they are large arrays, see below), and we
# simply assume that any young object can point to any other young object.
# For old and prebuilt objects, the flag is usually set, and is cleared
# when we write a young pointer to it. For large arrays with
# GCFLAG_HAS_CARDS, we rely on card marking to track where the
# young pointers are; the flag GCFLAG_TRACK_YOUNG_PTRS is set in this
# case too, to speed up the write barrier.
GCFLAG_TRACK_YOUNG_PTRS = first_gcflag << 0
# The following flag is set on some prebuilt objects. The flag is set
# unless the object is already listed in 'prebuilt_root_objects'.
# When a pointer is written inside an object with GCFLAG_NO_HEAP_PTRS
# set, the write_barrier clears the flag and adds the object to
# 'prebuilt_root_objects'.
GCFLAG_NO_HEAP_PTRS = first_gcflag << 1
# The following flag is set on surviving objects during a major collection,
# and on surviving raw-malloced young objects during a minor collection.
GCFLAG_VISITED = first_gcflag << 2
# The following flag is set on nursery objects of which we asked the id
# or the identityhash. It means that a space of the size of the object
# has already been allocated in the nonmovable part. The same flag is
# abused to mark prebuilt objects whose hash has been taken during
# translation and is statically recorded.
GCFLAG_HAS_SHADOW = first_gcflag << 3
# The following flag is set temporarily on some objects during a major
# collection. See pypy/doc/discussion/finalizer-order.txt
GCFLAG_FINALIZATION_ORDERING = first_gcflag << 4
# This flag is reserved for RPython.
GCFLAG_EXTRA = first_gcflag << 5
# The following flag is set on externally raw_malloc'ed arrays of pointers.
# They are allocated with some extra space in front of them for a bitfield,
# one bit per 'card_page_indices' indices.
GCFLAG_HAS_CARDS = first_gcflag << 6
GCFLAG_CARDS_SET = first_gcflag << 7 # <- at least one card bit is set
# note that GCFLAG_CARDS_SET is the most significant bit of a byte:
# this is required for the JIT (x86)
_GCFLAG_FIRST_UNUSED = first_gcflag << 8 # the first unused bit
FORWARDSTUB = lltype.GcStruct('forwarding_stub',
('forw', llmemory.Address))
FORWARDSTUBPTR = lltype.Ptr(FORWARDSTUB)
NURSARRAY = lltype.Array(llmemory.Address)
# ____________________________________________________________
class MiniMarkGC(MovingGCBase):
_alloc_flavor_ = "raw"
inline_simple_malloc = True
inline_simple_malloc_varsize = True
needs_write_barrier = True
prebuilt_gc_objects_are_static_roots = False
malloc_zero_filled = True # xxx experiment with False
gcflag_extra = GCFLAG_EXTRA
# All objects start with a HDR, i.e. with a field 'tid' which contains
# a word. This word is divided in two halves: the lower half contains
# the typeid, and the upper half contains various flags, as defined
# by GCFLAG_xxx above.
HDR = lltype.Struct('header', ('tid', lltype.Signed))
typeid_is_in_field = 'tid'
withhash_flag_is_in_field = 'tid', GCFLAG_HAS_SHADOW
# ^^^ prebuilt objects may have the flag GCFLAG_HAS_SHADOW;
# then they are one word longer, the extra word storing the hash.
_ADDRARRAY = lltype.Array(llmemory.Address, hints={'nolength': True})
# During a minor collection, the objects in the nursery that are
# moved outside are changed in-place: their header is replaced with
# the value -42, and the following word is set to the address of
# where the object was moved. This means that all objects in the
# nursery need to be at least 2 words long, but objects outside the
# nursery don't need to.
minimal_size_in_nursery = (
llmemory.sizeof(HDR) + llmemory.sizeof(llmemory.Address))
TRANSLATION_PARAMS = {
# Automatically adjust the size of the nursery and the
# 'major_collection_threshold' from the environment.
# See docstring at the start of the file.
"read_from_env": True,
# The size of the nursery. Note that this is only used as a
# fall-back number.
"nursery_size": 896*1024,
# The system page size. Like malloc, we assume that it is 4K
# for 32-bit systems; unlike malloc, we assume that it is 8K
# for 64-bit systems, for consistent results.
"page_size": 1024*WORD,
# The size of an arena. Arenas are groups of pages allocated
# together.
"arena_size": 65536*WORD,
# The maximum size of an object allocated compactly. All objects
# that are larger are just allocated with raw_malloc(). Note that
# the size limit for being first allocated in the nursery is much
# larger; see below.
"small_request_threshold": 35*WORD,
# Full collection threshold: after a major collection, we record
# the total size consumed; and after every minor collection, if the
# total size is now more than 'major_collection_threshold' times,
# we trigger the next major collection.
"major_collection_threshold": 1.82,
# Threshold to avoid that the total heap size grows by a factor of
# major_collection_threshold at every collection: it can only
# grow at most by the following factor from one collection to the
# next. Used e.g. when there is a sudden, temporary peak in memory
# usage; this avoids that the upper bound grows too fast.
"growth_rate_max": 1.4,
# The number of array indices that are mapped to a single bit in
# write_barrier_from_array(). Must be a power of two. The default
# value of 128 means that card pages are 512 bytes (1024 on 64-bits)
# in regular arrays of pointers; more in arrays whose items are
# larger. A value of 0 disables card marking.
"card_page_indices": 128,
# Objects whose total size is at least 'large_object' bytes are
# allocated out of the nursery immediately, as old objects. The
# minimal allocated size of the nursery is 2x the following
# number (by default, at least 132KB on 32-bit and 264KB on 64-bit).
"large_object": (16384+512)*WORD,
# This is the chunk that we cleanup in the nursery. The point is
# to avoid having to trash all the caches just to zero the nursery,
# so we trade it by cleaning it bit-by-bit, as we progress through
# nursery. Has to fit at least one large object
"nursery_cleanup": 32768 * WORD,
}
def __init__(self, config,
read_from_env=False,
nursery_size=32*WORD,
nursery_cleanup=9*WORD,
page_size=16*WORD,
arena_size=64*WORD,
small_request_threshold=5*WORD,
major_collection_threshold=2.5,
growth_rate_max=2.5, # for tests
card_page_indices=0,
large_object=8*WORD,
ArenaCollectionClass=None,
**kwds):
MovingGCBase.__init__(self, config, **kwds)
assert small_request_threshold % WORD == 0
self.read_from_env = read_from_env
self.nursery_size = nursery_size
self.nursery_cleanup = nursery_cleanup
self.small_request_threshold = small_request_threshold
self.major_collection_threshold = major_collection_threshold
self.growth_rate_max = growth_rate_max
self.num_major_collects = 0
self.min_heap_size = 0.0
self.max_heap_size = 0.0
self.max_heap_size_already_raised = False
self.max_delta = float(r_uint(-1))
#
self.card_page_indices = card_page_indices
if self.card_page_indices > 0:
self.card_page_shift = 0
while (1 << self.card_page_shift) < self.card_page_indices:
self.card_page_shift += 1
#
# 'large_object' limit how big objects can be in the nursery, so
# it gives a lower bound on the allowed size of the nursery.
self.nonlarge_max = large_object - 1
#
self.nursery = NULL
self.nursery_free = NULL
self.nursery_top = NULL
self.nursery_real_top = NULL
self.debug_tiny_nursery = -1
self.debug_rotating_nurseries = lltype.nullptr(NURSARRAY)
self.extra_threshold = 0
#
# The ArenaCollection() handles the nonmovable objects allocation.
if ArenaCollectionClass is None:
from rpython.memory.gc import minimarkpage
ArenaCollectionClass = minimarkpage.ArenaCollection
self.ac = ArenaCollectionClass(arena_size, page_size,
small_request_threshold)
#
# Used by minor collection: a list of (mostly non-young) objects that
# (may) contain a pointer to a young object. Populated by
# the write barrier: when we clear GCFLAG_TRACK_YOUNG_PTRS, we
# add it to this list.
# Note that young array objects may (by temporary "mistake") be added
# to this list, but will be removed again at the start of the next
# minor collection.
self.old_objects_pointing_to_young = self.AddressStack()
#
# Similar to 'old_objects_pointing_to_young', but lists objects
# that have the GCFLAG_CARDS_SET bit. For large arrays. Note
# that it is possible for an object to be listed both in here
# and in 'old_objects_pointing_to_young', in which case we
# should just clear the cards and trace it fully, as usual.
# Note also that young array objects are never listed here.
self.old_objects_with_cards_set = self.AddressStack()
#
# A list of all prebuilt GC objects that contain pointers to the heap
self.prebuilt_root_objects = self.AddressStack()
#
self._init_writebarrier_logic()
def setup(self):
"""Called at run-time to initialize the GC."""
#
# Hack: MovingGCBase.setup() sets up stuff related to id(), which
# we implement differently anyway. So directly call GCBase.setup().
GCBase.setup(self)
#
# Two lists of all raw_malloced objects (the objects too large)
self.young_rawmalloced_objects = self.null_address_dict()
self.old_rawmalloced_objects = self.AddressStack()
self.rawmalloced_total_size = r_uint(0)
#
# Two lists of all objects with finalizers. Actually they are lists
# of pairs (finalization_queue_nr, object). "probably young objects"
# are all traced and moved to the "old" list by the next minor
# collection.
self.probably_young_objects_with_finalizers = self.AddressDeque()
self.old_objects_with_finalizers = self.AddressDeque()
p = lltype.malloc(self._ADDRARRAY, 1, flavor='raw',
track_allocation=False)
self.singleaddr = llmemory.cast_ptr_to_adr(p)
#
# Two lists of all objects with destructors.
self.young_objects_with_destructors = self.AddressStack()
self.old_objects_with_destructors = self.AddressStack()
#
# Two lists of the objects with weakrefs. No weakref can be an
# old object weakly pointing to a young object: indeed, weakrefs
# are immutable so they cannot point to an object that was
# created after it.
self.young_objects_with_weakrefs = self.AddressStack()
self.old_objects_with_weakrefs = self.AddressStack()
#
# Support for id and identityhash: map nursery objects with
# GCFLAG_HAS_SHADOW to their future location at the next
# minor collection.
self.nursery_objects_shadows = self.AddressDict()
#
# Allocate a nursery. In case of auto_nursery_size, start by
# allocating a very small nursery, enough to do things like look
# up the env var, which requires the GC; and then really
# allocate the nursery of the final size.
if not self.read_from_env:
self.allocate_nursery()
else:
#
defaultsize = self.nursery_size
minsize = 2 * (self.nonlarge_max + 1)
self.nursery_size = minsize
self.allocate_nursery()
#
# From there on, the GC is fully initialized and the code
# below can use it
newsize = env.read_from_env('PYPY_GC_NURSERY')
# PYPY_GC_NURSERY=smallvalue means that minor collects occur
# very frequently; the extreme case is PYPY_GC_NURSERY=1, which
# forces a minor collect for every malloc. Useful to debug
# external factors, like trackgcroot or the handling of the write
# barrier. Implemented by still using 'minsize' for the nursery
# size (needed to handle mallocs just below 'large_objects') but
# hacking at the current nursery position in collect_and_reserve().
if newsize <= 0:
newsize = env.estimate_best_nursery_size()
if newsize <= 0:
newsize = defaultsize
if newsize < minsize:
self.debug_tiny_nursery = newsize & ~(WORD-1)
newsize = minsize
nurs_cleanup = env.read_from_env('PYPY_GC_NURSERY_CLEANUP')
if nurs_cleanup > 0:
self.nursery_cleanup = nurs_cleanup
#
major_coll = env.read_float_from_env('PYPY_GC_MAJOR_COLLECT')
if major_coll > 1.0:
self.major_collection_threshold = major_coll
#
growth = env.read_float_from_env('PYPY_GC_GROWTH')
if growth > 1.0:
self.growth_rate_max = growth
#
min_heap_size = env.read_uint_from_env('PYPY_GC_MIN')
if min_heap_size > 0:
self.min_heap_size = float(min_heap_size)
else:
# defaults to 8 times the nursery
self.min_heap_size = newsize * 8
#
max_heap_size = env.read_uint_from_env('PYPY_GC_MAX')
if max_heap_size > 0:
self.max_heap_size = float(max_heap_size)
#
max_delta = env.read_uint_from_env('PYPY_GC_MAX_DELTA')
if max_delta > 0:
self.max_delta = float(max_delta)
else:
self.max_delta = 0.125 * env.get_total_memory()
#
self.minor_collection() # to empty the nursery
llarena.arena_free(self.nursery)
self.nursery_size = newsize
self.allocate_nursery()
#
if self.nursery_cleanup < self.nonlarge_max + 1:
self.nursery_cleanup = self.nonlarge_max + 1
# We need exactly initial_cleanup + N*nursery_cleanup = nursery_size.
# We choose the value of initial_cleanup to be between 1x and 2x the
# value of nursery_cleanup.
self.initial_cleanup = self.nursery_cleanup + (
self.nursery_size % self.nursery_cleanup)
if (r_uint(self.initial_cleanup) > r_uint(self.nursery_size) or
self.debug_tiny_nursery >= 0):
self.initial_cleanup = self.nursery_size
def _nursery_memory_size(self):
extra = self.nonlarge_max + 1
return self.nursery_size + extra
def _alloc_nursery(self):
# the start of the nursery: we actually allocate a bit more for
# the nursery than really needed, to simplify pointer arithmetic
# in malloc_fixedsize_clear(). The few extra pages are never used
# anyway so it doesn't even count.
nursery = llarena.arena_malloc(self._nursery_memory_size(), 2)
if not nursery:
raise MemoryError("cannot allocate nursery")
return nursery
def allocate_nursery(self):
debug_start("gc-set-nursery-size")
debug_print("nursery size:", self.nursery_size)
self.nursery = self._alloc_nursery()
# the current position in the nursery:
self.nursery_free = self.nursery
# the end of the nursery:
self.nursery_top = self.nursery + self.nursery_size
self.nursery_real_top = self.nursery_top
# initialize the threshold
self.min_heap_size = max(self.min_heap_size, self.nursery_size *
self.major_collection_threshold)
# the following two values are usually equal, but during raw mallocs
# of arrays, next_major_collection_threshold is decremented to make
# the next major collection arrive earlier.
# See translator/c/test/test_newgc, test_nongc_attached_to_gc
self.next_major_collection_initial = self.min_heap_size
self.next_major_collection_threshold = self.min_heap_size
self.set_major_threshold_from(0.0)
ll_assert(self.extra_threshold == 0, "extra_threshold set too early")
self.initial_cleanup = self.nursery_size
debug_stop("gc-set-nursery-size")
def set_major_threshold_from(self, threshold, reserving_size=0):
# Set the next_major_collection_threshold.
threshold_max = (self.next_major_collection_initial *
self.growth_rate_max)
if threshold > threshold_max:
threshold = threshold_max
#
threshold += reserving_size
if threshold < self.min_heap_size:
threshold = self.min_heap_size
#
if self.max_heap_size > 0.0 and threshold > self.max_heap_size:
threshold = self.max_heap_size
bounded = True
else:
bounded = False
#
self.next_major_collection_initial = threshold
self.next_major_collection_threshold = threshold
return bounded
def post_setup(self):
# set up extra stuff for PYPY_GC_DEBUG.
MovingGCBase.post_setup(self)
if self.DEBUG and llarena.has_protect:
# gc debug mode: allocate 23 nurseries instead of just 1,
# and use them alternatively, while mprotect()ing the unused
# ones to detect invalid access.
debug_start("gc-debug")
self.debug_rotating_nurseries = lltype.malloc(
NURSARRAY, 22, flavor='raw', track_allocation=False)
i = 0
while i < 22:
nurs = self._alloc_nursery()
llarena.arena_protect(nurs, self._nursery_memory_size(), True)
self.debug_rotating_nurseries[i] = nurs
i += 1
debug_print("allocated", len(self.debug_rotating_nurseries),
"extra nurseries")
debug_stop("gc-debug")
def debug_rotate_nursery(self):
if self.debug_rotating_nurseries:
debug_start("gc-debug")
oldnurs = self.nursery
llarena.arena_protect(oldnurs, self._nursery_memory_size(), True)
#
newnurs = self.debug_rotating_nurseries[0]
i = 0
while i < len(self.debug_rotating_nurseries) - 1:
self.debug_rotating_nurseries[i] = (
self.debug_rotating_nurseries[i + 1])
i += 1
self.debug_rotating_nurseries[i] = oldnurs
#
llarena.arena_protect(newnurs, self._nursery_memory_size(), False)
self.nursery = newnurs
self.nursery_top = self.nursery + self.initial_cleanup
self.nursery_real_top = self.nursery + self.nursery_size
debug_print("switching from nursery", oldnurs,
"to nursery", self.nursery,
"size", self.nursery_size)
debug_stop("gc-debug")
def malloc_fixedsize_clear(self, typeid, size,
needs_finalizer=False,
is_finalizer_light=False,
contains_weakptr=False):
size_gc_header = self.gcheaderbuilder.size_gc_header
totalsize = size_gc_header + size
rawtotalsize = raw_malloc_usage(totalsize)
#
# If the object needs a finalizer, ask for a rawmalloc.
# The following check should be constant-folded.
if needs_finalizer and not is_finalizer_light:
# old-style finalizers only!
ll_assert(not contains_weakptr,
"'needs_finalizer' and 'contains_weakptr' both specified")
obj = self.external_malloc(typeid, 0, alloc_young=False)
res = llmemory.cast_adr_to_ptr(obj, llmemory.GCREF)
self.register_finalizer(-1, res)
return res
#
# If totalsize is greater than nonlarge_max (which should never be
# the case in practice), ask for a rawmalloc. The following check
# should be constant-folded.
if rawtotalsize > self.nonlarge_max:
ll_assert(not contains_weakptr,
"'contains_weakptr' specified for a large object")
obj = self.external_malloc(typeid, 0, alloc_young=True)
#
else:
# If totalsize is smaller than minimal_size_in_nursery, round it
# up. The following check should also be constant-folded.
min_size = raw_malloc_usage(self.minimal_size_in_nursery)
if rawtotalsize < min_size:
totalsize = rawtotalsize = min_size
#
# Get the memory from the nursery. If there is not enough space
# there, do a collect first.
result = self.nursery_free
self.nursery_free = result + totalsize
if self.nursery_free > self.nursery_top:
result = self.collect_and_reserve(result, totalsize)
#
# Build the object.
llarena.arena_reserve(result, totalsize)
obj = result + size_gc_header
self.init_gc_object(result, typeid, flags=0)
#
# If it is a weakref or has a lightweight destructor, record it
# (checks constant-folded).
if needs_finalizer:
self.young_objects_with_destructors.append(obj)
if contains_weakptr:
self.young_objects_with_weakrefs.append(obj)
return llmemory.cast_adr_to_ptr(obj, llmemory.GCREF)
def malloc_varsize_clear(self, typeid, length, size, itemsize,
offset_to_length):
size_gc_header = self.gcheaderbuilder.size_gc_header
nonvarsize = size_gc_header + size
#
# Compute the maximal length that makes the object still
# below 'nonlarge_max'. All the following logic is usually
# constant-folded because self.nonlarge_max, size and itemsize
# are all constants (the arguments are constant due to
# inlining).
maxsize = self.nonlarge_max - raw_malloc_usage(nonvarsize)
if maxsize < 0:
toobig = r_uint(0) # the nonvarsize alone is too big
elif raw_malloc_usage(itemsize):
toobig = r_uint(maxsize // raw_malloc_usage(itemsize)) + 1
else:
toobig = r_uint(sys.maxint) + 1
if r_uint(length) >= r_uint(toobig):
#
# If the total size of the object would be larger than
# 'nonlarge_max', then allocate it externally. We also
# go there if 'length' is actually negative.
obj = self.external_malloc(typeid, length, alloc_young=True)
#
else:
# With the above checks we know now that totalsize cannot be more
# than 'nonlarge_max'; in particular, the + and * cannot overflow.
totalsize = nonvarsize + itemsize * length
totalsize = llarena.round_up_for_allocation(totalsize)
#
# 'totalsize' should contain at least the GC header and
# the length word, so it should never be smaller than
# 'minimal_size_in_nursery'
ll_assert(raw_malloc_usage(totalsize) >=
raw_malloc_usage(self.minimal_size_in_nursery),
"malloc_varsize_clear(): totalsize < minimalsize")
#
# Get the memory from the nursery. If there is not enough space
# there, do a collect first.
result = self.nursery_free
self.nursery_free = result + totalsize
if self.nursery_free > self.nursery_top:
result = self.collect_and_reserve(result, totalsize)
#
# Build the object.
llarena.arena_reserve(result, totalsize)
self.init_gc_object(result, typeid, flags=0)
#
# Set the length and return the object.
obj = result + size_gc_header
(obj + offset_to_length).signed[0] = length
#
return llmemory.cast_adr_to_ptr(obj, llmemory.GCREF)
def malloc_fixed_or_varsize_nonmovable(self, typeid, length):
# length==0 for fixedsize
obj = self.external_malloc(typeid, length, alloc_young=True)
return llmemory.cast_adr_to_ptr(obj, llmemory.GCREF)
def collect(self, gen=1):
"""Do a minor (gen=0) or major (gen>0) collection."""
self.minor_collection()
if gen > 0:
self.major_collection()
def move_nursery_top(self, totalsize):
size = self.nursery_cleanup
ll_assert(self.nursery_real_top - self.nursery_top >= size,
"nursery_cleanup not a divisor of nursery_size - initial_cleanup")
ll_assert(llmemory.raw_malloc_usage(totalsize) <= size,
"totalsize > nursery_cleanup")
llarena.arena_reset(self.nursery_top, size, 2)
self.nursery_top += size
move_nursery_top._always_inline_ = True
def collect_and_reserve(self, prev_result, totalsize):
"""To call when nursery_free overflows nursery_top.
First check if the nursery_top is the real top, otherwise we
can just move the top of one cleanup and continue
Do a minor collection, and possibly also a major collection,
and finally reserve 'totalsize' bytes at the start of the
now-empty nursery.
"""
if self.nursery_top < self.nursery_real_top:
self.move_nursery_top(totalsize)
return prev_result
self.minor_collection()
#
if self.get_total_memory_used() > self.next_major_collection_threshold:
self.major_collection()
#
# The nursery might not be empty now, because of
# execute_finalizers(). If it is almost full again,
# we need to fix it with another call to minor_collection().
if self.nursery_free + totalsize > self.nursery_top:
#
if self.nursery_free + totalsize > self.nursery_real_top:
self.minor_collection()
# then the nursery is empty
else:
# we just need to clean up a bit more of the nursery
self.move_nursery_top(totalsize)
#
result = self.nursery_free
self.nursery_free = result + totalsize
ll_assert(self.nursery_free <= self.nursery_top, "nursery overflow")
#
if self.debug_tiny_nursery >= 0: # for debugging
if self.nursery_top - self.nursery_free > self.debug_tiny_nursery:
self.nursery_free = self.nursery_top - self.debug_tiny_nursery
#
return result
collect_and_reserve._dont_inline_ = True
# XXX kill alloc_young and make it always True
def external_malloc(self, typeid, length, alloc_young):
"""Allocate a large object using the ArenaCollection or
raw_malloc(), possibly as an object with card marking enabled,
if it has gc pointers in its var-sized part. 'length' should be
specified as 0 if the object is not varsized. The returned
object is fully initialized and zero-filled."""
#
# Here we really need a valid 'typeid', not 0 (as the JIT might
# try to send us if there is still a bug).
ll_assert(bool(self.combine(typeid, 0)),
"external_malloc: typeid == 0")
#
# Compute the total size, carefully checking for overflows.
size_gc_header = self.gcheaderbuilder.size_gc_header
nonvarsize = size_gc_header + self.fixed_size(typeid)
if length == 0:
# this includes the case of fixed-size objects, for which we
# should not even ask for the varsize_item_sizes().
totalsize = nonvarsize
elif length > 0:
# var-sized allocation with at least one item
itemsize = self.varsize_item_sizes(typeid)
try:
varsize = ovfcheck(itemsize * length)
totalsize = ovfcheck(nonvarsize + varsize)
except OverflowError:
raise MemoryError
else:
# negative length! This likely comes from an overflow
# earlier. We will just raise MemoryError here.
raise MemoryError
#
# If somebody calls this function a lot, we must eventually
# force a full collection.
if (float(self.get_total_memory_used()) + raw_malloc_usage(totalsize) >
self.next_major_collection_threshold):
self.minor_collection()
self.major_collection(raw_malloc_usage(totalsize))
#
# Check if the object would fit in the ArenaCollection.
# Also, an object allocated from ArenaCollection must be old.
if (raw_malloc_usage(totalsize) <= self.small_request_threshold
and not alloc_young):
#
# Yes. Round up 'totalsize' (it cannot overflow and it
# must remain <= self.small_request_threshold.)
totalsize = llarena.round_up_for_allocation(totalsize)
ll_assert(raw_malloc_usage(totalsize) <=
self.small_request_threshold,
"rounding up made totalsize > small_request_threshold")
#
# Allocate from the ArenaCollection and clear the memory returned.
result = self.ac.malloc(totalsize)
llmemory.raw_memclear(result, totalsize)
#
extra_flags = GCFLAG_TRACK_YOUNG_PTRS
#
else:
# No, so proceed to allocate it externally with raw_malloc().
# Check if we need to introduce the card marker bits area.
if (self.card_page_indices <= 0 # <- this check is constant-folded
or not self.has_gcptr_in_varsize(typeid) or
raw_malloc_usage(totalsize) <= self.nonlarge_max):
#
# In these cases, we don't want a card marker bits area.
# This case also includes all fixed-size objects.
cardheadersize = 0
extra_flags = 0
#
else:
# Reserve N extra words containing card bits before the object.
extra_words = self.card_marking_words_for_length(length)
cardheadersize = WORD * extra_words
extra_flags = GCFLAG_HAS_CARDS | GCFLAG_TRACK_YOUNG_PTRS
# if 'alloc_young', then we also immediately set
# GCFLAG_CARDS_SET, but without adding the object to
# 'old_objects_with_cards_set'. In this way it should
# never be added to that list as long as it is young.
if alloc_young:
extra_flags |= GCFLAG_CARDS_SET
#
# Detect very rare cases of overflows
if raw_malloc_usage(totalsize) > (sys.maxint - (WORD-1)
- cardheadersize):
raise MemoryError("rare case of overflow")
#
# Now we know that the following computations cannot overflow.
# Note that round_up_for_allocation() is also needed to get the
# correct number added to 'rawmalloced_total_size'.
allocsize = (cardheadersize + raw_malloc_usage(
llarena.round_up_for_allocation(totalsize)))
#
# Allocate the object using arena_malloc(), which we assume here
# is just the same as raw_malloc(), but allows the extra
# flexibility of saying that we have extra words in the header.
# The memory returned is cleared by a raw_memclear().
arena = llarena.arena_malloc(allocsize, 2)
if not arena:
raise MemoryError("cannot allocate large object")
#
# Reserve the card mark bits as a list of single bytes
# (the loop is empty in C).
i = 0
while i < cardheadersize:
llarena.arena_reserve(arena + i, llmemory.sizeof(lltype.Char))
i += 1
#
# Reserve the actual object. (This is also a no-op in C).
result = arena + cardheadersize
llarena.arena_reserve(result, totalsize)
#
# Record the newly allocated object and its full malloced size.
# The object is young or old depending on the argument.
self.rawmalloced_total_size += r_uint(allocsize)
if alloc_young:
if not self.young_rawmalloced_objects:
self.young_rawmalloced_objects = self.AddressDict()
self.young_rawmalloced_objects.add(result + size_gc_header)
else:
self.old_rawmalloced_objects.append(result + size_gc_header)
extra_flags |= GCFLAG_TRACK_YOUNG_PTRS
#
# Common code to fill the header and length of the object.
self.init_gc_object(result, typeid, extra_flags)
if self.is_varsize(typeid):
offset_to_length = self.varsize_offset_to_length(typeid)
(result + size_gc_header + offset_to_length).signed[0] = length
return result + size_gc_header
# ----------
# Other functions in the GC API
def set_max_heap_size(self, size):
self.max_heap_size = float(size)
if self.max_heap_size > 0.0:
if self.max_heap_size < self.next_major_collection_initial:
self.next_major_collection_initial = self.max_heap_size
if self.max_heap_size < self.next_major_collection_threshold:
self.next_major_collection_threshold = self.max_heap_size
def raw_malloc_memory_pressure(self, sizehint):
self.next_major_collection_threshold -= sizehint
if self.next_major_collection_threshold < 0:
# cannot trigger a full collection now, but we can ensure
# that one will occur very soon
self.nursery_top = self.nursery_real_top
self.nursery_free = self.nursery_real_top
def can_optimize_clean_setarrayitems(self):
if self.card_page_indices > 0:
return False
return MovingGCBase.can_optimize_clean_setarrayitems(self)
def can_move(self, obj):
"""Overrides the parent can_move()."""
return self.is_in_nursery(obj)
def shrink_array(self, obj, smallerlength):
#
# Only objects in the nursery can be "resized". Resizing them
# means recording that they have a smaller size, so that when
# moved out of the nursery, they will consume less memory.
# In particular, an array with GCFLAG_HAS_CARDS is never resized.
# Also, a nursery object with GCFLAG_HAS_SHADOW is not resized
# either, as this would potentially loose part of the memory in
# the already-allocated shadow.
if not self.is_in_nursery(obj):
return False
if self.header(obj).tid & GCFLAG_HAS_SHADOW:
return False
#
size_gc_header = self.gcheaderbuilder.size_gc_header
typeid = self.get_type_id(obj)
totalsmallersize = (
size_gc_header + self.fixed_size(typeid) +
self.varsize_item_sizes(typeid) * smallerlength)
llarena.arena_shrink_obj(obj - size_gc_header, totalsmallersize)
#
offset_to_length = self.varsize_offset_to_length(typeid)
(obj + offset_to_length).signed[0] = smallerlength
return True
# ----------
# Simple helpers
def get_type_id(self, obj):
tid = self.header(obj).tid
return llop.extract_ushort(llgroup.HALFWORD, tid)
def combine(self, typeid16, flags):
return llop.combine_ushort(lltype.Signed, typeid16, flags)
def init_gc_object(self, addr, typeid16, flags=0):
# The default 'flags' is zero. The flags GCFLAG_NO_xxx_PTRS
# have been chosen to allow 'flags' to be zero in the common
# case (hence the 'NO' in their name).
hdr = llmemory.cast_adr_to_ptr(addr, lltype.Ptr(self.HDR))
hdr.tid = self.combine(typeid16, flags)
def init_gc_object_immortal(self, addr, typeid16, flags=0):
# For prebuilt GC objects, the flags must contain
# GCFLAG_NO_xxx_PTRS, at least initially.
flags |= GCFLAG_NO_HEAP_PTRS | GCFLAG_TRACK_YOUNG_PTRS
self.init_gc_object(addr, typeid16, flags)
def is_in_nursery(self, addr):
ll_assert(llmemory.cast_adr_to_int(addr) & 1 == 0,
"odd-valued (i.e. tagged) pointer unexpected here")
return self.nursery <= addr < self.nursery_real_top
def appears_to_be_young(self, addr):
# "is a valid addr to a young object?"
# but it's ok to occasionally return True accidentally.
# Maybe the best implementation would be a bloom filter
# of some kind instead of the dictionary lookup that is
# sometimes done below. But the expected common answer
# is "Yes" because addr points to the nursery, so it may
# not be useful to optimize the other case too much.
#
# First, if 'addr' appears to be a pointer to some place within
# the nursery, return True
if not self.translated_to_c:
# When non-translated, filter out tagged pointers explicitly.
# When translated, it may occasionally give a wrong answer
# of True if 'addr' is a tagged pointer with just the wrong value.
if not self.is_valid_gc_object(addr):
return False
if self.nursery <= addr < self.nursery_real_top:
return True # addr is in the nursery
#
# Else, it may be in the set 'young_rawmalloced_objects'
return (bool(self.young_rawmalloced_objects) and
self.young_rawmalloced_objects.contains(addr))
appears_to_be_young._always_inline_ = True
def debug_is_old_object(self, addr):
return (self.is_valid_gc_object(addr)
and not self.appears_to_be_young(addr))
def is_forwarded(self, obj):
"""Returns True if the nursery obj is marked as forwarded.
Implemented a bit obscurely by checking an unrelated flag
that can never be set on a young object -- except if tid == -42.
"""
assert self.is_in_nursery(obj)
tid = self.header(obj).tid
result = (tid & GCFLAG_FINALIZATION_ORDERING != 0)
if result:
ll_assert(tid == -42, "bogus header for young obj")
else:
ll_assert(bool(tid), "bogus header (1)")
ll_assert(tid & -_GCFLAG_FIRST_UNUSED == 0, "bogus header (2)")
return result
def get_forwarding_address(self, obj):
return llmemory.cast_adr_to_ptr(obj, FORWARDSTUBPTR).forw
def get_possibly_forwarded_type_id(self, obj):
if self.is_in_nursery(obj) and self.is_forwarded(obj):
obj = self.get_forwarding_address(obj)
return self.get_type_id(obj)
def get_total_memory_used(self):
"""Return the total memory used, not counting any object in the
nursery: only objects in the ArenaCollection or raw-malloced.
"""
return self.ac.total_memory_used + self.rawmalloced_total_size
def card_marking_words_for_length(self, length):
# --- Unoptimized version:
#num_bits = ((length-1) >> self.card_page_shift) + 1
#return (num_bits + (LONG_BIT - 1)) >> LONG_BIT_SHIFT
# --- Optimized version:
return intmask(
((r_uint(length) + r_uint((LONG_BIT << self.card_page_shift) - 1)) >>
(self.card_page_shift + LONG_BIT_SHIFT)))
def card_marking_bytes_for_length(self, length):
# --- Unoptimized version:
#num_bits = ((length-1) >> self.card_page_shift) + 1
#return (num_bits + 7) >> 3
# --- Optimized version:
return intmask(
((r_uint(length) + r_uint((8 << self.card_page_shift) - 1)) >>
(self.card_page_shift + 3)))
def debug_check_consistency(self):
if self.DEBUG:
ll_assert(not self.young_rawmalloced_objects,
"young raw-malloced objects in a major collection")
ll_assert(not self.young_objects_with_weakrefs.non_empty(),
"young objects with weakrefs in a major collection")
MovingGCBase.debug_check_consistency(self)
def debug_check_object(self, obj):
# after a minor or major collection, no object should be in the nursery
ll_assert(not self.is_in_nursery(obj),
"object in nursery after collection")
# similarily, all objects should have this flag, except if they
# don't have any GC pointer
typeid = self.get_type_id(obj)
if self.has_gcptr(typeid):
ll_assert(self.header(obj).tid & GCFLAG_TRACK_YOUNG_PTRS != 0,
"missing GCFLAG_TRACK_YOUNG_PTRS")
# the GCFLAG_VISITED should not be set between collections
ll_assert(self.header(obj).tid & GCFLAG_VISITED == 0,
"unexpected GCFLAG_VISITED")
# the GCFLAG_FINALIZATION_ORDERING should not be set between coll.
ll_assert(self.header(obj).tid & GCFLAG_FINALIZATION_ORDERING == 0,
"unexpected GCFLAG_FINALIZATION_ORDERING")
# the GCFLAG_CARDS_SET should not be set between collections
ll_assert(self.header(obj).tid & GCFLAG_CARDS_SET == 0,
"unexpected GCFLAG_CARDS_SET")
# if the GCFLAG_HAS_CARDS is set, check that all bits are zero now
if self.header(obj).tid & GCFLAG_HAS_CARDS:
if self.card_page_indices <= 0:
ll_assert(False, "GCFLAG_HAS_CARDS but not using card marking")
return
typeid = self.get_type_id(obj)
ll_assert(self.has_gcptr_in_varsize(typeid),
"GCFLAG_HAS_CARDS but not has_gcptr_in_varsize")
ll_assert(self.header(obj).tid & GCFLAG_NO_HEAP_PTRS == 0,
"GCFLAG_HAS_CARDS && GCFLAG_NO_HEAP_PTRS")
offset_to_length = self.varsize_offset_to_length(typeid)
length = (obj + offset_to_length).signed[0]
extra_words = self.card_marking_words_for_length(length)
#
size_gc_header = self.gcheaderbuilder.size_gc_header
p = llarena.getfakearenaaddress(obj - size_gc_header)
i = extra_words * WORD
while i > 0:
p -= 1
ll_assert(p.char[0] == '\x00',
"the card marker bits are not cleared")
i -= 1
# ----------
# Write barrier
# for the JIT: a minimal description of the write_barrier() method
# (the JIT assumes it is of the shape
# "if addr_struct.int0 & JIT_WB_IF_FLAG: remember_young_pointer()")
JIT_WB_IF_FLAG = GCFLAG_TRACK_YOUNG_PTRS
# for the JIT to generate custom code corresponding to the array
# write barrier for the simplest case of cards. If JIT_CARDS_SET
# is already set on an object, it will execute code like this:
# MOV eax, index
# SHR eax, JIT_WB_CARD_PAGE_SHIFT
# XOR eax, -8
# BTS [object], eax
if TRANSLATION_PARAMS['card_page_indices'] > 0:
JIT_WB_CARDS_SET = GCFLAG_CARDS_SET
JIT_WB_CARD_PAGE_SHIFT = 1
while ((1 << JIT_WB_CARD_PAGE_SHIFT) !=
TRANSLATION_PARAMS['card_page_indices']):
JIT_WB_CARD_PAGE_SHIFT += 1
@classmethod
def JIT_max_size_of_young_obj(cls):
return cls.TRANSLATION_PARAMS['large_object']
@classmethod
def JIT_minimal_size_in_nursery(cls):
return cls.minimal_size_in_nursery
def write_barrier(self, addr_struct):
if self.header(addr_struct).tid & GCFLAG_TRACK_YOUNG_PTRS:
self.remember_young_pointer(addr_struct)
def write_barrier_from_array(self, addr_array, index):
if self.header(addr_array).tid & GCFLAG_TRACK_YOUNG_PTRS:
if self.card_page_indices > 0: # <- constant-folded
self.remember_young_pointer_from_array2(addr_array, index)
else:
self.remember_young_pointer(addr_array)
def _init_writebarrier_logic(self):
DEBUG = self.DEBUG
# The purpose of attaching remember_young_pointer to the instance
# instead of keeping it as a regular method is to
# make the code in write_barrier() marginally smaller
# (which is important because it is inlined *everywhere*).
def remember_young_pointer(addr_struct):
# 'addr_struct' is the address of the object in which we write.
# We know that 'addr_struct' has GCFLAG_TRACK_YOUNG_PTRS so far.
#
if DEBUG: # note: PYPY_GC_DEBUG=1 does not enable this
ll_assert(self.debug_is_old_object(addr_struct) or
self.header(addr_struct).tid & GCFLAG_HAS_CARDS != 0,
"young object with GCFLAG_TRACK_YOUNG_PTRS and no cards")
#
# We need to remove the flag GCFLAG_TRACK_YOUNG_PTRS and add
# the object to the list 'old_objects_pointing_to_young'.
# We know that 'addr_struct' cannot be in the nursery,
# because nursery objects never have the flag
# GCFLAG_TRACK_YOUNG_PTRS to start with. Note that in
# theory we don't need to do that if the pointer that we're
# writing into the object isn't pointing to a young object.
# However, it isn't really a win, because then sometimes
# we're going to call this function a lot of times for the
# same object; moreover we'd need to pass the 'newvalue' as
# an argument here. The JIT has always called a
# 'newvalue'-less version, too.
self.old_objects_pointing_to_young.append(addr_struct)
objhdr = self.header(addr_struct)
objhdr.tid &= ~GCFLAG_TRACK_YOUNG_PTRS
#
# Second part: if 'addr_struct' is actually a prebuilt GC
# object and it's the first time we see a write to it, we
# add it to the list 'prebuilt_root_objects'.
if objhdr.tid & GCFLAG_NO_HEAP_PTRS:
objhdr.tid &= ~GCFLAG_NO_HEAP_PTRS
self.prebuilt_root_objects.append(addr_struct)
remember_young_pointer._dont_inline_ = True
self.remember_young_pointer = remember_young_pointer
#
if self.card_page_indices > 0:
self._init_writebarrier_with_card_marker()
def _init_writebarrier_with_card_marker(self):
DEBUG = self.DEBUG
def remember_young_pointer_from_array2(addr_array, index):
# 'addr_array' is the address of the object in which we write,
# which must have an array part; 'index' is the index of the
# item that is (or contains) the pointer that we write.
# We know that 'addr_array' has GCFLAG_TRACK_YOUNG_PTRS so far.
#
objhdr = self.header(addr_array)
if objhdr.tid & GCFLAG_HAS_CARDS == 0:
#
if DEBUG: # note: PYPY_GC_DEBUG=1 does not enable this
ll_assert(self.debug_is_old_object(addr_array),
"young array with no card but GCFLAG_TRACK_YOUNG_PTRS")
#
# no cards, use default logic. Mostly copied from above.
self.old_objects_pointing_to_young.append(addr_array)
objhdr.tid &= ~GCFLAG_TRACK_YOUNG_PTRS
if objhdr.tid & GCFLAG_NO_HEAP_PTRS:
objhdr.tid &= ~GCFLAG_NO_HEAP_PTRS
self.prebuilt_root_objects.append(addr_array)
return
#
# 'addr_array' is a raw_malloc'ed array with card markers
# in front. Compute the index of the bit to set:
bitindex = index >> self.card_page_shift
byteindex = bitindex >> 3
bitmask = 1 << (bitindex & 7)
#
# If the bit is already set, leave now.
addr_byte = self.get_card(addr_array, byteindex)
byte = ord(addr_byte.char[0])
if byte & bitmask:
return
#
# We set the flag (even if the newly written address does not
# actually point to the nursery, which seems to be ok -- actually
# it seems more important that remember_young_pointer_from_array2()
# does not take 3 arguments).
addr_byte.char[0] = chr(byte | bitmask)
#
if objhdr.tid & GCFLAG_CARDS_SET == 0:
self.old_objects_with_cards_set.append(addr_array)
objhdr.tid |= GCFLAG_CARDS_SET
remember_young_pointer_from_array2._dont_inline_ = True
assert self.card_page_indices > 0
self.remember_young_pointer_from_array2 = (
remember_young_pointer_from_array2)
def jit_remember_young_pointer_from_array(addr_array):
# minimal version of the above, with just one argument,
# called by the JIT when GCFLAG_TRACK_YOUNG_PTRS is set
# but GCFLAG_CARDS_SET is cleared. This tries to set
# GCFLAG_CARDS_SET if possible; otherwise, it falls back
# to remember_young_pointer().
objhdr = self.header(addr_array)
if objhdr.tid & GCFLAG_HAS_CARDS:
self.old_objects_with_cards_set.append(addr_array)
objhdr.tid |= GCFLAG_CARDS_SET
else:
self.remember_young_pointer(addr_array)
self.jit_remember_young_pointer_from_array = (
jit_remember_young_pointer_from_array)
def get_card(self, obj, byteindex):
size_gc_header = self.gcheaderbuilder.size_gc_header
addr_byte = obj - size_gc_header
return llarena.getfakearenaaddress(addr_byte) + (~byteindex)
def writebarrier_before_copy(self, source_addr, dest_addr,
source_start, dest_start, length):
""" This has the same effect as calling writebarrier over
each element in dest copied from source, except it might reset
one of the following flags a bit too eagerly, which means we'll have
a bit more objects to track, but being on the safe side.
"""
source_hdr = self.header(source_addr)
dest_hdr = self.header(dest_addr)
if dest_hdr.tid & GCFLAG_TRACK_YOUNG_PTRS == 0:
return True
# ^^^ a fast path of write-barrier
#
if source_hdr.tid & GCFLAG_HAS_CARDS != 0:
#
if source_hdr.tid & GCFLAG_TRACK_YOUNG_PTRS == 0:
# The source object may have random young pointers.
# Return False to mean "do it manually in ll_arraycopy".
return False
#
if source_hdr.tid & GCFLAG_CARDS_SET == 0:
# The source object has no young pointers at all. Done.
return True
#
if dest_hdr.tid & GCFLAG_HAS_CARDS == 0:
# The dest object doesn't have cards. Do it manually.
return False
#
if source_start != 0 or dest_start != 0:
# Misaligned. Do it manually.
return False
#
self.manually_copy_card_bits(source_addr, dest_addr, length)
return True
#
if source_hdr.tid & GCFLAG_TRACK_YOUNG_PTRS == 0:
# there might be in source a pointer to a young object
self.old_objects_pointing_to_young.append(dest_addr)
dest_hdr.tid &= ~GCFLAG_TRACK_YOUNG_PTRS
#
if dest_hdr.tid & GCFLAG_NO_HEAP_PTRS:
if source_hdr.tid & GCFLAG_NO_HEAP_PTRS == 0:
dest_hdr.tid &= ~GCFLAG_NO_HEAP_PTRS
self.prebuilt_root_objects.append(dest_addr)
return True
def manually_copy_card_bits(self, source_addr, dest_addr, length):
# manually copy the individual card marks from source to dest
assert self.card_page_indices > 0
bytes = self.card_marking_bytes_for_length(length)
#
anybyte = 0
i = 0
while i < bytes:
addr_srcbyte = self.get_card(source_addr, i)
addr_dstbyte = self.get_card(dest_addr, i)
byte = ord(addr_srcbyte.char[0])
anybyte |= byte
addr_dstbyte.char[0] = chr(ord(addr_dstbyte.char[0]) | byte)
i += 1
#
if anybyte:
dest_hdr = self.header(dest_addr)
if dest_hdr.tid & GCFLAG_CARDS_SET == 0:
self.old_objects_with_cards_set.append(dest_addr)
dest_hdr.tid |= GCFLAG_CARDS_SET
def register_finalizer(self, fq_index, gcobj):
from rpython.rtyper.lltypesystem import rffi
obj = llmemory.cast_ptr_to_adr(gcobj)
fq_index = rffi.cast(llmemory.Address, fq_index)
self.probably_young_objects_with_finalizers.append(obj)
self.probably_young_objects_with_finalizers.append(fq_index)
# ----------
# Nursery collection
def minor_collection(self):
"""Perform a minor collection: find the objects from the nursery
that remain alive and move them out."""
#
debug_start("gc-minor")
#
# Before everything else, remove from 'old_objects_pointing_to_young'
# the young arrays.
if self.young_rawmalloced_objects:
self.remove_young_arrays_from_old_objects_pointing_to_young()
#
# First, find the roots that point to young objects. All nursery
# objects found are copied out of the nursery, and the occasional
# young raw-malloced object is flagged with GCFLAG_VISITED.
# Note that during this step, we ignore references to further
# young objects; only objects directly referenced by roots
# are copied out or flagged. They are also added to the list
# 'old_objects_pointing_to_young'.
self.collect_roots_in_nursery()
#
# visit the "probably young" objects with finalizers. They
# always all survive.
if self.probably_young_objects_with_finalizers.non_empty():
self.deal_with_young_objects_with_finalizers()
#
while True:
# If we are using card marking, do a partial trace of the arrays
# that are flagged with GCFLAG_CARDS_SET.
if self.card_page_indices > 0:
self.collect_cardrefs_to_nursery()
#
# Now trace objects from 'old_objects_pointing_to_young'.
# All nursery objects they reference are copied out of the
# nursery, and again added to 'old_objects_pointing_to_young'.
# All young raw-malloced object found are flagged GCFLAG_VISITED.
# We proceed until 'old_objects_pointing_to_young' is empty.
self.collect_oldrefs_to_nursery()
#
# We have to loop back if collect_oldrefs_to_nursery caused
# new objects to show up in old_objects_with_cards_set
if self.card_page_indices > 0:
if self.old_objects_with_cards_set.non_empty():
continue
break
#
# Now all live nursery objects should be out. Update the young
# weakrefs' targets.
if self.young_objects_with_weakrefs.non_empty():
self.invalidate_young_weakrefs()
if self.young_objects_with_destructors.non_empty():
self.deal_with_young_objects_with_destructors()
#
# Clear this mapping.
if self.nursery_objects_shadows.length() > 0:
self.nursery_objects_shadows.clear()
#
# Walk the list of young raw-malloced objects, and either free
# them or make them old.
if self.young_rawmalloced_objects:
self.free_young_rawmalloced_objects()
#
# All live nursery objects are out, and the rest dies. Fill
# the nursery up to the cleanup point with zeros
llarena.arena_reset(self.nursery, self.nursery_size, 0)
llarena.arena_reset(self.nursery, self.initial_cleanup, 2)
self.debug_rotate_nursery()
self.nursery_free = self.nursery
self.nursery_top = self.nursery + self.initial_cleanup
self.nursery_real_top = self.nursery + self.nursery_size
#
debug_print("minor collect, total memory used:",
self.get_total_memory_used())
if self.DEBUG >= 2:
self.debug_check_consistency() # expensive!
debug_stop("gc-minor")
def collect_roots_in_nursery(self):
# we don't need to trace prebuilt GcStructs during a minor collect:
# if a prebuilt GcStruct contains a pointer to a young object,
# then the write_barrier must have ensured that the prebuilt
# GcStruct is in the list self.old_objects_pointing_to_young.
debug_start("gc-minor-walkroots")
self.root_walker.walk_roots(
MiniMarkGC._trace_drag_out1, # stack roots
MiniMarkGC._trace_drag_out1, # static in prebuilt non-gc
None, # static in prebuilt gc
is_minor=True)
debug_stop("gc-minor-walkroots")
def collect_cardrefs_to_nursery(self):
size_gc_header = self.gcheaderbuilder.size_gc_header
oldlist = self.old_objects_with_cards_set
while oldlist.non_empty():
obj = oldlist.pop()
#
# Remove the GCFLAG_CARDS_SET flag.
ll_assert(self.header(obj).tid & GCFLAG_CARDS_SET != 0,
"!GCFLAG_CARDS_SET but object in 'old_objects_with_cards_set'")
self.header(obj).tid &= ~GCFLAG_CARDS_SET
#
# Get the number of card marker bytes in the header.
typeid = self.get_type_id(obj)
offset_to_length = self.varsize_offset_to_length(typeid)
length = (obj + offset_to_length).signed[0]
bytes = self.card_marking_bytes_for_length(length)
p = llarena.getfakearenaaddress(obj - size_gc_header)
#
# If the object doesn't have GCFLAG_TRACK_YOUNG_PTRS, then it
# means that it is in 'old_objects_pointing_to_young' and
# will be fully traced by collect_oldrefs_to_nursery() just
# afterwards.
if self.header(obj).tid & GCFLAG_TRACK_YOUNG_PTRS == 0:
#
# In that case, we just have to reset all card bits.
while bytes > 0:
p -= 1
p.char[0] = '\x00'
bytes -= 1
#
else:
# Walk the bytes encoding the card marker bits, and for
# each bit set, call trace_and_drag_out_of_nursery_partial().
interval_start = 0
while bytes > 0:
p -= 1
cardbyte = ord(p.char[0])
p.char[0] = '\x00' # reset the bits
bytes -= 1
next_byte_start = interval_start + 8*self.card_page_indices
#
while cardbyte != 0:
interval_stop = interval_start + self.card_page_indices
#
if cardbyte & 1:
if interval_stop > length:
interval_stop = length
ll_assert(cardbyte <= 1 and bytes == 0,
"premature end of object")
self.trace_and_drag_out_of_nursery_partial(
obj, interval_start, interval_stop)
#
interval_start = interval_stop
cardbyte >>= 1
interval_start = next_byte_start
def collect_oldrefs_to_nursery(self):
# Follow the old_objects_pointing_to_young list and move the
# young objects they point to out of the nursery.
oldlist = self.old_objects_pointing_to_young
while oldlist.non_empty():
obj = oldlist.pop()
#
# Check that the flags are correct: we must not have
# GCFLAG_TRACK_YOUNG_PTRS so far.
ll_assert(self.header(obj).tid & GCFLAG_TRACK_YOUNG_PTRS == 0,
"old_objects_pointing_to_young contains obj with "
"GCFLAG_TRACK_YOUNG_PTRS")
#
# Add the flag GCFLAG_TRACK_YOUNG_PTRS. All live objects should
# have this flag set after a nursery collection.
self.header(obj).tid |= GCFLAG_TRACK_YOUNG_PTRS
#
# Trace the 'obj' to replace pointers to nursery with pointers
# outside the nursery, possibly forcing nursery objects out
# and adding them to 'old_objects_pointing_to_young' as well.
self.trace_and_drag_out_of_nursery(obj)
def trace_and_drag_out_of_nursery(self, obj):
"""obj must not be in the nursery. This copies all the
young objects it references out of the nursery.
"""
self.trace(obj, self._trace_drag_out, None)
def trace_and_drag_out_of_nursery_partial(self, obj, start, stop):
"""Like trace_and_drag_out_of_nursery(), but limited to the array
indices in range(start, stop).
"""
ll_assert(start < stop, "empty or negative range "
"in trace_and_drag_out_of_nursery_partial()")
#print 'trace_partial:', start, stop, '\t', obj
self.trace_partial(obj, start, stop, self._trace_drag_out, None)
def _trace_drag_out1(self, root):
self._trace_drag_out(root, None)
def _trace_drag_out(self, root, ignored):
obj = root.address[0]
#print '_trace_drag_out(%x: %r)' % (hash(obj.ptr._obj), obj)
#
# If 'obj' is not in the nursery, nothing to change -- expect
# that we must set GCFLAG_VISITED on young raw-malloced objects.
if not self.is_in_nursery(obj):
# cache usage trade-off: I think that it is a better idea to
# check if 'obj' is in young_rawmalloced_objects with an access
# to this (small) dictionary, rather than risk a lot of cache
# misses by reading a flag in the header of all the 'objs' that
# arrive here.
if (bool(self.young_rawmalloced_objects)
and self.young_rawmalloced_objects.contains(obj)):
self._visit_young_rawmalloced_object(obj)
return
#
size_gc_header = self.gcheaderbuilder.size_gc_header
if self.header(obj).tid & GCFLAG_HAS_SHADOW == 0:
#
# Common case: 'obj' was not already forwarded (otherwise
# tid == -42, containing all flags), and it doesn't have the
# HAS_SHADOW flag either. We must move it out of the nursery,
# into a new nonmovable location.
totalsize = size_gc_header + self.get_size(obj)
newhdr = self._malloc_out_of_nursery(totalsize)
#
elif self.is_forwarded(obj):
#
# 'obj' was already forwarded. Change the original reference
# to point to its forwarding address, and we're done.
root.address[0] = self.get_forwarding_address(obj)
return
#
else:
# First visit to an object that has already a shadow.
newobj = self.nursery_objects_shadows.get(obj)
ll_assert(newobj != NULL, "GCFLAG_HAS_SHADOW but no shadow found")
newhdr = newobj - size_gc_header
#
# Remove the flag GCFLAG_HAS_SHADOW, so that it doesn't get
# copied to the shadow itself.
self.header(obj).tid &= ~GCFLAG_HAS_SHADOW
#
totalsize = size_gc_header + self.get_size(obj)
#
# Copy it. Note that references to other objects in the
# nursery are kept unchanged in this step.
llmemory.raw_memcopy(obj - size_gc_header, newhdr, totalsize)
#
# Set the old object's tid to -42 (containing all flags) and
# replace the old object's content with the target address.
# A bit of no-ops to convince llarena that we are changing
# the layout, in non-translated versions.
typeid = self.get_type_id(obj)
obj = llarena.getfakearenaaddress(obj)
llarena.arena_reset(obj - size_gc_header, totalsize, 0)
llarena.arena_reserve(obj - size_gc_header,
size_gc_header + llmemory.sizeof(FORWARDSTUB))
self.header(obj).tid = -42
newobj = newhdr + size_gc_header
llmemory.cast_adr_to_ptr(obj, FORWARDSTUBPTR).forw = newobj
#
# Change the original pointer to this object.
root.address[0] = newobj
#
# Add the newobj to the list 'old_objects_pointing_to_young',
# because it can contain further pointers to other young objects.
# We will fix such references to point to the copy of the young
# objects when we walk 'old_objects_pointing_to_young'.
if self.has_gcptr(typeid):
# we only have to do it if we have any gcptrs
self.old_objects_pointing_to_young.append(newobj)
_trace_drag_out._always_inline_ = True
def _visit_young_rawmalloced_object(self, obj):
# 'obj' points to a young, raw-malloced object.
# Any young rawmalloced object never seen by the code here
# will end up without GCFLAG_VISITED, and be freed at the
# end of the current minor collection. Note that there was
# a bug in which dying young arrays with card marks would
# still be scanned before being freed, keeping a lot of
# objects unnecessarily alive.
hdr = self.header(obj)
if hdr.tid & GCFLAG_VISITED:
return
hdr.tid |= GCFLAG_VISITED
#
# we just made 'obj' old, so we need to add it to the correct lists
added_somewhere = False
#
if hdr.tid & GCFLAG_TRACK_YOUNG_PTRS == 0:
self.old_objects_pointing_to_young.append(obj)
added_somewhere = True
#
if hdr.tid & GCFLAG_HAS_CARDS != 0:
ll_assert(hdr.tid & GCFLAG_CARDS_SET != 0,
"young array: GCFLAG_HAS_CARDS without GCFLAG_CARDS_SET")
self.old_objects_with_cards_set.append(obj)
added_somewhere = True
#
ll_assert(added_somewhere, "wrong flag combination on young array")
def _malloc_out_of_nursery(self, totalsize):
"""Allocate non-movable memory for an object of the given
'totalsize' that lives so far in the nursery."""
if raw_malloc_usage(totalsize) <= self.small_request_threshold:
# most common path
return self.ac.malloc(totalsize)
else:
# for nursery objects that are not small
return self._malloc_out_of_nursery_nonsmall(totalsize)
_malloc_out_of_nursery._always_inline_ = True
def _malloc_out_of_nursery_nonsmall(self, totalsize):
# 'totalsize' should be aligned.
ll_assert(raw_malloc_usage(totalsize) & (WORD-1) == 0,
"misaligned totalsize in _malloc_out_of_nursery_nonsmall")
#
arena = llarena.arena_malloc(raw_malloc_usage(totalsize), False)
if not arena:
raise MemoryError("cannot allocate object")
llarena.arena_reserve(arena, totalsize)
#
size_gc_header = self.gcheaderbuilder.size_gc_header
self.rawmalloced_total_size += r_uint(raw_malloc_usage(totalsize))
self.old_rawmalloced_objects.append(arena + size_gc_header)
return arena
def free_young_rawmalloced_objects(self):
self.young_rawmalloced_objects.foreach(
self._free_young_rawmalloced_obj, None)
self.young_rawmalloced_objects.delete()
self.young_rawmalloced_objects = self.null_address_dict()
def _free_young_rawmalloced_obj(self, obj, ignored1, ignored2):
# If 'obj' has GCFLAG_VISITED, it was seen by _trace_drag_out
# and survives. Otherwise, it dies.
self.free_rawmalloced_object_if_unvisited(obj)
def remove_young_arrays_from_old_objects_pointing_to_young(self):
old = self.old_objects_pointing_to_young
new = self.AddressStack()
while old.non_empty():
obj = old.pop()
if not self.young_rawmalloced_objects.contains(obj):
new.append(obj)
# an extra copy, to avoid assignments to
# 'self.old_objects_pointing_to_young'
while new.non_empty():
old.append(new.pop())
new.delete()
# ----------
# Full collection
def major_collection(self, reserving_size=0):
"""Do a major collection. Only for when the nursery is empty."""
#
debug_start("gc-collect")
debug_print()
debug_print(".----------- Full collection ------------------")
debug_print("| used before collection:")
debug_print("| in ArenaCollection: ",
self.ac.total_memory_used, "bytes")
debug_print("| raw_malloced: ",
self.rawmalloced_total_size, "bytes")
#
# Debugging checks
ll_assert(self.nursery_free == self.nursery,
"nursery not empty in major_collection()")
self.debug_check_consistency()
#
# Note that a major collection is non-moving. The goal is only to
# find and free some of the objects allocated by the ArenaCollection.
# We first visit all objects and toggle the flag GCFLAG_VISITED on
# them, starting from the roots.
self.objects_to_trace = self.AddressStack()
self.collect_roots()
self.visit_all_objects()
#
# Finalizer support: adds the flag GCFLAG_VISITED to all objects
# with a finalizer and all objects reachable from there (and also
# moves some objects from 'objects_with_finalizers' to
# 'run_finalizers').
if self.old_objects_with_finalizers.non_empty():
self.deal_with_objects_with_finalizers()
#
self.objects_to_trace.delete()
#
# Weakref support: clear the weak pointers to dying objects
if self.old_objects_with_weakrefs.non_empty():
self.invalidate_old_weakrefs()
if self.old_objects_with_destructors.non_empty():
self.deal_with_old_objects_with_destructors()
#
# Walk all rawmalloced objects and free the ones that don't
# have the GCFLAG_VISITED flag.
self.free_unvisited_rawmalloc_objects()
#
# Ask the ArenaCollection to visit all objects. Free the ones
# that have not been visited above, and reset GCFLAG_VISITED on
# the others.
self.ac.mass_free(self._free_if_unvisited)
#
# We also need to reset the GCFLAG_VISITED on prebuilt GC objects.
self.prebuilt_root_objects.foreach(self._reset_gcflag_visited, None)
#
self.debug_check_consistency()
#
self.num_major_collects += 1
debug_print("| used after collection:")
debug_print("| in ArenaCollection: ",
self.ac.total_memory_used, "bytes")
debug_print("| raw_malloced: ",
self.rawmalloced_total_size, "bytes")
debug_print("| number of major collects: ",
self.num_major_collects)
debug_print("`----------------------------------------------")
debug_stop("gc-collect")
#
# Set the threshold for the next major collection to be when we
# have allocated 'major_collection_threshold' times more than
# we currently have -- but no more than 'max_delta' more than
# we currently have.
total_memory_used = float(self.get_total_memory_used())
bounded = self.set_major_threshold_from(
min(total_memory_used * self.major_collection_threshold,
total_memory_used + self.max_delta),
reserving_size)
#
# Max heap size: gives an upper bound on the threshold. If we
# already have at least this much allocated, raise MemoryError.
if bounded and (float(self.get_total_memory_used()) + reserving_size >=
self.next_major_collection_initial):
#
# First raise MemoryError, giving the program a chance to
# quit cleanly. It might still allocate in the nursery,
# which might eventually be emptied, triggering another
# major collect and (possibly) reaching here again with an
# even higher memory consumption. To prevent it, if it's
# the second time we are here, then abort the program.
if self.max_heap_size_already_raised:
llop.debug_fatalerror(lltype.Void,
"Using too much memory, aborting")
self.max_heap_size_already_raised = True
raise MemoryError
#
# At the end, we can execute the finalizers of the objects
# listed in 'run_finalizers'. Note that this will typically do
# more allocations.
self.execute_finalizers()
def _free_if_unvisited(self, hdr):
size_gc_header = self.gcheaderbuilder.size_gc_header
obj = hdr + size_gc_header
if self.header(obj).tid & GCFLAG_VISITED:
self.header(obj).tid &= ~GCFLAG_VISITED
return False # survives
return True # dies
def _reset_gcflag_visited(self, obj, ignored):
self.header(obj).tid &= ~GCFLAG_VISITED
def free_rawmalloced_object_if_unvisited(self, obj):
if self.header(obj).tid & GCFLAG_VISITED:
self.header(obj).tid &= ~GCFLAG_VISITED # survives
self.old_rawmalloced_objects.append(obj)
else:
size_gc_header = self.gcheaderbuilder.size_gc_header
totalsize = size_gc_header + self.get_size(obj)
allocsize = raw_malloc_usage(totalsize)
arena = llarena.getfakearenaaddress(obj - size_gc_header)
#
# Must also include the card marker area, if any
if (self.card_page_indices > 0 # <- this is constant-folded
and self.header(obj).tid & GCFLAG_HAS_CARDS):
#
# Get the length and compute the number of extra bytes
typeid = self.get_type_id(obj)
ll_assert(self.has_gcptr_in_varsize(typeid),
"GCFLAG_HAS_CARDS but not has_gcptr_in_varsize")
offset_to_length = self.varsize_offset_to_length(typeid)
length = (obj + offset_to_length).signed[0]
extra_words = self.card_marking_words_for_length(length)
arena -= extra_words * WORD
allocsize += extra_words * WORD
#
llarena.arena_free(arena)
self.rawmalloced_total_size -= r_uint(allocsize)
def free_unvisited_rawmalloc_objects(self):
list = self.old_rawmalloced_objects
self.old_rawmalloced_objects = self.AddressStack()
#
while list.non_empty():
self.free_rawmalloced_object_if_unvisited(list.pop())
#
list.delete()
def collect_roots(self):
# Collect all roots. Starts from all the objects
# from 'prebuilt_root_objects'.
self.prebuilt_root_objects.foreach(self._collect_obj,
self.objects_to_trace)
#
# Add the roots from the other sources.
self.root_walker.walk_roots(
MiniMarkGC._collect_ref_stk, # stack roots
MiniMarkGC._collect_ref_stk, # static in prebuilt non-gc structures
None) # we don't need the static in all prebuilt gc objects
#
# If we are in an inner collection caused by a call to a finalizer,
# the 'run_finalizers' objects also need to be kept alive.
self.enum_pending_finalizers(self._collect_obj,
self.objects_to_trace)
def enumerate_all_roots(self, callback, arg):
self.prebuilt_root_objects.foreach(callback, arg)
MovingGCBase.enumerate_all_roots(self, callback, arg)
enumerate_all_roots._annspecialcase_ = 'specialize:arg(1)'
@staticmethod
def _collect_obj(obj, objects_to_trace):
objects_to_trace.append(obj)
def _collect_ref_stk(self, root):
obj = root.address[0]
llop.debug_nonnull_pointer(lltype.Void, obj)
self.objects_to_trace.append(obj)
def _collect_ref_rec(self, root, ignored):
self.objects_to_trace.append(root.address[0])
def visit_all_objects(self):
pending = self.objects_to_trace
while pending.non_empty():
obj = pending.pop()
self.visit(obj)
def visit(self, obj):
#
# 'obj' is a live object. Check GCFLAG_VISITED to know if we
# have already seen it before.
#
# Moreover, we can ignore prebuilt objects with GCFLAG_NO_HEAP_PTRS.
# If they have this flag set, then they cannot point to heap
# objects, so ignoring them is fine. If they don't have this
# flag set, then the object should be in 'prebuilt_root_objects',
# and the GCFLAG_VISITED will be reset at the end of the
# collection.
hdr = self.header(obj)
if hdr.tid & (GCFLAG_VISITED | GCFLAG_NO_HEAP_PTRS):
return
#
# It's the first time. We set the flag.
hdr.tid |= GCFLAG_VISITED
if not self.has_gcptr(llop.extract_ushort(llgroup.HALFWORD, hdr.tid)):
return
#
# Trace the content of the object and put all objects it references
# into the 'objects_to_trace' list.
self.trace(obj, self._collect_ref_rec, None)
# ----------
# id() and identityhash() support
def _allocate_shadow(self, obj):
size_gc_header = self.gcheaderbuilder.size_gc_header
size = self.get_size(obj)
shadowhdr = self._malloc_out_of_nursery(size_gc_header +
size)
# Initialize the shadow enough to be considered a
# valid gc object. If the original object stays
# alive at the next minor collection, it will anyway
# be copied over the shadow and overwrite the
# following fields. But if the object dies, then
# the shadow will stay around and only be freed at
# the next major collection, at which point we want
# it to look valid (but ready to be freed).
shadow = shadowhdr + size_gc_header
self.header(shadow).tid = self.header(obj).tid
typeid = self.get_type_id(obj)
if self.is_varsize(typeid):
lenofs = self.varsize_offset_to_length(typeid)
(shadow + lenofs).signed[0] = (obj + lenofs).signed[0]
#
self.header(obj).tid |= GCFLAG_HAS_SHADOW
self.nursery_objects_shadows.setitem(obj, shadow)
return shadow
def _find_shadow(self, obj):
#
# The object is not a tagged pointer, and it is still in the
# nursery. Find or allocate a "shadow" object, which is
# where the object will be moved by the next minor
# collection
if self.header(obj).tid & GCFLAG_HAS_SHADOW:
shadow = self.nursery_objects_shadows.get(obj)
ll_assert(shadow != NULL,
"GCFLAG_HAS_SHADOW but no shadow found")
else:
shadow = self._allocate_shadow(obj)
#
# The answer is the address of the shadow.
return shadow
_find_shadow._dont_inline_ = True
@specialize.arg(2)
def id_or_identityhash(self, gcobj, is_hash):
"""Implement the common logic of id() and identityhash()
of an object, given as a GCREF.
"""
obj = llmemory.cast_ptr_to_adr(gcobj)
#
if self.is_valid_gc_object(obj):
if self.is_in_nursery(obj):
obj = self._find_shadow(obj)
elif is_hash:
if self.header(obj).tid & GCFLAG_HAS_SHADOW:
#
# For identityhash(), we need a special case for some
# prebuilt objects: their hash must be the same before
# and after translation. It is stored as an extra word
# after the object. But we cannot use it for id()
# because the stored value might clash with a real one.
size = self.get_size(obj)
i = (obj + size).signed[0]
# Important: the returned value is not mangle_hash()ed!
return i
#
i = llmemory.cast_adr_to_int(obj)
if is_hash:
i = mangle_hash(i)
return i
id_or_identityhash._always_inline_ = True
def id(self, gcobj):
return self.id_or_identityhash(gcobj, False)
def identityhash(self, gcobj):
return self.id_or_identityhash(gcobj, True)
# ----------
# Finalizers
def deal_with_young_objects_with_destructors(self):
"""We can reasonably assume that destructors don't do
anything fancy and *just* call them. Among other things
they won't resurrect objects
"""
while self.young_objects_with_destructors.non_empty():
obj = self.young_objects_with_destructors.pop()
if not self.is_forwarded(obj):
self.call_destructor(obj)
else:
obj = self.get_forwarding_address(obj)
self.old_objects_with_destructors.append(obj)
def deal_with_old_objects_with_destructors(self):
"""We can reasonably assume that destructors don't do
anything fancy and *just* call them. Among other things
they won't resurrect objects
"""
new_objects = self.AddressStack()
while self.old_objects_with_destructors.non_empty():
obj = self.old_objects_with_destructors.pop()
if self.header(obj).tid & GCFLAG_VISITED:
# surviving
new_objects.append(obj)
else:
# dying
self.call_destructor(obj)
self.old_objects_with_destructors.delete()
self.old_objects_with_destructors = new_objects
def deal_with_young_objects_with_finalizers(self):
while self.probably_young_objects_with_finalizers.non_empty():
obj = self.probably_young_objects_with_finalizers.popleft()
fq_nr = self.probably_young_objects_with_finalizers.popleft()
self.singleaddr.address[0] = obj
self._trace_drag_out1(self.singleaddr)
obj = self.singleaddr.address[0]
self.old_objects_with_finalizers.append(obj)
self.old_objects_with_finalizers.append(fq_nr)
def deal_with_objects_with_finalizers(self):
# Walk over list of objects with finalizers.
# If it is not surviving, add it to the list of to-be-called
# finalizers and make it survive, to make the finalizer runnable.
# We try to run the finalizers in a "reasonable" order, like
# CPython does. The details of this algorithm are in
# pypy/doc/discussion/finalizer-order.txt.
new_with_finalizer = self.AddressDeque()
marked = self.AddressDeque()
pending = self.AddressStack()
self.tmpstack = self.AddressStack()
while self.old_objects_with_finalizers.non_empty():
x = self.old_objects_with_finalizers.popleft()
fq_nr = self.old_objects_with_finalizers.popleft()
ll_assert(self._finalization_state(x) != 1,
"bad finalization state 1")
if self.header(x).tid & GCFLAG_VISITED:
new_with_finalizer.append(x)
new_with_finalizer.append(fq_nr)
continue
marked.append(x)
marked.append(fq_nr)
pending.append(x)
while pending.non_empty():
y = pending.pop()
state = self._finalization_state(y)
if state == 0:
self._bump_finalization_state_from_0_to_1(y)
self.trace(y, self._append_if_nonnull, pending)
elif state == 2:
self._recursively_bump_finalization_state_from_2_to_3(y)
self._recursively_bump_finalization_state_from_1_to_2(x)
while marked.non_empty():
x = marked.popleft()
fq_nr = marked.popleft()
state = self._finalization_state(x)
ll_assert(state >= 2, "unexpected finalization state < 2")
if state == 2:
from rpython.rtyper.lltypesystem import rffi
fq_index = rffi.cast(lltype.Signed, fq_nr)
self.mark_finalizer_to_run(fq_index, x)
# we must also fix the state from 2 to 3 here, otherwise
# we leave the GCFLAG_FINALIZATION_ORDERING bit behind
# which will confuse the next collection
self._recursively_bump_finalization_state_from_2_to_3(x)
else:
new_with_finalizer.append(x)
new_with_finalizer.append(fq_nr)
self.tmpstack.delete()
pending.delete()
marked.delete()
self.old_objects_with_finalizers.delete()
self.old_objects_with_finalizers = new_with_finalizer
def _append_if_nonnull(pointer, stack):
stack.append(pointer.address[0])
_append_if_nonnull = staticmethod(_append_if_nonnull)
def _finalization_state(self, obj):
tid = self.header(obj).tid
if tid & GCFLAG_VISITED:
if tid & GCFLAG_FINALIZATION_ORDERING:
return 2
else:
return 3
else:
if tid & GCFLAG_FINALIZATION_ORDERING:
return 1
else:
return 0
def _bump_finalization_state_from_0_to_1(self, obj):
ll_assert(self._finalization_state(obj) == 0,
"unexpected finalization state != 0")
hdr = self.header(obj)
hdr.tid |= GCFLAG_FINALIZATION_ORDERING
def _recursively_bump_finalization_state_from_2_to_3(self, obj):
ll_assert(self._finalization_state(obj) == 2,
"unexpected finalization state != 2")
pending = self.tmpstack
ll_assert(not pending.non_empty(), "tmpstack not empty")
pending.append(obj)
while pending.non_empty():
y = pending.pop()
hdr = self.header(y)
if hdr.tid & GCFLAG_FINALIZATION_ORDERING: # state 2 ?
hdr.tid &= ~GCFLAG_FINALIZATION_ORDERING # change to state 3
self.trace(y, self._append_if_nonnull, pending)
def _recursively_bump_finalization_state_from_1_to_2(self, obj):
# recursively convert objects from state 1 to state 2.
# The call to visit_all_objects() will add the GCFLAG_VISITED
# recursively.
self.objects_to_trace.append(obj)
self.visit_all_objects()
# ----------
# Weakrefs
# The code relies on the fact that no weakref can be an old object
# weakly pointing to a young object. Indeed, weakrefs are immutable
# so they cannot point to an object that was created after it.
# Thanks to this, during a minor collection, we don't have to fix
# or clear the address stored in old weakrefs.
def invalidate_young_weakrefs(self):
"""Called during a nursery collection."""
# walk over the list of objects that contain weakrefs and are in the
# nursery. if the object it references survives then update the
# weakref; otherwise invalidate the weakref
while self.young_objects_with_weakrefs.non_empty():
obj = self.young_objects_with_weakrefs.pop()
if not self.is_forwarded(obj):
continue # weakref itself dies
obj = self.get_forwarding_address(obj)
offset = self.weakpointer_offset(self.get_type_id(obj))
pointing_to = (obj + offset).address[0]
if self.is_in_nursery(pointing_to):
if self.is_forwarded(pointing_to):
(obj + offset).address[0] = self.get_forwarding_address(
pointing_to)
else:
(obj + offset).address[0] = llmemory.NULL
continue # no need to remember this weakref any longer
#
elif (bool(self.young_rawmalloced_objects) and
self.young_rawmalloced_objects.contains(pointing_to)):
# young weakref to a young raw-malloced object
if self.header(pointing_to).tid & GCFLAG_VISITED:
pass # survives, but does not move
else:
(obj + offset).address[0] = llmemory.NULL
continue # no need to remember this weakref any longer
#
elif self.header(pointing_to).tid & GCFLAG_NO_HEAP_PTRS:
# see test_weakref_to_prebuilt: it's not useful to put
# weakrefs into 'old_objects_with_weakrefs' if they point
# to a prebuilt object (they are immortal). If moreover
# the 'pointing_to' prebuilt object still has the
# GCFLAG_NO_HEAP_PTRS flag, then it's even wrong, because
# 'pointing_to' will not get the GCFLAG_VISITED during
# the next major collection. Solve this by not registering
# the weakref into 'old_objects_with_weakrefs'.
continue
#
self.old_objects_with_weakrefs.append(obj)
def invalidate_old_weakrefs(self):
"""Called during a major collection."""
# walk over list of objects that contain weakrefs
# if the object it references does not survive, invalidate the weakref
new_with_weakref = self.AddressStack()
while self.old_objects_with_weakrefs.non_empty():
obj = self.old_objects_with_weakrefs.pop()
if self.header(obj).tid & GCFLAG_VISITED == 0:
continue # weakref itself dies
offset = self.weakpointer_offset(self.get_type_id(obj))
pointing_to = (obj + offset).address[0]
ll_assert((self.header(pointing_to).tid & GCFLAG_NO_HEAP_PTRS)
== 0, "registered old weakref should not "
"point to a NO_HEAP_PTRS obj")
if self.header(pointing_to).tid & GCFLAG_VISITED:
new_with_weakref.append(obj)
else:
(obj + offset).address[0] = llmemory.NULL
self.old_objects_with_weakrefs.delete()
self.old_objects_with_weakrefs = new_with_weakref
|