File: rbigint.py

package info (click to toggle)
pypy 5.6.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 97,040 kB
  • ctags: 185,069
  • sloc: python: 1,147,862; ansic: 49,642; cpp: 5,245; asm: 5,169; makefile: 529; sh: 481; xml: 232; lisp: 45
file content (2872 lines) | stat: -rw-r--r-- 88,266 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
from rpython.rlib.rarithmetic import LONG_BIT, intmask, longlongmask, r_uint, r_ulonglong
from rpython.rlib.rarithmetic import ovfcheck, r_longlong, widen
from rpython.rlib.rarithmetic import most_neg_value_of_same_type
from rpython.rlib.rfloat import isinf, isnan
from rpython.rlib.rstring import StringBuilder
from rpython.rlib.debug import make_sure_not_resized, check_regular_int
from rpython.rlib.objectmodel import we_are_translated, specialize
from rpython.rlib import jit
from rpython.rtyper.lltypesystem import lltype, rffi
from rpython.rtyper import extregistry

import math, sys

SUPPORT_INT128 = hasattr(rffi, '__INT128_T')
BYTEORDER = sys.byteorder

# note about digit sizes:
# In division, the native integer type must be able to hold
# a sign bit plus two digits plus 1 overflow bit.

#SHIFT = (LONG_BIT // 2) - 1
if SUPPORT_INT128:
    SHIFT = 63
    UDIGIT_TYPE = r_ulonglong
    if LONG_BIT >= 64:
        UDIGIT_MASK = intmask
    else:
        UDIGIT_MASK = longlongmask
    LONG_TYPE = rffi.__INT128_T
    if LONG_BIT > SHIFT:
        STORE_TYPE = lltype.Signed
        UNSIGNED_TYPE = lltype.Unsigned
    else:
        STORE_TYPE = rffi.LONGLONG
        UNSIGNED_TYPE = rffi.ULONGLONG
else:
    SHIFT = 31
    UDIGIT_TYPE = r_uint
    UDIGIT_MASK = intmask
    STORE_TYPE = lltype.Signed
    UNSIGNED_TYPE = lltype.Unsigned
    LONG_TYPE = rffi.LONGLONG

MASK = int((1 << SHIFT) - 1)
FLOAT_MULTIPLIER = float(1 << SHIFT)

# For BIGINT and INT mix.
#
# The VALID range of an int is different than a valid range of a bigint of length one.
# -1 << LONG_BIT is actually TWO digits, because they are stored without the sign.
if SHIFT == LONG_BIT - 1:
    MIN_INT_VALUE = -1 << SHIFT
    def int_in_valid_range(x):
        if x == MIN_INT_VALUE:
            return False
        return True
else:
    # Means we don't have INT128 on 64bit.
    def int_in_valid_range(x):
        if x > MASK or x < -MASK:
            return False
        return True

int_in_valid_range._always_inline_ = True

# Debugging digit array access.
#
# False == no checking at all
# True == check 0 <= value <= MASK


# For long multiplication, use the O(N**2) school algorithm unless
# both operands contain more than KARATSUBA_CUTOFF digits (this
# being an internal Python long digit, in base BASE).

# Karatsuba is O(N**1.585)
USE_KARATSUBA = True # set to False for comparison

if SHIFT > 31:
    KARATSUBA_CUTOFF = 19
else:
    KARATSUBA_CUTOFF = 38

KARATSUBA_SQUARE_CUTOFF = 2 * KARATSUBA_CUTOFF

# For exponentiation, use the binary left-to-right algorithm
# unless the exponent contains more than FIVEARY_CUTOFF digits.
# In that case, do 5 bits at a time.  The potential drawback is that
# a table of 2**5 intermediate results is computed.

FIVEARY_CUTOFF = 8

@specialize.argtype(0)
def _mask_digit(x):
    return UDIGIT_MASK(x & MASK)

def _widen_digit(x):
    return rffi.cast(LONG_TYPE, x)

@specialize.argtype(0)
def _store_digit(x):
    return rffi.cast(STORE_TYPE, x)

def _load_unsigned_digit(x):
    return rffi.cast(UNSIGNED_TYPE, x)

_load_unsigned_digit._always_inline_ = True

NULLDIGIT = _store_digit(0)
ONEDIGIT = _store_digit(1)

def _check_digits(l):
    for x in l:
        assert type(x) is type(NULLDIGIT)
        assert UDIGIT_MASK(x) & MASK == UDIGIT_MASK(x)

class InvalidEndiannessError(Exception):
    pass

class InvalidSignednessError(Exception):
    pass


class Entry(extregistry.ExtRegistryEntry):
    _about_ = _check_digits

    def compute_result_annotation(self, s_list):
        from rpython.annotator import model as annmodel
        assert isinstance(s_list, annmodel.SomeList)
        s_DIGIT = self.bookkeeper.valueoftype(type(NULLDIGIT))
        assert s_DIGIT.contains(s_list.listdef.listitem.s_value)

    def specialize_call(self, hop):
        hop.exception_cannot_occur()


class rbigint(object):
    """This is a reimplementation of longs using a list of digits."""
    _immutable_ = True
    _immutable_fields_ = ["_digits"]

    def __init__(self, digits=[NULLDIGIT], sign=0, size=0):
        if not we_are_translated():
            _check_digits(digits)
        make_sure_not_resized(digits)
        self._digits = digits
        assert size >= 0
        self.size = size or len(digits)
        self.sign = sign

    # __eq__ and __ne__ method exist for testingl only, they are not RPython!
    def __eq__(self, other):
        # NOT_RPYTHON
        if not isinstance(other, rbigint):
            return NotImplemented
        return self.eq(other)

    def __ne__(self, other):
        # NOT_RPYTHON
        return not (self == other)

    def digit(self, x):
        """Return the x'th digit, as an int."""
        return self._digits[x]
    digit._always_inline_ = True

    def widedigit(self, x):
        """Return the x'th digit, as a long long int if needed
        to have enough room to contain two digits."""
        return _widen_digit(self._digits[x])
    widedigit._always_inline_ = True

    def udigit(self, x):
        """Return the x'th digit, as an unsigned int."""
        return _load_unsigned_digit(self._digits[x])
    udigit._always_inline_ = True

    @specialize.argtype(2)
    def setdigit(self, x, val):
        val = _mask_digit(val)
        assert val >= 0
        self._digits[x] = _store_digit(val)
    setdigit._always_inline_ = True

    def numdigits(self):
        return self.size
    numdigits._always_inline_ = True

    @staticmethod
    @jit.elidable
    def fromint(intval):
        # This function is marked as pure, so you must not call it and
        # then modify the result.
        check_regular_int(intval)

        if intval < 0:
            sign = -1
            ival = -r_uint(intval)
        elif intval > 0:
            sign = 1
            ival = r_uint(intval)
        else:
            return NULLRBIGINT

        carry = ival >> SHIFT
        if carry:
            return rbigint([_store_digit(ival & MASK),
                _store_digit(carry)], sign, 2)
        else:
            return rbigint([_store_digit(ival & MASK)], sign, 1)

    @staticmethod
    @jit.elidable
    def frombool(b):
        # You must not call this function and then modify the result.
        if b:
            return ONERBIGINT
        return NULLRBIGINT

    @staticmethod
    def fromlong(l):
        "NOT_RPYTHON"
        return rbigint(*args_from_long(l))

    @staticmethod
    @jit.elidable
    def fromfloat(dval):
        """ Create a new bigint object from a float """
        # This function is not marked as pure because it can raise
        if isinf(dval):
            raise OverflowError("cannot convert float infinity to integer")
        if isnan(dval):
            raise ValueError("cannot convert float NaN to integer")
        return rbigint._fromfloat_finite(dval)

    @staticmethod
    @jit.elidable
    def _fromfloat_finite(dval):
        sign = 1
        if dval < 0.0:
            sign = -1
            dval = -dval
        frac, expo = math.frexp(dval) # dval = frac*2**expo; 0.0 <= frac < 1.0
        if expo <= 0:
            return NULLRBIGINT
        ndig = (expo-1) // SHIFT + 1 # Number of 'digits' in result
        v = rbigint([NULLDIGIT] * ndig, sign, ndig)
        frac = math.ldexp(frac, (expo-1) % SHIFT + 1)
        for i in range(ndig-1, -1, -1):
            # use int(int(frac)) as a workaround for a CPython bug:
            # with frac == 2147483647.0, int(frac) == 2147483647L
            bits = int(int(frac))
            v.setdigit(i, bits)
            frac -= float(bits)
            frac = math.ldexp(frac, SHIFT)
        return v

    @staticmethod
    @jit.elidable
    @specialize.argtype(0)
    def fromrarith_int(i):
        # This function is marked as pure, so you must not call it and
        # then modify the result.
        return rbigint(*args_from_rarith_int(i))

    @staticmethod
    @jit.elidable
    def fromdecimalstr(s):
        # This function is marked as elidable, so you must not call it and
        # then modify the result.
        return _decimalstr_to_bigint(s)

    @staticmethod
    @jit.elidable
    def fromstr(s, base=0):
        """As string_to_int(), but ignores an optional 'l' or 'L' suffix
        and returns an rbigint."""
        from rpython.rlib.rstring import NumberStringParser, \
            strip_spaces
        s = literal = strip_spaces(s)
        if (s.endswith('l') or s.endswith('L')) and base < 22:
            # in base 22 and above, 'L' is a valid digit!  try: long('L',22)
            s = s[:-1]
        parser = NumberStringParser(s, literal, base, 'long')
        return rbigint._from_numberstring_parser(parser)

    @staticmethod
    def _from_numberstring_parser(parser):
        return parse_digit_string(parser)

    @staticmethod
    @jit.elidable
    def frombytes(s, byteorder, signed):
        if byteorder not in ('big', 'little'):
            raise InvalidEndiannessError()
        if not s:
            return NULLRBIGINT

        if byteorder == 'big':
            msb = ord(s[0])
            itr = range(len(s)-1, -1, -1)
        else:
            msb = ord(s[-1])
            itr = range(0, len(s))

        sign = -1 if msb >= 0x80 and signed else 1
        accum = _widen_digit(0)
        accumbits = 0
        digits = []
        carry = 1

        for i in itr:
            c = _widen_digit(ord(s[i]))
            if sign == -1:
                c = (0xFF ^ c) + carry
                carry = c >> 8
                c &= 0xFF

            accum |= c << accumbits
            accumbits += 8
            if accumbits >= SHIFT:
                digits.append(_store_digit(intmask(accum & MASK)))
                accum >>= SHIFT
                accumbits -= SHIFT

        if accumbits:
            digits.append(_store_digit(intmask(accum)))
        result = rbigint(digits[:], sign)
        result._normalize()
        return result

    @jit.elidable
    def tobytes(self, nbytes, byteorder, signed):
        if byteorder not in ('big', 'little'):
            raise InvalidEndiannessError()
        if not signed and self.sign == -1:
            raise InvalidSignednessError()

        bswap = byteorder == 'big'
        d = _widen_digit(0)
        j = 0
        imax = self.numdigits()
        accum = _widen_digit(0)
        accumbits = 0
        result = StringBuilder(nbytes)
        carry = 1

        for i in range(0, imax):
            d = self.widedigit(i)
            if self.sign == -1:
                d = (d ^ MASK) + carry
                carry = d >> SHIFT
                d &= MASK

            accum |= d << accumbits
            if i == imax - 1:
                # Avoid bogus 0's
                s = d ^ MASK if self.sign == -1 else d
                while s:
                    s >>= 1
                    accumbits += 1
            else:
                accumbits += SHIFT

            while accumbits >= 8:
                if j >= nbytes:
                    raise OverflowError()
                j += 1

                result.append(chr(accum & 0xFF))
                accum >>= 8
                accumbits -= 8

        if accumbits:
            if j >= nbytes:
                raise OverflowError()
            j += 1

            if self.sign == -1:
                # Add a sign bit
                accum |= (~_widen_digit(0)) << accumbits

            result.append(chr(accum & 0xFF))

        if j < nbytes:
            signbyte = 0xFF if self.sign == -1 else 0
            result.append_multiple_char(chr(signbyte), nbytes - j)

        digits = result.build()

        if j == nbytes and nbytes > 0 and signed:
            # If not already set, we cannot contain the sign bit
            msb = digits[-1]
            if (self.sign == -1) != (ord(msb) >= 0x80):
                raise OverflowError()

        if bswap:
            # Bah, this is very inefficient. At least it's not
            # quadratic.
            length = len(digits)
            if length >= 0:
                digits = ''.join([digits[i] for i in range(length-1, -1, -1)])
        return digits

    def toint(self):
        """
        Get an integer from a bigint object.
        Raises OverflowError if overflow occurs.
        """
        if self.numdigits() > MAX_DIGITS_THAT_CAN_FIT_IN_INT:
            raise OverflowError
        return self._toint_helper()

    @jit.elidable
    def _toint_helper(self):
        x = self._touint_helper()
        # Haven't lost any bits so far
        if self.sign >= 0:
            res = intmask(x)
            if res < 0:
                raise OverflowError
        else:
            # Use "-" on the unsigned number, not on the signed number.
            # This is needed to produce valid C code.
            res = intmask(-x)
            if res >= 0:
                raise OverflowError
        return res

    @jit.elidable
    def tolonglong(self):
        return _AsLongLong(self)

    def tobool(self):
        return self.sign != 0

    @jit.elidable
    def touint(self):
        if self.sign == -1:
            raise ValueError("cannot convert negative integer to unsigned int")
        return self._touint_helper()

    @jit.elidable
    def _touint_helper(self):
        x = r_uint(0)
        i = self.numdigits() - 1
        while i >= 0:
            prev = x
            x = (x << SHIFT) + self.udigit(i)
            if (x >> SHIFT) != prev:
                raise OverflowError("long int too large to convert to unsigned int")
            i -= 1
        return x

    @jit.elidable
    def toulonglong(self):
        if self.sign == -1:
            raise ValueError("cannot convert negative integer to unsigned int")
        return _AsULonglong_ignore_sign(self)

    @jit.elidable
    def uintmask(self):
        return _AsUInt_mask(self)

    @jit.elidable
    def ulonglongmask(self):
        """Return r_ulonglong(self), truncating."""
        return _AsULonglong_mask(self)

    @jit.elidable
    def tofloat(self):
        return _AsDouble(self)

    @jit.elidable
    def format(self, digits, prefix='', suffix=''):
        # 'digits' is a string whose length is the base to use,
        # and where each character is the corresponding digit.
        return _format(self, digits, prefix, suffix)

    @jit.elidable
    def repr(self):
        try:
            x = self.toint()
        except OverflowError:
            return self.format(BASE10, suffix="L")
        return str(x) + "L"

    @jit.elidable
    def str(self):
        try:
            x = self.toint()
        except OverflowError:
            return self.format(BASE10)
        return str(x)

    @jit.elidable
    def eq(self, other):
        if (self.sign != other.sign or
            self.numdigits() != other.numdigits()):
            return False

        i = 0
        ld = self.numdigits()
        while i < ld:
            if self.digit(i) != other.digit(i):
                return False
            i += 1
        return True

    @jit.elidable
    def int_eq(self, other):
        """ eq with int """
        
        if not int_in_valid_range(other):
            # Fallback to Long. 
            return self.eq(rbigint.fromint(other))

        if self.numdigits() > 1:
            return False

        return (self.sign * self.digit(0)) == other

    def ne(self, other):
        return not self.eq(other)

    def int_ne(self, other):
        return not self.int_eq(other)

    @jit.elidable
    def lt(self, other):
        if self.sign > other.sign:
            return False
        if self.sign < other.sign:
            return True
        ld1 = self.numdigits()
        ld2 = other.numdigits()
        if ld1 > ld2:
            if other.sign > 0:
                return False
            else:
                return True
        elif ld1 < ld2:
            if other.sign > 0:
                return True
            else:
                return False
        i = ld1 - 1
        while i >= 0:
            d1 = self.digit(i)
            d2 = other.digit(i)
            if d1 < d2:
                if other.sign > 0:
                    return True
                else:
                    return False
            elif d1 > d2:
                if other.sign > 0:
                    return False
                else:
                    return True
            i -= 1
        return False

    @jit.elidable
    def int_lt(self, other):
        """ lt where other is an int """

        if not int_in_valid_range(other):
            # Fallback to Long.
            return self.lt(rbigint.fromint(other))

        osign = 1
        if other == 0:
            osign = 0
        elif other < 0:
            osign = -1
 
        if self.sign > osign:
            return False
        elif self.sign < osign:
            return True

        digits = self.numdigits()
        
        if digits > 1:
            if osign == 1:
                return False
            else:
                return True

        d1 = self.sign * self.digit(0)
        if d1 < other:
            return True
        return False

    def le(self, other):
        return not other.lt(self)

    def int_le(self, other):
        # Alternative that might be faster, reimplant this. as a check with other + 1. But we got to check for overflow
        # or reduce valid range.

        if self.int_eq(other):
            return True
        return self.int_lt(other)

    def gt(self, other):
        return other.lt(self)

    def int_gt(self, other):
        return not self.int_le(other)

    def ge(self, other):
        return not self.lt(other)

    def int_ge(self, other):
        return not self.int_lt(other)

    @jit.elidable
    def hash(self):
        return _hash(self)

    @jit.elidable
    def add(self, other):
        if self.sign == 0:
            return other
        if other.sign == 0:
            return self
        if self.sign == other.sign:
            result = _x_add(self, other)
        else:
            result = _x_sub(other, self)
        result.sign *= other.sign
        return result

    @jit.elidable
    def int_add(self, other):
        if not int_in_valid_range(other):
            # Fallback to long.
            return self.add(rbigint.fromint(other))
        elif self.sign == 0:
            return rbigint.fromint(other)
        elif other == 0:
            return self

        sign = -1 if other < 0 else 1
        if self.sign == sign:
            result = _x_int_add(self, other)
        else:
            result = _x_int_sub(self, other)
            result.sign *= -1
        result.sign *= sign
        return result

    @jit.elidable
    def sub(self, other):
        if other.sign == 0:
            return self
        elif self.sign == 0:
            return rbigint(other._digits[:other.size], -other.sign, other.size)
        elif self.sign == other.sign:
            result = _x_sub(self, other)
        else:
            result = _x_add(self, other)
        result.sign *= self.sign
        return result

    @jit.elidable
    def int_sub(self, other):
        if not int_in_valid_range(other):
            # Fallback to long.
            return self.sub(rbigint.fromint(other))
        elif other == 0:
            return self
        elif self.sign == 0:
            return rbigint.fromint(-other)
        elif self.sign == (-1 if other < 0 else 1):
            result = _x_int_sub(self, other)
        else:
            result = _x_int_add(self, other)
        result.sign *= self.sign
        return result

    @jit.elidable
    def mul(self, b):
        asize = self.numdigits()
        bsize = b.numdigits()

        a = self

        if asize > bsize:
            a, b, asize, bsize = b, a, bsize, asize

        if a.sign == 0 or b.sign == 0:
            return NULLRBIGINT

        if asize == 1:
            if a._digits[0] == NULLDIGIT:
                return NULLRBIGINT
            elif a._digits[0] == ONEDIGIT:
                return rbigint(b._digits[:b.size], a.sign * b.sign, b.size)
            elif bsize == 1:
                res = b.widedigit(0) * a.widedigit(0)
                carry = res >> SHIFT
                if carry:
                    return rbigint([_store_digit(res & MASK), _store_digit(carry)], a.sign * b.sign, 2)
                else:
                    return rbigint([_store_digit(res & MASK)], a.sign * b.sign, 1)

            result = _x_mul(a, b, a.digit(0))
        elif USE_KARATSUBA:
            if a is b:
                i = KARATSUBA_SQUARE_CUTOFF
            else:
                i = KARATSUBA_CUTOFF

            if asize <= i:
                result = _x_mul(a, b)
                """elif 2 * asize <= bsize:
                    result = _k_lopsided_mul(a, b)"""
            else:
                result = _k_mul(a, b)
        else:
            result = _x_mul(a, b)

        result.sign = a.sign * b.sign
        return result

    @jit.elidable
    def int_mul(self, b):
        if not int_in_valid_range(b):
            # Fallback to long.
            return self.mul(rbigint.fromint(b))

        if self.sign == 0 or b == 0:
            return NULLRBIGINT

        asize = self.numdigits()
        digit = abs(b)
        bsign = -1 if b < 0 else 1

        if digit == 1:
            return rbigint(self._digits[:self.size], self.sign * bsign, asize)
        elif asize == 1:
            res = self.widedigit(0) * digit
            carry = res >> SHIFT
            if carry:
                return rbigint([_store_digit(res & MASK), _store_digit(carry)], self.sign * bsign, 2)
            else:
                return rbigint([_store_digit(res & MASK)], self.sign * bsign, 1)

        elif digit & (digit - 1) == 0:
            result = self.lqshift(ptwotable[digit])
        else:
            result = _muladd1(self, digit)

        result.sign = self.sign * bsign
        return result

    @jit.elidable
    def truediv(self, other):
        div = _bigint_true_divide(self, other)
        return div

    @jit.elidable
    def floordiv(self, other):
        if self.sign == 1 and other.numdigits() == 1 and other.sign == 1:
            digit = other.digit(0)
            if digit == 1:
                return rbigint(self._digits[:self.size], 1, self.size)
            elif digit and digit & (digit - 1) == 0:
                return self.rshift(ptwotable[digit])

        div, mod = _divrem(self, other)
        if mod.sign * other.sign == -1:
            if div.sign == 0:
                return ONENEGATIVERBIGINT
            div = div.int_sub(1)

        return div

    def div(self, other):
        return self.floordiv(other)

    @jit.elidable
    def mod(self, other):
        if self.sign == 0:
            return NULLRBIGINT

        if other.sign != 0 and other.numdigits() == 1:
            digit = other.digit(0)
            if digit == 1:
                return NULLRBIGINT
            elif digit == 2:
                modm = self.digit(0) & 1
                if modm:
                    return ONENEGATIVERBIGINT if other.sign == -1 else ONERBIGINT
                return NULLRBIGINT
            elif digit & (digit - 1) == 0:
                mod = self.int_and_(digit - 1)
            else:
                # Perform
                size = self.numdigits() - 1
                if size > 0:
                    rem = self.widedigit(size)
                    size -= 1
                    while size >= 0:
                        rem = ((rem << SHIFT) + self.widedigit(size)) % digit
                        size -= 1
                else:
                    rem = self.digit(0) % digit

                if rem == 0:
                    return NULLRBIGINT
                mod = rbigint([_store_digit(rem)], -1 if self.sign < 0 else 1, 1)
        else:
            div, mod = _divrem(self, other)
        if mod.sign * other.sign == -1:
            mod = mod.add(other)
        return mod

    @jit.elidable
    def int_mod(self, other):
        if self.sign == 0:
            return NULLRBIGINT

        elif not int_in_valid_range(other):
            # Fallback to long.
            return self.mod(rbigint.fromint(other))

        elif other != 0:
            digit = abs(other)
            if digit == 1:
                return NULLRBIGINT
            elif digit == 2:
                modm = self.digit(0) & 1
                if modm:
                    return ONENEGATIVERBIGINT if other < 0 else ONERBIGINT
                return NULLRBIGINT
            elif digit & (digit - 1) == 0:
                mod = self.int_and_(digit - 1)
            else:
                # Perform
                size = self.numdigits() - 1
                if size > 0:
                    rem = self.widedigit(size)
                    size -= 1
                    while size >= 0:
                        rem = ((rem << SHIFT) + self.widedigit(size)) % digit
                        size -= 1
                else:
                    rem = self.digit(0) % digit

                if rem == 0:
                    return NULLRBIGINT
                mod = rbigint([_store_digit(rem)], -1 if self.sign < 0 else 1, 1)
        else:
            raise ZeroDivisionError("long division or modulo by zero")

        if mod.sign * (-1 if other < 0 else 1) == -1:
            mod = mod.int_add(other)
        return mod

    @jit.elidable
    def divmod(v, w):
        """
        The / and % operators are now defined in terms of divmod().
        The expression a mod b has the value a - b*floor(a/b).
        The _divrem function gives the remainder after division of
        |a| by |b|, with the sign of a.  This is also expressed
        as a - b*trunc(a/b), if trunc truncates towards zero.
        Some examples:
          a   b   a rem b     a mod b
          13  10   3           3
         -13  10  -3           7
          13 -10   3          -7
         -13 -10  -3          -3
        So, to get from rem to mod, we have to add b if a and b
        have different signs.  We then subtract one from the 'div'
        part of the outcome to keep the invariant intact.
        """
        div, mod = _divrem(v, w)
        if mod.sign * w.sign == -1:
            mod = mod.add(w)
            if div.sign == 0:
                return ONENEGATIVERBIGINT, mod
            div = div.int_sub(1)
        return div, mod

    @jit.elidable
    def pow(a, b, c=None):
        negativeOutput = False  # if x<0 return negative output

        # 5-ary values.  If the exponent is large enough, table is
        # precomputed so that table[i] == a**i % c for i in range(32).
        # python translation: the table is computed when needed.

        if b.sign < 0:  # if exponent is negative
            if c is not None:
                raise TypeError(
                    "pow() 2nd argument "
                    "cannot be negative when 3rd argument specified")
            # XXX failed to implement
            raise ValueError("bigint pow() too negative")

        size_b = b.numdigits()

        if c is not None:
            if c.sign == 0:
                raise ValueError("pow() 3rd argument cannot be 0")

            # if modulus < 0:
            #     negativeOutput = True
            #     modulus = -modulus
            if c.sign < 0:
                negativeOutput = True
                c = c.neg()

            # if modulus == 1:
            #     return 0
            if c.numdigits() == 1 and c._digits[0] == ONEDIGIT:
                return NULLRBIGINT

            # Reduce base by modulus in some cases:
            # 1. If base < 0.  Forcing the base non-neg makes things easier.
            # 2. If base is obviously larger than the modulus.  The "small
            #    exponent" case later can multiply directly by base repeatedly,
            #    while the "large exponent" case multiplies directly by base 31
            #    times.  It can be unboundedly faster to multiply by
            #    base % modulus instead.
            # We could _always_ do this reduction, but mod() isn't cheap,
            # so we only do it when it buys something.
            if a.sign < 0 or a.numdigits() > c.numdigits():
                a = a.mod(c)

        elif b.sign == 0:
            return ONERBIGINT
        elif a.sign == 0:
            return NULLRBIGINT
        elif size_b == 1:
            if b._digits[0] == NULLDIGIT:
                return ONERBIGINT if a.sign == 1 else ONENEGATIVERBIGINT
            elif b._digits[0] == ONEDIGIT:
                return a
            elif a.numdigits() == 1:
                adigit = a.digit(0)
                digit = b.digit(0)
                if adigit == 1:
                    if a.sign == -1 and digit % 2:
                        return ONENEGATIVERBIGINT
                    return ONERBIGINT
                elif adigit & (adigit - 1) == 0:
                    ret = a.lshift(((digit-1)*(ptwotable[adigit]-1)) + digit-1)
                    if a.sign == -1 and not digit % 2:
                        ret.sign = 1
                    return ret

        # At this point a, b, and c are guaranteed non-negative UNLESS
        # c is NULL, in which case a may be negative. */

        z = rbigint([ONEDIGIT], 1, 1)

        # python adaptation: moved macros REDUCE(X) and MULT(X, Y, result)
        # into helper function result = _help_mult(x, y, c)
        if size_b <= FIVEARY_CUTOFF:
            # Left-to-right binary exponentiation (HAC Algorithm 14.79)
            # http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
            size_b -= 1
            while size_b >= 0:
                bi = b.digit(size_b)
                j = 1 << (SHIFT-1)
                while j != 0:
                    z = _help_mult(z, z, c)
                    if bi & j:
                        z = _help_mult(z, a, c)
                    j >>= 1
                size_b -= 1

        else:
            # Left-to-right 5-ary exponentiation (HAC Algorithm 14.82)
            # This is only useful in the case where c != None.
            # z still holds 1L
            table = [z] * 32
            table[0] = z
            for i in range(1, 32):
                table[i] = _help_mult(table[i-1], a, c)

            # Note that here SHIFT is not a multiple of 5.  The difficulty
            # is to extract 5 bits at a time from 'b', starting from the
            # most significant digits, so that at the end of the algorithm
            # it falls exactly to zero.
            # m  = max number of bits = i * SHIFT
            # m+ = m rounded up to the next multiple of 5
            # j  = (m+) % SHIFT = (m+) - (i * SHIFT)
            # (computed without doing "i * SHIFT", which might overflow)
            j = size_b % 5
            j = _jmapping[j]
            if not we_are_translated():
                assert j == (size_b*SHIFT+4)//5*5 - size_b*SHIFT
            #
            accum = r_uint(0)
            while True:
                j -= 5
                if j >= 0:
                    index = (accum >> j) & 0x1f
                else:
                    # 'accum' does not have enough digit.
                    # must get the next digit from 'b' in order to complete
                    if size_b == 0:
                        break # Done

                    size_b -= 1
                    assert size_b >= 0
                    bi = b.udigit(size_b)
                    index = ((accum << (-j)) | (bi >> (j+SHIFT))) & 0x1f
                    accum = bi
                    j += SHIFT
                #
                for k in range(5):
                    z = _help_mult(z, z, c)
                if index:
                    z = _help_mult(z, table[index], c)
            #
            assert j == -5

        if negativeOutput and z.sign != 0:
            z = z.sub(c)
        return z

    @jit.elidable
    def neg(self):
        return rbigint(self._digits, -self.sign, self.size)

    @jit.elidable
    def abs(self):
        if self.sign != -1:
            return self
        return rbigint(self._digits, 1, self.size)

    @jit.elidable
    def invert(self): #Implement ~x as -(x + 1)
        if self.sign == 0:
            return ONENEGATIVERBIGINT

        ret = self.int_add(1)
        ret.sign = -ret.sign
        return ret

    @jit.elidable
    def lshift(self, int_other):
        if int_other < 0:
            raise ValueError("negative shift count")
        elif int_other == 0:
            return self

        # wordshift, remshift = divmod(int_other, SHIFT)
        wordshift = int_other // SHIFT
        remshift = int_other - wordshift * SHIFT

        if not remshift:
            # So we can avoid problems with eq, AND avoid the need for normalize.
            if self.sign == 0:
                return self
            return rbigint([NULLDIGIT] * wordshift + self._digits, self.sign, self.size + wordshift)

        oldsize = self.numdigits()
        newsize = oldsize + wordshift + 1
        z = rbigint([NULLDIGIT] * newsize, self.sign, newsize)
        accum = _widen_digit(0)
        j = 0
        while j < oldsize:
            accum += self.widedigit(j) << remshift
            z.setdigit(wordshift, accum)
            accum >>= SHIFT
            wordshift += 1
            j += 1

        newsize -= 1
        assert newsize >= 0
        z.setdigit(newsize, accum)

        z._normalize()
        return z
    lshift._always_inline_ = True # It's so fast that it's always benefitial.

    @jit.elidable
    def lqshift(self, int_other):
        " A quicker one with much less checks, int_other is valid and for the most part constant."
        assert int_other > 0

        oldsize = self.numdigits()

        z = rbigint([NULLDIGIT] * (oldsize + 1), self.sign, (oldsize + 1))
        accum = _widen_digit(0)
        i = 0
        while i < oldsize:
            accum += self.widedigit(i) << int_other
            z.setdigit(i, accum)
            accum >>= SHIFT
            i += 1
        z.setdigit(oldsize, accum)
        z._normalize()
        return z
    lqshift._always_inline_ = True # It's so fast that it's always benefitial.

    @jit.elidable
    def rshift(self, int_other, dont_invert=False):
        if int_other < 0:
            raise ValueError("negative shift count")
        elif int_other == 0:
            return self
        if self.sign == -1 and not dont_invert:
            a = self.invert().rshift(int_other)
            return a.invert()

        wordshift = int_other / SHIFT
        newsize = self.numdigits() - wordshift
        if newsize <= 0:
            return NULLRBIGINT

        loshift = int_other % SHIFT
        hishift = SHIFT - loshift
        z = rbigint([NULLDIGIT] * newsize, self.sign, newsize)
        i = 0
        while i < newsize:
            newdigit = (self.digit(wordshift) >> loshift)
            if i+1 < newsize:
                newdigit |= (self.digit(wordshift+1) << hishift)
            z.setdigit(i, newdigit)
            i += 1
            wordshift += 1
        z._normalize()
        return z
    rshift._always_inline_ = 'try' # It's so fast that it's always benefitial.

    @jit.elidable
    def abs_rshift_and_mask(self, bigshiftcount, mask):
        assert isinstance(bigshiftcount, r_ulonglong)
        assert mask >= 0
        wordshift = bigshiftcount / SHIFT
        numdigits = self.numdigits()
        if wordshift >= numdigits:
            return 0
        wordshift = intmask(wordshift)
        loshift = intmask(intmask(bigshiftcount) - intmask(wordshift * SHIFT))
        lastdigit = self.digit(wordshift) >> loshift
        if mask > (MASK >> loshift) and wordshift + 1 < numdigits:
            hishift = SHIFT - loshift
            lastdigit |= self.digit(wordshift+1) << hishift
        return lastdigit & mask

    @staticmethod
    def from_list_n_bits(list, nbits):
        if len(list) == 0:
            return NULLRBIGINT

        if nbits == SHIFT:
            z = rbigint(list, 1)
        else:
            if not (1 <= nbits < SHIFT):
                raise ValueError

            lllength = (r_ulonglong(len(list)) * nbits) // SHIFT
            length = intmask(lllength) + 1
            z = rbigint([NULLDIGIT] * length, 1)

            out = 0
            i = 0
            accum = 0
            for input in list:
                accum |= (input << i)
                original_i = i
                i += nbits
                if i > SHIFT:
                    z.setdigit(out, accum)
                    out += 1
                    accum = input >> (SHIFT - original_i)
                    i -= SHIFT
            assert out < length
            z.setdigit(out, accum)

        z._normalize()
        return z

    @jit.elidable
    def and_(self, other):
        return _bitwise(self, '&', other)

    @jit.elidable
    def int_and_(self, other):
        return _int_bitwise(self, '&', other)

    @jit.elidable
    def xor(self, other):
        return _bitwise(self, '^', other)

    @jit.elidable
    def int_xor(self, other):
        return _int_bitwise(self, '^', other)

    @jit.elidable
    def or_(self, other):
        return _bitwise(self, '|', other)

    @jit.elidable
    def int_or_(self, other):
        return _int_bitwise(self, '|', other)

    @jit.elidable
    def oct(self):
        if self.sign == 0:
            return '0L'
        else:
            return _format(self, BASE8, '0', 'L')

    @jit.elidable
    def hex(self):
        return _format(self, BASE16, '0x', 'L')

    @jit.elidable
    def log(self, base):
        # base is supposed to be positive or 0.0, which means we use e
        if base == 10.0:
            return _loghelper(math.log10, self)
        if base == 2.0:
            from rpython.rlib import rfloat
            return _loghelper(rfloat.log2, self)
        ret = _loghelper(math.log, self)
        if base != 0.0:
            ret /= math.log(base)
        return ret

    def tolong(self):
        "NOT_RPYTHON"
        l = 0L
        digits = list(self._digits)
        digits.reverse()
        for d in digits:
            l = l << SHIFT
            l += intmask(d)
        return l * self.sign

    def _normalize(self):
        i = self.numdigits()

        while i > 1 and self._digits[i - 1] == NULLDIGIT:
            i -= 1
        assert i > 0

        if i != self.numdigits():
            self.size = i
        if self.numdigits() == 1 and self._digits[0] == NULLDIGIT:
            self.sign = 0
            self._digits = [NULLDIGIT]

    _normalize._always_inline_ = True

    @jit.elidable
    def bit_length(self):
        i = self.numdigits()
        if i == 1 and self._digits[0] == NULLDIGIT:
            return 0
        msd = self.digit(i - 1)
        msd_bits = 0
        while msd >= 32:
            msd_bits += 6
            msd >>= 6
        msd_bits += [
            0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
            5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
            ][msd]
        # yes, this can overflow: a huge number which fits 3 gigabytes of
        # memory has around 24 gigabits!
        bits = ovfcheck((i-1) * SHIFT) + msd_bits
        return bits

    def __repr__(self):
        return "<rbigint digits=%s, sign=%s, size=%d, len=%d, %s>" % (self._digits,
                                            self.sign, self.size, len(self._digits),
                                            self.str())

ONERBIGINT = rbigint([ONEDIGIT], 1, 1)
ONENEGATIVERBIGINT = rbigint([ONEDIGIT], -1, 1)
NULLRBIGINT = rbigint()

_jmapping = [(5 * SHIFT) % 5,
             (4 * SHIFT) % 5,
             (3 * SHIFT) % 5,
             (2 * SHIFT) % 5,
             (1 * SHIFT) % 5]


# if the bigint has more digits than this, it cannot fit into an int
MAX_DIGITS_THAT_CAN_FIT_IN_INT = rbigint.fromint(-sys.maxint - 1).numdigits()


#_________________________________________________________________

# Helper Functions


def _help_mult(x, y, c):
    """
    Multiply two values, then reduce the result:
    result = X*Y % c.  If c is None, skip the mod.
    """
    res = x.mul(y)
    # Perform a modular reduction, X = X % c, but leave X alone if c
    # is NULL.
    if c is not None:
        res = res.mod(c)

    return res

@specialize.argtype(0)
def digits_from_nonneg_long(l):
    digits = []
    while True:
        digits.append(_store_digit(_mask_digit(l & MASK)))
        l = l >> SHIFT
        if not l:
            return digits[:] # to make it non-resizable

@specialize.argtype(0)
def digits_for_most_neg_long(l):
    # This helper only works if 'l' is the most negative integer of its
    # type, which in base 2 looks like: 1000000..0000
    digits = []
    while _mask_digit(l) == 0:
        digits.append(NULLDIGIT)
        l = l >> SHIFT
    # now 'l' looks like: ...111100000
    # turn it into:       ...000100000
    # to drop the extra unwanted 1's introduced by the signed right shift
    l = -intmask(l)
    assert l & MASK == l
    digits.append(_store_digit(l))
    return digits[:] # to make it non-resizable

@specialize.argtype(0)
def args_from_rarith_int1(x):
    if x > 0:
        return digits_from_nonneg_long(x), 1
    elif x == 0:
        return [NULLDIGIT], 0
    elif x != most_neg_value_of_same_type(x):
        # normal case
        return digits_from_nonneg_long(-x), -1
    else:
        # the most negative integer! hacks needed...
        return digits_for_most_neg_long(x), -1

@specialize.argtype(0)
def args_from_rarith_int(x):
    return args_from_rarith_int1(widen(x))
# ^^^ specialized by the precise type of 'x', which is typically a r_xxx
#     instance from rlib.rarithmetic

def args_from_long(x):
    "NOT_RPYTHON"
    if x >= 0:
        if x == 0:
            return [NULLDIGIT], 0
        else:
            return digits_from_nonneg_long(x), 1
    else:
        return digits_from_nonneg_long(-x), -1

def _x_add(a, b):
    """ Add the absolute values of two bigint integers. """
    size_a = a.numdigits()
    size_b = b.numdigits()

    # Ensure a is the larger of the two:
    if size_a < size_b:
        a, b = b, a
        size_a, size_b = size_b, size_a
    z = rbigint([NULLDIGIT] * (size_a + 1), 1)
    i = UDIGIT_TYPE(0)
    carry = UDIGIT_TYPE(0)
    while i < size_b:
        carry += a.udigit(i) + b.udigit(i)
        z.setdigit(i, carry)
        carry >>= SHIFT
        i += 1
    while i < size_a:
        carry += a.udigit(i)
        z.setdigit(i, carry)
        carry >>= SHIFT
        i += 1
    z.setdigit(i, carry)
    z._normalize()
    return z

def _x_int_add(a, b):
    """ Add the absolute values of one bigint and one integer. """
    size_a = a.numdigits()

    z = rbigint([NULLDIGIT] * (size_a + 1), 1)
    i = UDIGIT_TYPE(1)
    carry = a.udigit(0) + abs(b)
    z.setdigit(0, carry)
    carry >>= SHIFT

    while i < size_a:
        carry += a.udigit(i)
        z.setdigit(i, carry)
        carry >>= SHIFT
        i += 1
    z.setdigit(i, carry)
    z._normalize()
    return z

def _x_sub(a, b):
    """ Subtract the absolute values of two integers. """

    size_a = a.numdigits()
    size_b = b.numdigits()
    sign = 1

    # Ensure a is the larger of the two:
    if size_a < size_b:
        sign = -1
        a, b = b, a
        size_a, size_b = size_b, size_a
    elif size_a == size_b:
        # Find highest digit where a and b differ:
        i = size_a - 1
        while i >= 0 and a.digit(i) == b.digit(i):
            i -= 1
        if i < 0:
            return NULLRBIGINT
        if a.digit(i) < b.digit(i):
            sign = -1
            a, b = b, a
        size_a = size_b = i+1

    z = rbigint([NULLDIGIT] * size_a, sign, size_a)
    borrow = UDIGIT_TYPE(0)
    i = _load_unsigned_digit(0)
    while i < size_b:
        # The following assumes unsigned arithmetic
        # works modulo 2**N for some N>SHIFT.
        borrow = a.udigit(i) - b.udigit(i) - borrow
        z.setdigit(i, borrow)
        borrow >>= SHIFT
        #borrow &= 1 # Keep only one sign bit
        i += 1
    while i < size_a:
        borrow = a.udigit(i) - borrow
        z.setdigit(i, borrow)
        borrow >>= SHIFT
        #borrow &= 1
        i += 1

    assert borrow == 0
    z._normalize()
    return z

def _x_int_sub(a, b):
    """ Subtract the absolute values of two integers. """

    size_a = a.numdigits()

    bdigit = abs(b)

    if size_a == 1:
        # Find highest digit where a and b differ:
        adigit = a.digit(0)

        if adigit == bdigit:
            return NULLRBIGINT
    
        return rbigint.fromint(adigit - bdigit)

    z = rbigint([NULLDIGIT] * size_a, 1, size_a)
    i = _load_unsigned_digit(1)
    # The following assumes unsigned arithmetic
    # works modulo 2**N for some N>SHIFT.
    borrow = a.udigit(0) - bdigit
    z.setdigit(0, borrow)
    borrow >>= SHIFT
    #borrow &= 1 # Keep only one sign bit

    while i < size_a:
        borrow = a.udigit(i) - borrow
        z.setdigit(i, borrow)
        borrow >>= SHIFT
        #borrow &= 1
        i += 1

    assert borrow == 0
    z._normalize()
    return z

# A neat little table of power of twos.
ptwotable = {}
for x in range(SHIFT-1):
    ptwotable[r_longlong(2 << x)] = x+1
    ptwotable[r_longlong(-2 << x)] = x+1

def _x_mul(a, b, digit=0):
    """
    Grade school multiplication, ignoring the signs.
    Returns the absolute value of the product, or None if error.
    """

    size_a = a.numdigits()
    size_b = b.numdigits()

    if a is b:
        # Efficient squaring per HAC, Algorithm 14.16:
        # http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
        # Gives slightly less than a 2x speedup when a == b,
        # via exploiting that each entry in the multiplication
        # pyramid appears twice (except for the size_a squares).
        z = rbigint([NULLDIGIT] * (size_a + size_b), 1)
        i = UDIGIT_TYPE(0)
        while i < size_a:
            f = a.widedigit(i)
            pz = i << 1
            pa = i + 1

            carry = z.widedigit(pz) + f * f
            z.setdigit(pz, carry)
            pz += 1
            carry >>= SHIFT
            assert carry <= MASK

            # Now f is added in twice in each column of the
            # pyramid it appears.  Same as adding f<<1 once.
            f <<= 1
            while pa < size_a:
                carry += z.widedigit(pz) + a.widedigit(pa) * f
                pa += 1
                z.setdigit(pz, carry)
                pz += 1
                carry >>= SHIFT
            if carry:
                carry += z.widedigit(pz)
                z.setdigit(pz, carry)
                pz += 1
                carry >>= SHIFT
            if carry:
                z.setdigit(pz, z.widedigit(pz) + carry)
            assert (carry >> SHIFT) == 0
            i += 1
        z._normalize()
        return z

    elif digit:
        if digit & (digit - 1) == 0:
            return b.lqshift(ptwotable[digit])

        # Even if it's not power of two it can still be useful.
        return _muladd1(b, digit)

    # a is not b
    # use the following identity to reduce the number of operations
    # a * b = a_0*b_0 + sum_{i=1}^n(a_0*b_i + a_1*b_{i-1}) + a_1*b_n
    z = rbigint([NULLDIGIT] * (size_a + size_b), 1)
    i = UDIGIT_TYPE(0)
    size_a1 = UDIGIT_TYPE(size_a - 1)
    size_b1 = UDIGIT_TYPE(size_b - 1)
    while i < size_a1:
        f0 = a.widedigit(i)
        f1 = a.widedigit(i + 1)
        pz = i
        carry = z.widedigit(pz) + b.widedigit(0) * f0
        z.setdigit(pz, carry)
        pz += 1
        carry >>= SHIFT
        j = UDIGIT_TYPE(0)
        while j < size_b1:
            # this operation does not overflow using 
            # SHIFT = (LONG_BIT // 2) - 1 = B - 1; in fact before it
            # carry and z.widedigit(pz) are less than 2**(B - 1);
            # b.widedigit(j + 1) * f0 < (2**(B-1) - 1)**2; so
            # carry + z.widedigit(pz) + b.widedigit(j + 1) * f0 +
            # b.widedigit(j) * f1 < 2**(2*B - 1) - 2**B < 2**LONG)BIT - 1
            carry += z.widedigit(pz) + b.widedigit(j + 1) * f0 + \
                     b.widedigit(j) * f1
            z.setdigit(pz, carry)
            pz += 1
            carry >>= SHIFT
            j += 1
        # carry < 2**(B + 1) - 2
        carry += z.widedigit(pz) + b.widedigit(size_b1) * f1
        z.setdigit(pz, carry)
        pz += 1
        carry >>= SHIFT
        # carry < 4
        if carry:
            z.setdigit(pz, carry)
        assert (carry >> SHIFT) == 0
        i += 2
    if size_a & 1:
        pz = size_a1
        f = a.widedigit(pz)
        pb = 0
        carry = _widen_digit(0)
        while pb < size_b:
            carry += z.widedigit(pz) + b.widedigit(pb) * f
            pb += 1
            z.setdigit(pz, carry)
            pz += 1
            carry >>= SHIFT
        if carry:
            z.setdigit(pz, z.widedigit(pz) + carry)
    z._normalize()
    return z

def _kmul_split(n, size):
    """
    A helper for Karatsuba multiplication (k_mul).
    Takes a bigint "n" and an integer "size" representing the place to
    split, and sets low and high such that abs(n) == (high << size) + low,
    viewing the shift as being by digits.  The sign bit is ignored, and
    the return values are >= 0.
    """
    size_n = n.numdigits()
    size_lo = min(size_n, size)

    # We use "or" her to avoid having a check where list can be empty in _normalize.
    lo = rbigint(n._digits[:size_lo] or [NULLDIGIT], 1)
    hi = rbigint(n._digits[size_lo:n.size] or [NULLDIGIT], 1)
    lo._normalize()
    hi._normalize()
    return hi, lo

def _k_mul(a, b):
    """
    Karatsuba multiplication.  Ignores the input signs, and returns the
    absolute value of the product (or raises if error).
    See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
    """
    asize = a.numdigits()
    bsize = b.numdigits()

    # (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
    # Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl
    # Then the original product is
    #     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
    # By picking X to be a power of 2, "*X" is just shifting, and it's
    # been reduced to 3 multiplies on numbers half the size.

    # Split a & b into hi & lo pieces.
    shift = bsize >> 1
    ah, al = _kmul_split(a, shift)
    if ah.sign == 0:
        # This may happen now that _k_lopsided_mul ain't catching it.
        return _x_mul(a, b)
    #assert ah.sign == 1    # the split isn't degenerate

    if a is b:
        bh = ah
        bl = al
    else:
        bh, bl = _kmul_split(b, shift)

    # The plan:
    # 1. Allocate result space (asize + bsize digits:  that's always
    #    enough).
    # 2. Compute ah*bh, and copy into result at 2*shift.
    # 3. Compute al*bl, and copy into result at 0.  Note that this
    #    can't overlap with #2.
    # 4. Subtract al*bl from the result, starting at shift.  This may
    #    underflow (borrow out of the high digit), but we don't care:
    #    we're effectively doing unsigned arithmetic mod
    #    BASE**(sizea + sizeb), and so long as the *final* result fits,
    #    borrows and carries out of the high digit can be ignored.
    # 5. Subtract ah*bh from the result, starting at shift.
    # 6. Compute (ah+al)*(bh+bl), and add it into the result starting
    #    at shift.

    # 1. Allocate result space.
    ret = rbigint([NULLDIGIT] * (asize + bsize), 1)

    # 2. t1 <- ah*bh, and copy into high digits of result.
    t1 = ah.mul(bh)

    assert t1.sign >= 0
    assert 2*shift + t1.numdigits() <= ret.numdigits()
    for i in range(t1.numdigits()):
        ret._digits[2*shift + i] = t1._digits[i]

    # Zero-out the digits higher than the ah*bh copy. */
    ## ignored, assuming that we initialize to zero
    ##i = ret->ob_size - 2*shift - t1->ob_size;
    ##if (i)
    ##    memset(ret->ob_digit + 2*shift + t1->ob_size, 0,
    ##           i * sizeof(digit));

    # 3. t2 <- al*bl, and copy into the low digits.
    t2 = al.mul(bl)
    assert t2.sign >= 0
    assert t2.numdigits() <= 2*shift # no overlap with high digits
    for i in range(t2.numdigits()):
        ret._digits[i] = t2._digits[i]

    # Zero out remaining digits.
    ## ignored, assuming that we initialize to zero
    ##i = 2*shift - t2->ob_size;  /* number of uninitialized digits */
    ##if (i)
    ##    memset(ret->ob_digit + t2->ob_size, 0, i * sizeof(digit));

    # 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first
    # because it's fresher in cache.
    i = ret.numdigits() - shift  # # digits after shift
    _v_isub(ret, shift, i, t2, t2.numdigits())
    _v_isub(ret, shift, i, t1, t1.numdigits())

    # 6. t3 <- (ah+al)(bh+bl), and add into result.
    t1 = _x_add(ah, al)

    if a is b:
        t2 = t1
    else:
        t2 = _x_add(bh, bl)

    t3 = t1.mul(t2)
    assert t3.sign >= 0

    # Add t3.  It's not obvious why we can't run out of room here.
    # See the (*) comment after this function.
    _v_iadd(ret, shift, i, t3, t3.numdigits())

    ret._normalize()
    return ret

""" (*) Why adding t3 can't "run out of room" above.

Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts
to start with:

1. For any integer i, i = c(i/2) + f(i/2).  In particular,
   bsize = c(bsize/2) + f(bsize/2).
2. shift = f(bsize/2)
3. asize <= bsize
4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
   routine, so asize > bsize/2 >= f(bsize/2) in this routine.

We allocated asize + bsize result digits, and add t3 into them at an offset
of shift.  This leaves asize+bsize-shift allocated digit positions for t3
to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
asize + c(bsize/2) available digit positions.

bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has
at most c(bsize/2) digits + 1 bit.

If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at
most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.

The product (ah+al)*(bh+bl) therefore has at most

    c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits

and we have asize + c(bsize/2) available digit positions.  We need to show
this is always enough.  An instance of c(bsize/2) cancels out in both, so
the question reduces to whether asize digits is enough to hold
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize,
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4,
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
digit is enough to hold 2 bits.  This is so since SHIFT=15 >= 2.  If
asize == bsize, then we're asking whether bsize digits is enough to hold
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
is enough to hold 2 bits.  This is so if bsize >= 2, which holds because
bsize >= KARATSUBA_CUTOFF >= 2.

Note that since there's always enough room for (ah+al)*(bh+bl), and that's
clearly >= each of ah*bh and al*bl, there's always enough room to subtract
ah*bh and al*bl too.
"""

def _k_lopsided_mul(a, b):
    # Not in use anymore, only account for like 1% performance. Perhaps if we
    # Got rid of the extra list allocation this would be more effective.
    """
    b has at least twice the digits of a, and a is big enough that Karatsuba
    would pay off *if* the inputs had balanced sizes.  View b as a sequence
    of slices, each with a->ob_size digits, and multiply the slices by a,
    one at a time.  This gives k_mul balanced inputs to work with, and is
    also cache-friendly (we compute one double-width slice of the result
    at a time, then move on, never bactracking except for the helpful
    single-width slice overlap between successive partial sums).
    """
    asize = a.numdigits()
    bsize = b.numdigits()
    # nbdone is # of b digits already multiplied

    assert asize > KARATSUBA_CUTOFF
    assert 2 * asize <= bsize

    # Allocate result space, and zero it out.
    ret = rbigint([NULLDIGIT] * (asize + bsize), 1)

    # Successive slices of b are copied into bslice.
    #bslice = rbigint([0] * asize, 1)
    # XXX we cannot pre-allocate, see comments below!
    # XXX prevent one list from being created.
    bslice = rbigint(sign=1)

    nbdone = 0
    while bsize > 0:
        nbtouse = min(bsize, asize)

        # Multiply the next slice of b by a.

        #bslice.digits[:nbtouse] = b.digits[nbdone : nbdone + nbtouse]
        # XXX: this would be more efficient if we adopted CPython's
        # way to store the size, instead of resizing the list!
        # XXX change the implementation, encoding length via the sign.
        bslice._digits = b._digits[nbdone : nbdone + nbtouse]
        bslice.size = nbtouse
        product = _k_mul(a, bslice)

        # Add into result.
        _v_iadd(ret, nbdone, ret.numdigits() - nbdone,
                product, product.numdigits())

        bsize -= nbtouse
        nbdone += nbtouse

    ret._normalize()
    return ret

def _inplace_divrem1(pout, pin, n, size=0):
    """
    Divide bigint pin by non-zero digit n, storing quotient
    in pout, and returning the remainder. It's OK for pin == pout on entry.
    """
    rem = _widen_digit(0)
    assert n > 0 and n <= MASK
    if not size:
        size = pin.numdigits()
    size -= 1
    while size >= 0:
        rem = (rem << SHIFT) | pin.widedigit(size)
        hi = rem // n
        pout.setdigit(size, hi)
        rem -= hi * n
        size -= 1
    return rffi.cast(lltype.Signed, rem)

def _divrem1(a, n):
    """
    Divide a bigint integer by a digit, returning both the quotient
    and the remainder as a tuple.
    The sign of a is ignored; n should not be zero.
    """
    assert n > 0 and n <= MASK

    size = a.numdigits()
    z = rbigint([NULLDIGIT] * size, 1, size)
    rem = _inplace_divrem1(z, a, n)
    z._normalize()
    return z, rem

def _v_iadd(x, xofs, m, y, n):
    """
    x and y are rbigints, m >= n required.  x.digits[0:n] is modified in place,
    by adding y.digits[0:m] to it.  Carries are propagated as far as
    x[m-1], and the remaining carry (0 or 1) is returned.
    Python adaptation: x is addressed relative to xofs!
    """
    carry = UDIGIT_TYPE(0)

    assert m >= n
    i = _load_unsigned_digit(xofs)
    iend = xofs + n
    while i < iend:
        carry += x.udigit(i) + y.udigit(i-xofs)
        x.setdigit(i, carry)
        carry >>= SHIFT
        i += 1
    iend = xofs + m
    while carry and i < iend:
        carry += x.udigit(i)
        x.setdigit(i, carry)
        carry >>= SHIFT
        i += 1
    return carry

def _v_isub(x, xofs, m, y, n):
    """
    x and y are rbigints, m >= n required.  x.digits[0:n] is modified in place,
    by substracting y.digits[0:m] to it. Borrows are propagated as
    far as x[m-1], and the remaining borrow (0 or 1) is returned.
    Python adaptation: x is addressed relative to xofs!
    """
    borrow = UDIGIT_TYPE(0)

    assert m >= n
    i = _load_unsigned_digit(xofs)
    iend = xofs + n
    while i < iend:
        borrow = x.udigit(i) - y.udigit(i-xofs) - borrow
        x.setdigit(i, borrow)
        borrow >>= SHIFT
        borrow &= 1    # keep only 1 sign bit
        i += 1
    iend = xofs + m
    while borrow and i < iend:
        borrow = x.udigit(i) - borrow
        x.setdigit(i, borrow)
        borrow >>= SHIFT
        borrow &= 1
        i += 1
    return borrow

@specialize.argtype(2)
def _muladd1(a, n, extra=0):
    """Multiply by a single digit and add a single digit, ignoring the sign.
    """

    size_a = a.numdigits()
    z = rbigint([NULLDIGIT] * (size_a+1), 1)
    assert extra & MASK == extra
    carry = _widen_digit(extra)
    i = 0
    while i < size_a:
        carry += a.widedigit(i) * n
        z.setdigit(i, carry)
        carry >>= SHIFT
        i += 1
    z.setdigit(i, carry)
    z._normalize()
    return z

def _v_lshift(z, a, m, d):
    """ Shift digit vector a[0:m] d bits left, with 0 <= d < SHIFT. Put
        * result in z[0:m], and return the d bits shifted out of the top.
    """

    carry = 0
    assert 0 <= d and d < SHIFT
    i = 0
    while i < m:
        acc = a.widedigit(i) << d | carry
        z.setdigit(i, acc)
        carry = acc >> SHIFT
        i += 1

    return carry

def _v_rshift(z, a, m, d):
    """ Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put
        * result in z[0:m], and return the d bits shifted out of the bottom.
    """

    carry = _widen_digit(0)
    acc = _widen_digit(0)
    mask = (1 << d) - 1

    assert 0 <= d and d < SHIFT
    i = m-1
    while i >= 0:
        acc = (carry << SHIFT) | a.widedigit(i)
        carry = acc & mask
        z.setdigit(i, acc >> d)
        i -= 1

    return carry

def _x_divrem(v1, w1):
    """ Unsigned bigint division with remainder -- the algorithm """
    size_v = v1.numdigits()
    size_w = w1.numdigits()
    assert size_v >= size_w and size_w > 1

    v = rbigint([NULLDIGIT] * (size_v + 1), 1, size_v + 1)
    w = rbigint([NULLDIGIT] * size_w, 1, size_w)

    """ normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
        shift v1 left by the same amount. Results go into w and v. """

    d = SHIFT - bits_in_digit(w1.digit(abs(size_w-1)))
    carry = _v_lshift(w, w1, size_w, d)
    assert carry == 0
    carry = _v_lshift(v, v1, size_v, d)
    if carry != 0 or v.digit(abs(size_v-1)) >= w.digit(abs(size_w-1)):
        v.setdigit(size_v, carry)
        size_v += 1

    """ Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
        at most (and usually exactly) k = size_v - size_w digits. """
    k = size_v - size_w
    if k == 0:
        # We can't use v1, nor NULLRBIGINT here as some function modify the result.
        assert _v_rshift(w, v, size_w, d) == 0
        w._normalize()
        return rbigint([NULLDIGIT]), w

    assert k > 0
    a = rbigint([NULLDIGIT] * k, 1, k)

    wm1 = w.widedigit(abs(size_w-1))
    wm2 = w.widedigit(abs(size_w-2))

    j = size_v - 1
    k -= 1
    while k >= 0:
        assert j >= 0
        """ inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
            single-digit quotient q, remainder in vk[0:size_w]. """

        # estimate quotient digit q; may overestimate by 1 (rare)
        if j >= size_v:
            vtop = 0
        else:
            vtop = v.widedigit(j)
        assert vtop <= wm1
        vv = (vtop << SHIFT) | v.widedigit(abs(j-1))
        q = vv / wm1
        r = vv - wm1 * q
        while wm2 * q > ((r << SHIFT) | v.widedigit(abs(j-2))):
            q -= 1
            r += wm1

        #assert q <= MASK+1, We need to compare to BASE <=, but ehm, it gives a buildin long error. So we ignore this.

        # subtract q*w0[0:size_w] from vk[0:size_w+1]
        zhi = 0
        i = 0
        while i < size_w:
            z = v.widedigit(k+i) + zhi - q * w.widedigit(i)
            v.setdigit(k+i, z)
            zhi = z >> SHIFT
            i += 1

        # add w back if q was too large (this branch taken rarely)
        if vtop + zhi < 0:
            carry = UDIGIT_TYPE(0)
            i = 0
            while i < size_w:
                carry += v.udigit(k+i) + w.udigit(i)
                v.setdigit(k+i, carry)
                carry >>= SHIFT
                i += 1
            q -= 1

        # store quotient digit
        a.setdigit(k, q)
        k -= 1
        j -= 1

    carry = _v_rshift(w, v, size_w, d)
    assert carry == 0

    a._normalize()
    w._normalize()

    return a, w

def _divrem(a, b):
    """ Long division with remainder, top-level routine """
    size_a = a.numdigits()
    size_b = b.numdigits()

    if b.sign == 0:
        raise ZeroDivisionError("long division or modulo by zero")

    if (size_a < size_b or
        (size_a == size_b and
         a.digit(abs(size_a-1)) < b.digit(abs(size_b-1)))):
        # |a| < |b|
        return NULLRBIGINT, a# result is 0
    if size_b == 1:
        z, urem = _divrem1(a, b.digit(0))
        rem = rbigint([_store_digit(urem)], int(urem != 0), 1)
    else:
        z, rem = _x_divrem(a, b)
    # Set the signs.
    # The quotient z has the sign of a*b;
    # the remainder r has the sign of a,
    # so a = b*z + r.
    if a.sign != b.sign:
        z.sign = - z.sign
    if a.sign < 0 and rem.sign != 0:
        rem.sign = - rem.sign
    return z, rem

# ______________ conversions to double _______________

def _AsScaledDouble(v):
    """
    NBITS_WANTED should be > the number of bits in a double's precision,
    but small enough so that 2**NBITS_WANTED is within the normal double
    range.  nbitsneeded is set to 1 less than that because the most-significant
    Python digit contains at least 1 significant bit, but we don't want to
    bother counting them (catering to the worst case cheaply).

    57 is one more than VAX-D double precision; I (Tim) don't know of a double
    format with more precision than that; it's 1 larger so that we add in at
    least one round bit to stand in for the ignored least-significant bits.
    """
    NBITS_WANTED = 57
    if v.sign == 0:
        return 0.0, 0
    i = v.numdigits() - 1
    sign = v.sign
    x = float(v.digit(i))
    nbitsneeded = NBITS_WANTED - 1
    # Invariant:  i Python digits remain unaccounted for.
    while i > 0 and nbitsneeded > 0:
        i -= 1
        x = x * FLOAT_MULTIPLIER + float(v.digit(i))
        nbitsneeded -= SHIFT
    # There are i digits we didn't shift in.  Pretending they're all
    # zeroes, the true value is x * 2**(i*SHIFT).
    exponent = i
    assert x > 0.0
    return x * sign, exponent

##def ldexp(x, exp):
##    assert type(x) is float
##    lb1 = LONG_BIT - 1
##    multiplier = float(1 << lb1)
##    while exp >= lb1:
##        x *= multiplier
##        exp -= lb1
##    if exp:
##        x *= float(1 << exp)
##    return x

# note that math.ldexp checks for overflows,
# while the C ldexp is not guaranteed to do.
# XXX make sure that we don't ignore this!
# YYY no, we decided to do ignore this!

@jit.dont_look_inside
def _AsDouble(n):
    """ Get a C double from a bigint object. """
    # This is a "correctly-rounded" version from Python 2.7.
    #
    from rpython.rlib import rfloat
    DBL_MANT_DIG = rfloat.DBL_MANT_DIG  # 53 for IEEE 754 binary64
    DBL_MAX_EXP = rfloat.DBL_MAX_EXP    # 1024 for IEEE 754 binary64
    assert DBL_MANT_DIG < r_ulonglong.BITS

    # Reduce to case n positive.
    sign = n.sign
    if sign == 0:
        return 0.0
    elif sign < 0:
        n = n.neg()

    # Find exponent: 2**(exp - 1) <= n < 2**exp
    exp = n.bit_length()

    # Get top DBL_MANT_DIG + 2 significant bits of n, with a 'sticky'
    # last bit: that is, the least significant bit of the result is 1
    # iff any of the shifted-out bits is set.
    shift = DBL_MANT_DIG + 2 - exp
    if shift >= 0:
        q = _AsULonglong_mask(n) << shift
        if not we_are_translated():
            assert q == n.tolong() << shift   # no masking actually done
    else:
        shift = -shift
        n2 = n.rshift(shift)
        q = _AsULonglong_mask(n2)
        if not we_are_translated():
            assert q == n2.tolong()           # no masking actually done
        if not n.eq(n2.lshift(shift)):
            q |= 1

    # Now remove the excess 2 bits, rounding to nearest integer (with
    # ties rounded to even).
    q = (q >> 2) + r_uint((bool(q & 2) and bool(q & 5)))

    if exp > DBL_MAX_EXP or (exp == DBL_MAX_EXP and
                             q == r_ulonglong(1) << DBL_MANT_DIG):
        raise OverflowError("integer too large to convert to float")

    ad = math.ldexp(float(q), exp - DBL_MANT_DIG)
    if sign < 0:
        ad = -ad
    return ad

@specialize.arg(0)
def _loghelper(func, arg):
    """
    A decent logarithm is easy to compute even for huge bigints, but libm can't
    do that by itself -- loghelper can.  func is log or log10.
    Note that overflow isn't possible:  a bigint can contain
    no more than INT_MAX * SHIFT bits, so has value certainly less than
    2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
    small enough to fit in an IEEE single.  log and log10 are even smaller.
    """
    x, e = _AsScaledDouble(arg)
    if x <= 0.0:
        raise ValueError
    # Value is ~= x * 2**(e*SHIFT), so the log ~=
    # log(x) + log(2) * e * SHIFT.
    # CAUTION:  e*SHIFT may overflow using int arithmetic,
    # so force use of double. */
    return func(x) + (e * float(SHIFT) * func(2.0))

# ____________________________________________________________

BASE_AS_FLOAT = float(1 << SHIFT)     # note that it may not fit an int

BitLengthTable = ''.join(map(chr, [
    0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]))

def bits_in_digit(d):
    # returns the unique integer k such that 2**(k-1) <= d <
    # 2**k if d is nonzero, else 0.
    d_bits = 0
    while d >= 32:
        d_bits += 6
        d >>= 6
    d_bits += ord(BitLengthTable[d])
    return d_bits

def _truediv_result(result, negate):
    if negate:
        result = -result
    return result

def _truediv_overflow():
    raise OverflowError("integer division result too large for a float")

def _bigint_true_divide(a, b):
    # A longish method to obtain the floating-point result with as much
    # precision as theoretically possible.  The code is almost directly
    # copied from CPython.  See there (Objects/longobject.c,
    # long_true_divide) for detailled comments.  Method in a nutshell:
    #
    #    0. reduce to case a, b > 0; filter out obvious underflow/overflow
    #    1. choose a suitable integer 'shift'
    #    2. use integer arithmetic to compute x = floor(2**-shift*a/b)
    #    3. adjust x for correct rounding
    #    4. convert x to a double dx with the same value
    #    5. return ldexp(dx, shift).

    from rpython.rlib import rfloat
    DBL_MANT_DIG = rfloat.DBL_MANT_DIG  # 53 for IEEE 754 binary64
    DBL_MAX_EXP = rfloat.DBL_MAX_EXP    # 1024 for IEEE 754 binary64
    DBL_MIN_EXP = rfloat.DBL_MIN_EXP
    MANT_DIG_DIGITS = DBL_MANT_DIG // SHIFT
    MANT_DIG_BITS = DBL_MANT_DIG % SHIFT

    # Reduce to case where a and b are both positive.
    negate = (a.sign < 0) ^ (b.sign < 0)
    if not b.tobool():
        raise ZeroDivisionError("long division or modulo by zero")
    if not a.tobool():
        return _truediv_result(0.0, negate)

    a_size = a.numdigits()
    b_size = b.numdigits()

    # Fast path for a and b small (exactly representable in a double).
    # Relies on floating-point division being correctly rounded; results
    # may be subject to double rounding on x86 machines that operate with
    # the x87 FPU set to 64-bit precision.
    a_is_small = (a_size <= MANT_DIG_DIGITS or
                  (a_size == MANT_DIG_DIGITS+1 and
                   a.digit(MANT_DIG_DIGITS) >> MANT_DIG_BITS == 0))
    b_is_small = (b_size <= MANT_DIG_DIGITS or
                  (b_size == MANT_DIG_DIGITS+1 and
                   b.digit(MANT_DIG_DIGITS) >> MANT_DIG_BITS == 0))
    if a_is_small and b_is_small:
        a_size -= 1
        da = float(a.digit(a_size))
        while True:
            a_size -= 1
            if a_size < 0:
                break
            da = da * BASE_AS_FLOAT + a.digit(a_size)

        b_size -= 1
        db = float(b.digit(b_size))
        while True:
            b_size -= 1
            if b_size < 0:
                break
            db = db * BASE_AS_FLOAT + b.digit(b_size)

        return _truediv_result(da / db, negate)

    # Catch obvious cases of underflow and overflow
    diff = a_size - b_size
    if diff > sys.maxint/SHIFT - 1:
        return _truediv_overflow()           # Extreme overflow
    elif diff < 1 - sys.maxint/SHIFT:
        return _truediv_result(0.0, negate)  # Extreme underflow
    # Next line is now safe from overflowing integers
    diff = (diff * SHIFT + bits_in_digit(a.digit(a_size - 1)) -
                           bits_in_digit(b.digit(b_size - 1)))
    # Now diff = a_bits - b_bits.
    if diff > DBL_MAX_EXP:
        return _truediv_overflow()
    elif diff < DBL_MIN_EXP - DBL_MANT_DIG - 1:
        return _truediv_result(0.0, negate)

    # Choose value for shift; see comments for step 1 in CPython.
    shift = max(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2

    inexact = False

    # x = abs(a * 2**-shift)
    if shift <= 0:
        x = a.lshift(-shift)
    else:
        x = a.rshift(shift, dont_invert=True)
        # set inexact if any of the bits shifted out is nonzero
        if not a.eq(x.lshift(shift)):
            inexact = True

    # x //= b. If the remainder is nonzero, set inexact.
    x, rem = _divrem(x, b)
    if rem.tobool():
        inexact = True

    assert x.tobool()    # result of division is never zero
    x_size = x.numdigits()
    x_bits = (x_size-1)*SHIFT + bits_in_digit(x.digit(x_size-1))

    # The number of extra bits that have to be rounded away.
    extra_bits = max(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
    assert extra_bits == 2 or extra_bits == 3

    # Round by remembering a modified copy of the low digit of x
    mask = r_uint(1 << (extra_bits - 1))
    low = x.udigit(0) | r_uint(inexact)
    if (low & mask) != 0 and (low & (3*mask-1)) != 0:
        low += mask
    x_digit_0 = low & ~(mask-1)

    # Convert x to a double dx; the conversion is exact.
    x_size -= 1
    dx = 0.0
    while x_size > 0:
        dx += x.digit(x_size)
        dx *= BASE_AS_FLOAT
        x_size -= 1
    dx += x_digit_0

    # Check whether ldexp result will overflow a double.
    if (shift + x_bits >= DBL_MAX_EXP and
        (shift + x_bits > DBL_MAX_EXP or dx == math.ldexp(1.0, x_bits))):
        return _truediv_overflow()

    return _truediv_result(math.ldexp(dx, shift), negate)

# ____________________________________________________________

BASE8  = '01234567'
BASE10 = '0123456789'
BASE16 = '0123456789abcdef'

def _format_base2_notzero(a, digits, prefix='', suffix=''):
        base = len(digits)
        # JRH: special case for power-of-2 bases
        accum = 0
        accumbits = 0  # # of bits in accum
        basebits = 0
        i = base
        while i > 1:
            basebits += 1
            i >>= 1

        # Compute a rough upper bound for the length of the string
        size_a = a.numdigits()
        i = 5 + len(prefix) + len(suffix) + (size_a*SHIFT + basebits-1) // basebits
        result = [chr(0)] * i
        next_char_index = i
        j = len(suffix)
        while j > 0:
            next_char_index -= 1
            j -= 1
            result[next_char_index] = suffix[j]

        i = 0
        while i < size_a:
            accum |= a.widedigit(i) << accumbits
            accumbits += SHIFT
            assert accumbits >= basebits
            while 1:
                cdigit = intmask(accum & (base - 1))
                next_char_index -= 1
                assert next_char_index >= 0
                result[next_char_index] = digits[cdigit]
                accumbits -= basebits
                accum >>= basebits
                if i < size_a - 1:
                    if accumbits < basebits:
                        break
                else:
                    if accum <= 0:
                        break
            i += 1
        j = len(prefix)
        while j > 0:
            next_char_index -= 1
            j -= 1
            result[next_char_index] = prefix[j]

        if a.sign < 0:
            next_char_index -= 1
            result[next_char_index] = '-'

        assert next_char_index >= 0    # otherwise, buffer overflow (this is also a
                         # hint for the annotator for the slice below)
        return ''.join(result[next_char_index:])


class _PartsCache(object):
    def __init__(self):
        # 36 - 3, because bases 0, 1 make no sense
        # and 2 is handled differently
        self.parts_cache = [None] * 34
        self.mindigits = [0] * 34

        for i in range(34):
            base = i + 3
            mindigits = 1
            while base ** mindigits < sys.maxint:
                mindigits += 1
            mindigits -= 1
            self.mindigits[i] = mindigits

    def get_cached_parts(self, base):
        index = base - 3
        res = self.parts_cache[index]
        if res is None:
            rbase = rbigint.fromint(base)
            part = rbase.pow(rbigint.fromint(self.mindigits[index]))
            res = [part]
            self.parts_cache[base - 3] = res
        return res

    def get_mindigits(self, base):
        return self.mindigits[base - 3]

_parts_cache = _PartsCache()

def _format_int_general(val, digits):
    base = len(digits)
    out = []
    while val:
        out.append(digits[val % base])
        val //= base
    out.reverse()
    return "".join(out)

def _format_int10(val, digits):
    return str(val)

@specialize.arg(7)
def _format_recursive(x, i, output, pts, digits, size_prefix, mindigits, _format_int):
    # bottomed out with min_digit sized pieces
    # use str of ints
    if i < 0:
        # this checks whether any digit has been appended yet
        if output.getlength() == size_prefix:
            if x.sign != 0:
                s = _format_int(x.toint(), digits)
                output.append(s)
        else:
            s = _format_int(x.toint(), digits)
            output.append_multiple_char(digits[0], mindigits - len(s))
            output.append(s)
    else:
        top, bot = x.divmod(pts[i]) # split the number
        _format_recursive(top, i-1, output, pts, digits, size_prefix, mindigits, _format_int)
        _format_recursive(bot, i-1, output, pts, digits, size_prefix, mindigits, _format_int)

def _format(x, digits, prefix='', suffix=''):
    if x.sign == 0:
        return prefix + "0" + suffix
    base = len(digits)
    assert base >= 2 and base <= 36
    if (base & (base - 1)) == 0:
        return _format_base2_notzero(x, digits, prefix, suffix)
    negative = x.sign < 0
    if negative:
        x = x.neg()
    rbase = rbigint.fromint(base)
    two = rbigint.fromint(2)

    pts = _parts_cache.get_cached_parts(base)
    mindigits = _parts_cache.get_mindigits(base)
    stringsize = mindigits
    startindex = 0
    for startindex, part in enumerate(pts):
        if not part.lt(x):
            break
        stringsize *= 2 # XXX can this overflow on 32 bit?
    else:
        # not enough parts computed yet
        while pts[-1].lt(x):
            pts.append(pts[-1].pow(two))
            stringsize *= 2

        startindex = len(pts) - 1

    # remove first base**2**i greater than x
    startindex -= 1

    output = StringBuilder(stringsize)
    if negative:
        output.append('-')
    output.append(prefix)
    if digits == BASE10:
        _format_recursive(
            x, startindex, output, pts, digits, output.getlength(), mindigits,
            _format_int10)
    else:
        _format_recursive(
            x, startindex, output, pts, digits, output.getlength(), mindigits,
            _format_int_general)

    output.append(suffix)
    return output.build()


@specialize.arg(1)
def _bitwise(a, op, b): # '&', '|', '^'
    """ Bitwise and/or/xor operations """

    if a.sign < 0:
        a = a.invert()
        maska = MASK
    else:
        maska = 0
    if b.sign < 0:
        b = b.invert()
        maskb = MASK
    else:
        maskb = 0

    negz = 0
    if op == '^':
        if maska != maskb:
            maska ^= MASK
            negz = -1
    elif op == '&':
        if maska and maskb:
            op = '|'
            maska ^= MASK
            maskb ^= MASK
            negz = -1
    elif op == '|':
        if maska or maskb:
            op = '&'
            maska ^= MASK
            maskb ^= MASK
            negz = -1

    # JRH: The original logic here was to allocate the result value (z)
    # as the longer of the two operands.  However, there are some cases
    # where the result is guaranteed to be shorter than that: AND of two
    # positives, OR of two negatives: use the shorter number.  AND with
    # mixed signs: use the positive number.  OR with mixed signs: use the
    # negative number.  After the transformations above, op will be '&'
    # iff one of these cases applies, and mask will be non-0 for operands
    # whose length should be ignored.

    size_a = a.numdigits()
    size_b = b.numdigits()
    if op == '&':
        if maska:
            size_z = size_b
        else:
            if maskb:
                size_z = size_a
            else:
                size_z = min(size_a, size_b)
    else:
        size_z = max(size_a, size_b)

    z = rbigint([NULLDIGIT] * size_z, 1, size_z)
    i = 0
    while i < size_z:
        if i < size_a:
            diga = a.digit(i) ^ maska
        else:
            diga = maska
        if i < size_b:
            digb = b.digit(i) ^ maskb
        else:
            digb = maskb

        if op == '&':
            z.setdigit(i, diga & digb)
        elif op == '|':
            z.setdigit(i, diga | digb)
        elif op == '^':
            z.setdigit(i, diga ^ digb)
        i += 1

    z._normalize()
    if negz == 0:
        return z

    return z.invert()

@specialize.arg(1)
def _int_bitwise(a, op, b): # '&', '|', '^'
    """ Bitwise and/or/xor operations """

    if not int_in_valid_range(b):
        # Fallback to long.
        return _bitwise(a, op, rbigint.fromint(b))

    if a.sign < 0:
        a = a.invert()
        maska = MASK
    else:
        maska = 0
    if b < 0:
        b = ~b
        maskb = MASK
    else:
        maskb = 0

    negz = 0
    if op == '^':
        if maska != maskb:
            maska ^= MASK
            negz = -1
    elif op == '&':
        if maska and maskb:
            op = '|'
            maska ^= MASK
            maskb ^= MASK
            negz = -1
    elif op == '|':
        if maska or maskb:
            op = '&'
            maska ^= MASK
            maskb ^= MASK
            negz = -1

    # JRH: The original logic here was to allocate the result value (z)
    # as the longer of the two operands.  However, there are some cases
    # where the result is guaranteed to be shorter than that: AND of two
    # positives, OR of two negatives: use the shorter number.  AND with
    # mixed signs: use the positive number.  OR with mixed signs: use the
    # negative number.  After the transformations above, op will be '&'
    # iff one of these cases applies, and mask will be non-0 for operands
    # whose length should be ignored.

    size_a = a.numdigits()
    if op == '&':
        if maska:
            size_z = 1
        else:
            if maskb:
                size_z = size_a
            else:
                size_z = 1
    else:
        size_z = size_a

    z = rbigint([NULLDIGIT] * size_z, 1, size_z)
    i = 0
    while i < size_z:
        if i < size_a:
            diga = a.digit(i) ^ maska
        else:
            diga = maska
        if i == 0:
            digb = b ^ maskb
        else:
            digb = maskb

        if op == '&':
            z.setdigit(i, diga & digb)
        elif op == '|':
            z.setdigit(i, diga | digb)
        elif op == '^':
            z.setdigit(i, diga ^ digb)
        i += 1

    z._normalize()
    if negz == 0:
        return z

    return z.invert()

ULONGLONG_BOUND = r_ulonglong(1L << (r_longlong.BITS-1))
LONGLONG_MIN = r_longlong(-(1L << (r_longlong.BITS-1)))

def _AsLongLong(v):
    """
    Get a r_longlong integer from a bigint object.
    Raises OverflowError if overflow occurs.
    """
    x = _AsULonglong_ignore_sign(v)
    # grr grr grr
    if x >= ULONGLONG_BOUND:
        if x == ULONGLONG_BOUND and v.sign < 0:
            x = LONGLONG_MIN
        else:
            raise OverflowError
    else:
        x = r_longlong(x)
        if v.sign < 0:
            x = -x
    return x

def _AsULonglong_ignore_sign(v):
    x = r_ulonglong(0)
    i = v.numdigits() - 1
    while i >= 0:
        prev = x
        x = (x << SHIFT) + r_ulonglong(v.widedigit(i))
        if (x >> SHIFT) != prev:
                raise OverflowError(
                    "long int too large to convert to unsigned long long int")
        i -= 1
    return x

def make_unsigned_mask_conversion(T):
    def _As_unsigned_mask(v):
        x = T(0)
        i = v.numdigits() - 1
        while i >= 0:
            x = (x << SHIFT) + T(v.digit(i))
            i -= 1
        if v.sign < 0:
            x = -x
        return x
    return _As_unsigned_mask

_AsULonglong_mask = make_unsigned_mask_conversion(r_ulonglong)
_AsUInt_mask = make_unsigned_mask_conversion(r_uint)

def _hash(v):
    # This is designed so that Python ints and longs with the
    # same value hash to the same value, otherwise comparisons
    # of mapping keys will turn out weird.  Moreover, purely
    # to please decimal.py, we return a hash that satisfies
    # hash(x) == hash(x % ULONG_MAX).  In particular, this
    # implies that hash(x) == hash(x % (2**64-1)).
    i = v.numdigits() - 1
    sign = v.sign
    x = r_uint(0)
    LONG_BIT_SHIFT = LONG_BIT - SHIFT
    while i >= 0:
        # Force a native long #-bits (32 or 64) circular shift
        x = (x << SHIFT) | (x >> LONG_BIT_SHIFT)
        x += v.udigit(i)
        # If the addition above overflowed we compensate by
        # incrementing.  This preserves the value modulo
        # ULONG_MAX.
        if x < v.udigit(i):
            x += 1
        i -= 1
    res = intmask(intmask(x) * sign)
    return res

#_________________________________________________________________

# a few internal helpers

def digits_max_for_base(base):
    dec_per_digit = 1
    while base ** dec_per_digit < MASK:
        dec_per_digit += 1
    dec_per_digit -= 1
    return base ** dec_per_digit

BASE_MAX = [0, 0] + [digits_max_for_base(_base) for _base in range(2, 37)]
DEC_MAX = digits_max_for_base(10)
assert DEC_MAX == BASE_MAX[10]

def _decimalstr_to_bigint(s):
    # a string that has been already parsed to be decimal and valid,
    # is turned into a bigint
    p = 0
    lim = len(s)
    sign = False
    if s[p] == '-':
        sign = True
        p += 1
    elif s[p] == '+':
        p += 1

    a = rbigint()
    tens = 1
    dig = 0
    ord0 = ord('0')
    while p < lim:
        dig = dig * 10 + ord(s[p]) - ord0
        p += 1
        tens *= 10
        if tens == DEC_MAX or p == lim:
            a = _muladd1(a, tens, dig)
            tens = 1
            dig = 0
    if sign and a.sign == 1:
        a.sign = -1
    return a

def parse_digit_string(parser):
    # helper for fromstr
    base = parser.base
    if (base & (base - 1)) == 0:
        return parse_string_from_binary_base(parser)
    a = rbigint()
    digitmax = BASE_MAX[base]
    tens, dig = 1, 0
    while True:
        digit = parser.next_digit()
        if tens == digitmax or digit < 0:
            a = _muladd1(a, tens, dig)
            if digit < 0:
                break
            dig = digit
            tens = base
        else:
            dig = dig * base + digit
            tens *= base
    a.sign *= parser.sign
    return a

def parse_string_from_binary_base(parser):
    # The point to this routine is that it takes time linear in the number of
    # string characters.
    from rpython.rlib.rstring import ParseStringError

    base = parser.base
    if   base ==  2: bits_per_char = 1
    elif base ==  4: bits_per_char = 2
    elif base ==  8: bits_per_char = 3
    elif base == 16: bits_per_char = 4
    elif base == 32: bits_per_char = 5
    else:
        raise AssertionError

    # n <- total number of bits needed, while moving 'parser' to the end
    n = 0
    while parser.next_digit() >= 0:
        n += 1

    # b <- number of Python digits needed, = ceiling(n/SHIFT). */
    try:
        b = ovfcheck(n * bits_per_char)
        b = ovfcheck(b + (SHIFT - 1))
    except OverflowError:
        raise ParseStringError("long string too large to convert")
    b = (b // SHIFT) or 1
    z = rbigint([NULLDIGIT] * b, sign=parser.sign)

    # Read string from right, and fill in long from left; i.e.,
    # from least to most significant in both.
    accum = _widen_digit(0)
    bits_in_accum = 0
    pdigit = 0
    for _ in range(n):
        k = parser.prev_digit()
        accum |= _widen_digit(k) << bits_in_accum
        bits_in_accum += bits_per_char
        if bits_in_accum >= SHIFT:
            z.setdigit(pdigit, accum)
            pdigit += 1
            assert pdigit <= b
            accum >>= SHIFT
            bits_in_accum -= SHIFT

    if bits_in_accum:
        z.setdigit(pdigit, accum)
    z._normalize()
    return z