1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
|
"""Float constants"""
import math, struct
from rpython.annotator.model import SomeString, SomeChar
from rpython.rlib import objectmodel, unroll
from rpython.rtyper.extfunc import register_external
from rpython.rtyper.tool import rffi_platform
from rpython.translator.tool.cbuild import ExternalCompilationInfo
class CConfig:
_compilation_info_ = ExternalCompilationInfo(includes=["float.h"])
float_constants = ["DBL_MAX", "DBL_MIN", "DBL_EPSILON"]
int_constants = ["DBL_MAX_EXP", "DBL_MAX_10_EXP",
"DBL_MIN_EXP", "DBL_MIN_10_EXP",
"DBL_DIG", "DBL_MANT_DIG",
"FLT_RADIX", "FLT_ROUNDS"]
for const in float_constants:
setattr(CConfig, const, rffi_platform.DefinedConstantDouble(const))
for const in int_constants:
setattr(CConfig, const, rffi_platform.DefinedConstantInteger(const))
del float_constants, int_constants, const
globals().update(rffi_platform.configure(CConfig))
INVALID_MSG = "could not convert string to float"
def string_to_float(s):
"""
Conversion of string to float.
This version tries to only raise on invalid literals.
Overflows should be converted to infinity whenever possible.
Expects an unwrapped string and return an unwrapped float.
"""
from rpython.rlib.rstring import strip_spaces, ParseStringError
s = strip_spaces(s)
if not s:
raise ParseStringError(INVALID_MSG)
low = s.lower()
if low == "-inf" or low == "-infinity":
return -INFINITY
elif low == "inf" or low == "+inf":
return INFINITY
elif low == "infinity" or low == "+infinity":
return INFINITY
elif low == "nan" or low == "+nan":
return NAN
elif low == "-nan":
return -NAN
try:
return rstring_to_float(s)
except ValueError:
raise ParseStringError(INVALID_MSG)
def rstring_to_float(s):
from rpython.rlib.rdtoa import strtod
return strtod(s)
# float -> string
DTSF_STR_PRECISION = 12
DTSF_SIGN = 0x1
DTSF_ADD_DOT_0 = 0x2
DTSF_ALT = 0x4
DTSF_CUT_EXP_0 = 0x8
DIST_FINITE = 1
DIST_NAN = 2
DIST_INFINITY = 3
@objectmodel.enforceargs(float, SomeChar(), int, int)
def formatd(x, code, precision, flags=0):
from rpython.rlib.rdtoa import dtoa_formatd
return dtoa_formatd(x, code, precision, flags)
def double_to_string(value, tp, precision, flags):
if isfinite(value):
special = DIST_FINITE
elif isinf(value):
special = DIST_INFINITY
else: #isnan(value):
special = DIST_NAN
result = formatd(value, tp, precision, flags)
return result, special
def round_double(value, ndigits, half_even=False):
"""Round a float half away from zero.
Specify half_even=True to round half even instead.
"""
# The basic idea is very simple: convert and round the double to
# a decimal string using _Py_dg_dtoa, then convert that decimal
# string back to a double with _Py_dg_strtod. There's one minor
# difficulty: Python 2.x expects round to do
# round-half-away-from-zero, while _Py_dg_dtoa does
# round-half-to-even. So we need some way to detect and correct
# the halfway cases.
# a halfway value has the form k * 0.5 * 10**-ndigits for some
# odd integer k. Or in other words, a rational number x is
# exactly halfway between two multiples of 10**-ndigits if its
# 2-valuation is exactly -ndigits-1 and its 5-valuation is at
# least -ndigits. For ndigits >= 0 the latter condition is
# automatically satisfied for a binary float x, since any such
# float has nonnegative 5-valuation. For 0 > ndigits >= -22, x
# needs to be an integral multiple of 5**-ndigits; we can check
# this using fmod. For -22 > ndigits, there are no halfway
# cases: 5**23 takes 54 bits to represent exactly, so any odd
# multiple of 0.5 * 10**n for n >= 23 takes at least 54 bits of
# precision to represent exactly.
sign = copysign(1.0, value)
value = abs(value)
# find 2-valuation value
m, expo = math.frexp(value)
while m != math.floor(m):
m *= 2.0
expo -= 1
# determine whether this is a halfway case.
halfway_case = 0
if not half_even and expo == -ndigits - 1:
if ndigits >= 0:
halfway_case = 1
elif ndigits >= -22:
# 22 is the largest k such that 5**k is exactly
# representable as a double
five_pow = 1.0
for i in range(-ndigits):
five_pow *= 5.0
if math.fmod(value, five_pow) == 0.0:
halfway_case = 1
# round to a decimal string; use an extra place for halfway case
strvalue = formatd(value, 'f', ndigits + halfway_case)
if not half_even and halfway_case:
buf = [c for c in strvalue]
if ndigits >= 0:
endpos = len(buf) - 1
else:
endpos = len(buf) + ndigits
# Sanity checks: there should be exactly ndigits+1 places
# following the decimal point, and the last digit in the
# buffer should be a '5'
if not objectmodel.we_are_translated():
assert buf[endpos] == '5'
if '.' in buf:
assert endpos == len(buf) - 1
assert buf.index('.') == len(buf) - ndigits - 2
# increment and shift right at the same time
i = endpos - 1
carry = 1
while i >= 0:
digit = ord(buf[i])
if digit == ord('.'):
buf[i+1] = chr(digit)
i -= 1
digit = ord(buf[i])
carry += digit - ord('0')
buf[i+1] = chr(carry % 10 + ord('0'))
carry /= 10
i -= 1
buf[0] = chr(carry + ord('0'))
if ndigits < 0:
buf.append('0')
strvalue = ''.join(buf)
return sign * rstring_to_float(strvalue)
INFINITY = 1e200 * 1e200
NAN = abs(INFINITY / INFINITY) # bah, INF/INF gives us -NAN?
try:
# Try to get math functions added in 2.6.
from math import isinf, isnan, copysign, acosh, asinh, atanh, log1p
except ImportError:
def isinf(x):
"NOT_RPYTHON"
return x == INFINITY or x == -INFINITY
def isnan(v):
"NOT_RPYTHON"
return v != v
def copysign(x, y):
"""NOT_RPYTHON. Return x with the sign of y"""
if x < 0.:
x = -x
if y > 0. or (y == 0. and math.atan2(y, -1.) > 0.):
return x
else:
return -x
_2_to_m28 = 3.7252902984619141E-09; # 2**-28
_2_to_p28 = 268435456.0; # 2**28
_ln2 = 6.93147180559945286227E-01
def acosh(x):
"NOT_RPYTHON"
if isnan(x):
return NAN
if x < 1.:
raise ValueError("math domain error")
if x >= _2_to_p28:
if isinf(x):
return x
else:
return math.log(x) + _ln2
if x == 1.:
return 0.
if x >= 2.:
t = x * x
return math.log(2. * x - 1. / (x + math.sqrt(t - 1.0)))
t = x - 1.0
return log1p(t + math.sqrt(2. * t + t * t))
def asinh(x):
"NOT_RPYTHON"
absx = abs(x)
if not isfinite(x):
return x
if absx < _2_to_m28:
return x
if absx > _2_to_p28:
w = math.log(absx) + _ln2
elif absx > 2.:
w = math.log(2. * absx + 1. / (math.sqrt(x * x + 1.) + absx))
else:
t = x * x
w = log1p(absx + t / (1. + math.sqrt(1. + t)))
return copysign(w, x)
def atanh(x):
"NOT_RPYTHON"
if isnan(x):
return x
absx = abs(x)
if absx >= 1.:
raise ValueError("math domain error")
if absx < _2_to_m28:
return x
if absx < .5:
t = absx + absx
t = .5 * log1p(t + t * absx / (1. - absx))
else:
t = .5 * log1p((absx + absx) / (1. - absx))
return copysign(t, x)
def log1p(x):
"NOT_RPYTHON"
if abs(x) < DBL_EPSILON // 2.:
return x
elif -.5 <= x <= 1.:
y = 1. + x
return math.log(y) - ((y - 1.) - x) / y
else:
return math.log(1. + x)
try:
from math import expm1 # Added in Python 2.7.
except ImportError:
def expm1(x):
"NOT_RPYTHON"
if abs(x) < .7:
u = math.exp(x)
if u == 1.:
return x
return (u - 1.) * x / math.log(u)
return math.exp(x) - 1.
def log2(x):
# Uses an algorithm that should:
# (a) produce exact results for powers of 2, and
# (b) be monotonic, assuming that the system log is monotonic.
if not isfinite(x):
if isnan(x):
return x # log2(nan) = nan
elif x > 0.0:
return x # log2(+inf) = +inf
else:
# log2(-inf) = nan, invalid-operation
raise ValueError("math domain error")
if x > 0.0:
if 0: # HAVE_LOG2
return math.log2(x)
m, e = math.frexp(x)
# We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when
# x is just greater than 1.0: in that case e is 1, log(m) is negative,
# and we get significant cancellation error from the addition of
# log(m) / log(2) to e. The slight rewrite of the expression below
# avoids this problem.
if x >= 1.0:
return math.log(2.0 * m) / math.log(2.0) + (e - 1)
else:
return math.log(m) / math.log(2.0) + e
else:
raise ValueError("math domain error")
def round_away(x):
# round() from libm, which is not available on all platforms!
absx = abs(x)
if absx - math.floor(absx) >= .5:
r = math.ceil(absx)
else:
r = math.floor(absx)
return copysign(r, x)
def isfinite(x):
"NOT_RPYTHON"
return not isinf(x) and not isnan(x)
def float_as_rbigint_ratio(value):
from rpython.rlib.rbigint import rbigint
if isinf(value):
raise OverflowError("cannot pass infinity to as_integer_ratio()")
elif isnan(value):
raise ValueError("cannot pass nan to as_integer_ratio()")
float_part, exp_int = math.frexp(value)
for i in range(300):
if float_part == math.floor(float_part):
break
float_part *= 2.0
exp_int -= 1
num = rbigint.fromfloat(float_part)
den = rbigint.fromint(1)
exp = den.lshift(abs(exp_int))
if exp_int > 0:
num = num.mul(exp)
else:
den = exp
return num, den
# Implementation of the error function, the complimentary error function, the
# gamma function, and the natural log of the gamma function. These exist in
# libm, but I hear those implementations are horrible.
ERF_SERIES_CUTOFF = 1.5
ERF_SERIES_TERMS = 25
ERFC_CONTFRAC_CUTOFF = 30.
ERFC_CONTFRAC_TERMS = 50
_sqrtpi = 1.772453850905516027298167483341145182798
def _erf_series(x):
x2 = x * x
acc = 0.
fk = ERF_SERIES_TERMS + .5
for i in range(ERF_SERIES_TERMS):
acc = 2.0 + x2 * acc / fk
fk -= 1.
return acc * x * math.exp(-x2) / _sqrtpi
def _erfc_contfrac(x):
if x >= ERFC_CONTFRAC_CUTOFF:
return 0.
x2 = x * x
a = 0.
da = .5
p = 1.
p_last = 0.
q = da + x2
q_last = 1.
for i in range(ERFC_CONTFRAC_TERMS):
a += da
da += 2.
b = da + x2
p_last, p = p, b * p - a * p_last
q_last, q = q, b * q - a * q_last
return p / q * x * math.exp(-x2) / _sqrtpi
def erf(x):
"""The error function at x."""
if isnan(x):
return x
absx = abs(x)
if absx < ERF_SERIES_CUTOFF:
return _erf_series(x)
else:
cf = _erfc_contfrac(absx)
return 1. - cf if x > 0. else cf - 1.
def erfc(x):
"""The complementary error function at x."""
if isnan(x):
return x
absx = abs(x)
if absx < ERF_SERIES_CUTOFF:
return 1. - _erf_series(x)
else:
cf = _erfc_contfrac(absx)
return cf if x > 0. else 2. - cf
def _sinpi(x):
y = math.fmod(abs(x), 2.)
n = int(round_away(2. * y))
if n == 0:
r = math.sin(math.pi * y)
elif n == 1:
r = math.cos(math.pi * (y - .5))
elif n == 2:
r = math.sin(math.pi * (1. - y))
elif n == 3:
r = -math.cos(math.pi * (y - 1.5))
elif n == 4:
r = math.sin(math.pi * (y - 2.))
else:
raise AssertionError("should not reach")
return copysign(1., x) * r
_lanczos_g = 6.024680040776729583740234375
_lanczos_g_minus_half = 5.524680040776729583740234375
_lanczos_num_coeffs = [
23531376880.410759688572007674451636754734846804940,
42919803642.649098768957899047001988850926355848959,
35711959237.355668049440185451547166705960488635843,
17921034426.037209699919755754458931112671403265390,
6039542586.3520280050642916443072979210699388420708,
1439720407.3117216736632230727949123939715485786772,
248874557.86205415651146038641322942321632125127801,
31426415.585400194380614231628318205362874684987640,
2876370.6289353724412254090516208496135991145378768,
186056.26539522349504029498971604569928220784236328,
8071.6720023658162106380029022722506138218516325024,
210.82427775157934587250973392071336271166969580291,
2.5066282746310002701649081771338373386264310793408
]
_lanczos_den_coeffs = [
0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0]
LANCZOS_N = len(_lanczos_den_coeffs)
_lanczos_n_iter = unroll.unrolling_iterable(range(LANCZOS_N))
_lanczos_n_iter_back = unroll.unrolling_iterable(range(LANCZOS_N - 1, -1, -1))
_gamma_integrals = [
1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
1307674368000.0, 20922789888000.0, 355687428096000.0,
6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
51090942171709440000.0, 1124000727777607680000.0]
def _lanczos_sum(x):
num = 0.
den = 0.
assert x > 0.
if x < 5.:
for i in _lanczos_n_iter_back:
num = num * x + _lanczos_num_coeffs[i]
den = den * x + _lanczos_den_coeffs[i]
else:
for i in _lanczos_n_iter:
num = num / x + _lanczos_num_coeffs[i]
den = den / x + _lanczos_den_coeffs[i]
return num / den
def gamma(x):
"""Compute the gamma function for x."""
if isnan(x) or (isinf(x) and x > 0.):
return x
if isinf(x):
raise ValueError("math domain error")
if x == 0.:
raise ValueError("math domain error")
if x == math.floor(x):
if x < 0.:
raise ValueError("math domain error")
if x < len(_gamma_integrals):
return _gamma_integrals[int(x) - 1]
absx = abs(x)
if absx < 1e-20:
r = 1. / x
if isinf(r):
raise OverflowError("math range error")
return r
if absx > 200.:
if x < 0.:
return 0. / -_sinpi(x)
else:
raise OverflowError("math range error")
y = absx + _lanczos_g_minus_half
if absx > _lanczos_g_minus_half:
q = y - absx
z = q - _lanczos_g_minus_half
else:
q = y - _lanczos_g_minus_half
z = q - absx
z = z * _lanczos_g / y
if x < 0.:
r = -math.pi / _sinpi(absx) / absx * math.exp(y) / _lanczos_sum(absx)
r -= z * r
if absx < 140.:
r /= math.pow(y, absx - .5)
else:
sqrtpow = math.pow(y, absx / 2. - .25)
r /= sqrtpow
r /= sqrtpow
else:
r = _lanczos_sum(absx) / math.exp(y)
r += z * r
if absx < 140.:
r *= math.pow(y, absx - .5)
else:
sqrtpow = math.pow(y, absx / 2. - .25)
r *= sqrtpow
r *= sqrtpow
if isinf(r):
raise OverflowError("math range error")
return r
def lgamma(x):
"""Compute the natural logarithm of the gamma function for x."""
if isnan(x):
return x
if isinf(x):
return INFINITY
if x == math.floor(x) and x <= 2.:
if x <= 0.:
raise ValueError("math range error")
return 0.
absx = abs(x)
if absx < 1e-20:
return -math.log(absx)
if x > 0.:
r = (math.log(_lanczos_sum(x)) - _lanczos_g + (x - .5) *
(math.log(x + _lanczos_g - .5) - 1))
else:
r = (math.log(math.pi) - math.log(abs(_sinpi(absx))) - math.log(absx) -
(math.log(_lanczos_sum(absx)) - _lanczos_g +
(absx - .5) * (math.log(absx + _lanczos_g - .5) - 1)))
if isinf(r):
raise OverflowError("math domain error")
return r
def to_ulps(x):
"""Convert a non-NaN float x to an integer, in such a way that
adjacent floats are converted to adjacent integers. Then
abs(ulps(x) - ulps(y)) gives the difference in ulps between two
floats.
The results from this function will only make sense on platforms
where C doubles are represented in IEEE 754 binary64 format.
"""
n = struct.unpack('<q', struct.pack('<d', x))[0]
if n < 0:
n = ~(n+2**63)
return n
def ulps_check(expected, got, ulps=20):
"""Given non-NaN floats `expected` and `got`,
check that they're equal to within the given number of ulps.
Returns None on success and an error message on failure."""
ulps_error = to_ulps(got) - to_ulps(expected)
if abs(ulps_error) <= ulps:
return None
return "error = {} ulps; permitted error = {} ulps".format(ulps_error,
ulps)
def acc_check(expected, got, rel_err=2e-15, abs_err = 5e-323):
"""Determine whether non-NaN floats a and b are equal to within a
(small) rounding error. The default values for rel_err and
abs_err are chosen to be suitable for platforms where a float is
represented by an IEEE 754 double. They allow an error of between
9 and 19 ulps."""
# need to special case infinities, since inf - inf gives nan
if math.isinf(expected) and got == expected:
return None
error = got - expected
permitted_error = max(abs_err, rel_err * abs(expected))
if abs(error) < permitted_error:
return None
return "error = {}; permitted error = {}".format(error,
permitted_error)
|