1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
# -*- coding: iso-8859-1 -*-
"""
RPython implementation of MD5 checksums.
See also the pure Python implementation in lib_pypy/md5.py, which might
or might not be faster than this one on top of CPython.
This is an implementation of the MD5 hash function,
as specified by RFC 1321. It was implemented using Bruce Schneier's
excellent book "Applied Cryptography", 2nd ed., 1996.
This module tries to follow the API of the CPython md5 module.
Long history:
By Dinu C. Gherman. BEWARE: this comes with no guarantee whatsoever
about fitness and/or other properties! Specifically, do not use this
in any production code! License is Python License! (Re-licensing
under the MIT would be great, though)
Special thanks to Aurelian Coman who fixed some nasty bugs!
Modernised by J. Halln and L. Creighton for Pypy.
Converted to RPython by arigo.
"""
from rpython.rlib.rarithmetic import r_uint, r_ulonglong
if r_uint.BITS == 32:
def _rotateLeft(x, n):
"Rotate x (32 bit) left n bits circularly."
return (x << n) | (x >> (32-n))
else:
def _rotateLeft_emulator(x, n):
x &= 0xFFFFFFFF
return (x << n) | (x >> (32-n))
# ----- start of custom code, think about something better... -----
from rpython.rtyper.lltypesystem import lltype, rffi
from rpython.translator.tool.cbuild import ExternalCompilationInfo
eci = ExternalCompilationInfo(post_include_bits=["""
static unsigned long pypy__rotateLeft(unsigned long x, long n) {
unsigned int x1 = x; /* arithmetic directly on int */
int n1 = n;
return (x1 << n1) | (x1 >> (32-n1));
}
"""])
_rotateLeft = rffi.llexternal(
"pypy__rotateLeft", [lltype.Unsigned, lltype.Signed], lltype.Unsigned,
_callable=_rotateLeft_emulator, compilation_info=eci,
_nowrapper=True, elidable_function=True)
# we expect the function _rotateLeft to be actually inlined
def _state2string(a, b, c, d):
return ''.join([
chr(a&0xFF), chr((a>>8)&0xFF), chr((a>>16)&0xFF), chr((a>>24)&0xFF),
chr(b&0xFF), chr((b>>8)&0xFF), chr((b>>16)&0xFF), chr((b>>24)&0xFF),
chr(c&0xFF), chr((c>>8)&0xFF), chr((c>>16)&0xFF), chr((c>>24)&0xFF),
chr(d&0xFF), chr((d>>8)&0xFF), chr((d>>16)&0xFF), chr((d>>24)&0xFF),
])
def _state2hexstring(a, b, c, d):
hx = '0123456789abcdef'
return ''.join([
hx[(a>>4)&0xF], hx[a&0xF], hx[(a>>12)&0xF], hx[(a>>8)&0xF],
hx[(a>>20)&0xF], hx[(a>>16)&0xF], hx[(a>>28)&0xF], hx[(a>>24)&0xF],
hx[(b>>4)&0xF], hx[b&0xF], hx[(b>>12)&0xF], hx[(b>>8)&0xF],
hx[(b>>20)&0xF], hx[(b>>16)&0xF], hx[(b>>28)&0xF], hx[(b>>24)&0xF],
hx[(c>>4)&0xF], hx[c&0xF], hx[(c>>12)&0xF], hx[(c>>8)&0xF],
hx[(c>>20)&0xF], hx[(c>>16)&0xF], hx[(c>>28)&0xF], hx[(c>>24)&0xF],
hx[(d>>4)&0xF], hx[d&0xF], hx[(d>>12)&0xF], hx[(d>>8)&0xF],
hx[(d>>20)&0xF], hx[(d>>16)&0xF], hx[(d>>28)&0xF], hx[(d>>24)&0xF],
])
def _string2uintlist(s, start, count, result):
"""Build a list of count r_uint's by unpacking the string
s[start:start+4*count] in little-endian order.
"""
for i in range(count):
p = start + i * 4
x = r_uint(ord(s[p]))
x |= r_uint(ord(s[p+1])) << 8
x |= r_uint(ord(s[p+2])) << 16
x |= r_uint(ord(s[p+3])) << 24
result[i] = x
# ======================================================================
# The real MD5 meat...
#
# Implemented after "Applied Cryptography", 2nd ed., 1996,
# pp. 436-441 by Bruce Schneier.
# ======================================================================
# F, G, H and I are basic MD5 functions.
def F(x, y, z):
return (x & y) | ((~x) & z)
def G(x, y, z):
return (x & z) | (y & (~z))
def H(x, y, z):
return x ^ y ^ z
def I(x, y, z):
return y ^ (x | (~z))
def XX(func, a, b, c, d, x, s, ac):
"""Wrapper for call distribution to functions F, G, H and I.
This replaces functions FF, GG, HH and II from "Appl. Crypto."
Rotation is separate from addition to prevent recomputation
(now summed-up in one function).
"""
res = a + func(b, c, d)
res = res + x
res = res + ac
res = _rotateLeft(res, s)
res = res + b
return res
XX._annspecialcase_ = 'specialize:arg(0)' # performance hint
class RMD5(object):
"""RPython-level MD5 object.
"""
def __init__(self, initialdata=''):
self._init()
self.update(initialdata)
def _init(self):
"""Set this object to an initial empty state.
"""
self.count = r_ulonglong(0) # total number of bytes
self.input = "" # pending unprocessed data, < 64 bytes
self.uintbuffer = [r_uint(0)] * 16
# Load magic initialization constants.
self.A = r_uint(0x67452301L)
self.B = r_uint(0xefcdab89L)
self.C = r_uint(0x98badcfeL)
self.D = r_uint(0x10325476L)
def _transform(self, inp):
"""Basic MD5 step transforming the digest based on the input.
Note that if the Mysterious Constants are arranged backwards
in little-endian order and decrypted with the DES they produce
OCCULT MESSAGES!
"""
# 'inp' is a list of 16 r_uint values.
a, b, c, d = A, B, C, D = self.A, self.B, self.C, self.D
# Round 1.
S11, S12, S13, S14 = 7, 12, 17, 22
a = XX(F, a, b, c, d, inp[ 0], S11, r_uint(0xD76AA478L)) # 1
d = XX(F, d, a, b, c, inp[ 1], S12, r_uint(0xE8C7B756L)) # 2
c = XX(F, c, d, a, b, inp[ 2], S13, r_uint(0x242070DBL)) # 3
b = XX(F, b, c, d, a, inp[ 3], S14, r_uint(0xC1BDCEEEL)) # 4
a = XX(F, a, b, c, d, inp[ 4], S11, r_uint(0xF57C0FAFL)) # 5
d = XX(F, d, a, b, c, inp[ 5], S12, r_uint(0x4787C62AL)) # 6
c = XX(F, c, d, a, b, inp[ 6], S13, r_uint(0xA8304613L)) # 7
b = XX(F, b, c, d, a, inp[ 7], S14, r_uint(0xFD469501L)) # 8
a = XX(F, a, b, c, d, inp[ 8], S11, r_uint(0x698098D8L)) # 9
d = XX(F, d, a, b, c, inp[ 9], S12, r_uint(0x8B44F7AFL)) # 10
c = XX(F, c, d, a, b, inp[10], S13, r_uint(0xFFFF5BB1L)) # 11
b = XX(F, b, c, d, a, inp[11], S14, r_uint(0x895CD7BEL)) # 12
a = XX(F, a, b, c, d, inp[12], S11, r_uint(0x6B901122L)) # 13
d = XX(F, d, a, b, c, inp[13], S12, r_uint(0xFD987193L)) # 14
c = XX(F, c, d, a, b, inp[14], S13, r_uint(0xA679438EL)) # 15
b = XX(F, b, c, d, a, inp[15], S14, r_uint(0x49B40821L)) # 16
# Round 2.
S21, S22, S23, S24 = 5, 9, 14, 20
a = XX(G, a, b, c, d, inp[ 1], S21, r_uint(0xF61E2562L)) # 17
d = XX(G, d, a, b, c, inp[ 6], S22, r_uint(0xC040B340L)) # 18
c = XX(G, c, d, a, b, inp[11], S23, r_uint(0x265E5A51L)) # 19
b = XX(G, b, c, d, a, inp[ 0], S24, r_uint(0xE9B6C7AAL)) # 20
a = XX(G, a, b, c, d, inp[ 5], S21, r_uint(0xD62F105DL)) # 21
d = XX(G, d, a, b, c, inp[10], S22, r_uint(0x02441453L)) # 22
c = XX(G, c, d, a, b, inp[15], S23, r_uint(0xD8A1E681L)) # 23
b = XX(G, b, c, d, a, inp[ 4], S24, r_uint(0xE7D3FBC8L)) # 24
a = XX(G, a, b, c, d, inp[ 9], S21, r_uint(0x21E1CDE6L)) # 25
d = XX(G, d, a, b, c, inp[14], S22, r_uint(0xC33707D6L)) # 26
c = XX(G, c, d, a, b, inp[ 3], S23, r_uint(0xF4D50D87L)) # 27
b = XX(G, b, c, d, a, inp[ 8], S24, r_uint(0x455A14EDL)) # 28
a = XX(G, a, b, c, d, inp[13], S21, r_uint(0xA9E3E905L)) # 29
d = XX(G, d, a, b, c, inp[ 2], S22, r_uint(0xFCEFA3F8L)) # 30
c = XX(G, c, d, a, b, inp[ 7], S23, r_uint(0x676F02D9L)) # 31
b = XX(G, b, c, d, a, inp[12], S24, r_uint(0x8D2A4C8AL)) # 32
# Round 3.
S31, S32, S33, S34 = 4, 11, 16, 23
a = XX(H, a, b, c, d, inp[ 5], S31, r_uint(0xFFFA3942L)) # 33
d = XX(H, d, a, b, c, inp[ 8], S32, r_uint(0x8771F681L)) # 34
c = XX(H, c, d, a, b, inp[11], S33, r_uint(0x6D9D6122L)) # 35
b = XX(H, b, c, d, a, inp[14], S34, r_uint(0xFDE5380CL)) # 36
a = XX(H, a, b, c, d, inp[ 1], S31, r_uint(0xA4BEEA44L)) # 37
d = XX(H, d, a, b, c, inp[ 4], S32, r_uint(0x4BDECFA9L)) # 38
c = XX(H, c, d, a, b, inp[ 7], S33, r_uint(0xF6BB4B60L)) # 39
b = XX(H, b, c, d, a, inp[10], S34, r_uint(0xBEBFBC70L)) # 40
a = XX(H, a, b, c, d, inp[13], S31, r_uint(0x289B7EC6L)) # 41
d = XX(H, d, a, b, c, inp[ 0], S32, r_uint(0xEAA127FAL)) # 42
c = XX(H, c, d, a, b, inp[ 3], S33, r_uint(0xD4EF3085L)) # 43
b = XX(H, b, c, d, a, inp[ 6], S34, r_uint(0x04881D05L)) # 44
a = XX(H, a, b, c, d, inp[ 9], S31, r_uint(0xD9D4D039L)) # 45
d = XX(H, d, a, b, c, inp[12], S32, r_uint(0xE6DB99E5L)) # 46
c = XX(H, c, d, a, b, inp[15], S33, r_uint(0x1FA27CF8L)) # 47
b = XX(H, b, c, d, a, inp[ 2], S34, r_uint(0xC4AC5665L)) # 48
# Round 4.
S41, S42, S43, S44 = 6, 10, 15, 21
a = XX(I, a, b, c, d, inp[ 0], S41, r_uint(0xF4292244L)) # 49
d = XX(I, d, a, b, c, inp[ 7], S42, r_uint(0x432AFF97L)) # 50
c = XX(I, c, d, a, b, inp[14], S43, r_uint(0xAB9423A7L)) # 51
b = XX(I, b, c, d, a, inp[ 5], S44, r_uint(0xFC93A039L)) # 52
a = XX(I, a, b, c, d, inp[12], S41, r_uint(0x655B59C3L)) # 53
d = XX(I, d, a, b, c, inp[ 3], S42, r_uint(0x8F0CCC92L)) # 54
c = XX(I, c, d, a, b, inp[10], S43, r_uint(0xFFEFF47DL)) # 55
b = XX(I, b, c, d, a, inp[ 1], S44, r_uint(0x85845DD1L)) # 56
a = XX(I, a, b, c, d, inp[ 8], S41, r_uint(0x6FA87E4FL)) # 57
d = XX(I, d, a, b, c, inp[15], S42, r_uint(0xFE2CE6E0L)) # 58
c = XX(I, c, d, a, b, inp[ 6], S43, r_uint(0xA3014314L)) # 59
b = XX(I, b, c, d, a, inp[13], S44, r_uint(0x4E0811A1L)) # 60
a = XX(I, a, b, c, d, inp[ 4], S41, r_uint(0xF7537E82L)) # 61
d = XX(I, d, a, b, c, inp[11], S42, r_uint(0xBD3AF235L)) # 62
c = XX(I, c, d, a, b, inp[ 2], S43, r_uint(0x2AD7D2BBL)) # 63
b = XX(I, b, c, d, a, inp[ 9], S44, r_uint(0xEB86D391L)) # 64
A += a
B += b
C += c
D += d
self.A, self.B, self.C, self.D = A, B, C, D
def _finalize(self, digestfunc):
"""Logic to add the final padding and extract the digest.
"""
# Save the state before adding the padding
count = self.count
input = self.input
A = self.A
B = self.B
C = self.C
D = self.D
index = len(input)
if index < 56:
padLen = 56 - index
else:
padLen = 120 - index
if padLen:
self.update('\200' + '\000' * (padLen-1))
# Append length (before padding).
assert len(self.input) == 56
W = self.uintbuffer
_string2uintlist(self.input, 0, 14, W)
length_in_bits = count << 3
W[14] = r_uint(length_in_bits)
W[15] = r_uint(length_in_bits >> 32)
self._transform(W)
# Store state in digest.
digest = digestfunc(self.A, self.B, self.C, self.D)
# Restore the saved state in case this instance is still used
self.count = count
self.input = input
self.A = A
self.B = B
self.C = C
self.D = D
return digest
# Down from here all methods follow the Python Standard Library
# API of the md5 module.
def update(self, inBuf):
"""Add to the current message.
Update the md5 object with the string arg. Repeated calls
are equivalent to a single call with the concatenation of all
the arguments, i.e. m.update(a); m.update(b) is equivalent
to m.update(a+b).
The hash is immediately calculated for all full blocks. The final
calculation is made in digest(). This allows us to keep an
intermediate value for the hash, so that we only need to make
minimal recalculation if we call update() to add moredata to
the hashed string.
"""
leninBuf = len(inBuf)
self.count += leninBuf
index = len(self.input)
partLen = 64 - index
assert partLen > 0
if leninBuf >= partLen:
W = self.uintbuffer
self.input = self.input + inBuf[:partLen]
_string2uintlist(self.input, 0, 16, W)
self._transform(W)
i = partLen
while i + 64 <= leninBuf:
_string2uintlist(inBuf, i, 16, W)
self._transform(W)
i = i + 64
else:
self.input = inBuf[i:leninBuf]
else:
self.input = self.input + inBuf
def digest(self):
"""Terminate the message-digest computation and return digest.
Return the digest of the strings passed to the update()
method so far. This is a 16-byte string which may contain
non-ASCII characters, including null bytes.
"""
return self._finalize(_state2string)
def hexdigest(self):
"""Terminate and return digest in HEX form.
Like digest() except the digest is returned as a string of
length 32, containing only hexadecimal digits. This may be
used to exchange the value safely in email or other non-
binary environments.
"""
return self._finalize(_state2hexstring)
def copy(self):
"""Return a clone object.
Return a copy ('clone') of the md5 object. This can be used
to efficiently compute the digests of strings that share
a common initial substring.
"""
clone = RMD5()
clone._copyfrom(self)
return clone
def _copyfrom(self, other):
"""Copy all state from 'other' into 'self'.
"""
self.count = other.count
self.input = other.input
self.A = other.A
self.B = other.B
self.C = other.C
self.D = other.D
# synonyms to build new RMD5 objects, for compatibility with the
# CPython md5 module interface.
md5 = RMD5
new = RMD5
digest_size = 16
|