1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
# -*- coding: iso-8859-1 -*-
"""A sample implementation of SHA-1 in RPython.
See also the pure Python implementation in lib_pypy/sha.py, which might
or might not be faster than this one on top of CPython.
Framework adapted from Dinu Gherman's MD5 implementation by
J. Halln and L. Creighton. SHA-1 implementation based directly on
the text of the NIST standard FIPS PUB 180-1.
Modernised by J. Halln and L. Creighton for Pypy,
converted to RPython by arigo.
"""
from rpython.rlib.rarithmetic import r_uint, r_ulonglong
from rpython.rlib.unroll import unrolling_iterable
# We reuse helpers from rmd5 too
from rpython.rlib.rmd5 import _rotateLeft
def _state2string(a, b, c, d, e):
return ''.join([
chr((a>>24)&0xFF), chr((a>>16)&0xFF), chr((a>>8)&0xFF), chr(a&0xFF),
chr((b>>24)&0xFF), chr((b>>16)&0xFF), chr((b>>8)&0xFF), chr(b&0xFF),
chr((c>>24)&0xFF), chr((c>>16)&0xFF), chr((c>>8)&0xFF), chr(c&0xFF),
chr((d>>24)&0xFF), chr((d>>16)&0xFF), chr((d>>8)&0xFF), chr(d&0xFF),
chr((e>>24)&0xFF), chr((e>>16)&0xFF), chr((e>>8)&0xFF), chr(e&0xFF),
])
def _state2hexstring(a, b, c, d, e):
hx = '0123456789abcdef'
return ''.join([
hx[(a>>28)&0xF], hx[(a>>24)&0xF], hx[(a>>20)&0xF], hx[(a>>16)&0xF],
hx[(a>>12)&0xF], hx[(a>>8)&0xF], hx[(a>>4)&0xF], hx[a&0xF],
hx[(b>>28)&0xF], hx[(b>>24)&0xF], hx[(b>>20)&0xF], hx[(b>>16)&0xF],
hx[(b>>12)&0xF], hx[(b>>8)&0xF], hx[(b>>4)&0xF], hx[b&0xF],
hx[(c>>28)&0xF], hx[(c>>24)&0xF], hx[(c>>20)&0xF], hx[(c>>16)&0xF],
hx[(c>>12)&0xF], hx[(c>>8)&0xF], hx[(c>>4)&0xF], hx[c&0xF],
hx[(d>>28)&0xF], hx[(d>>24)&0xF], hx[(d>>20)&0xF], hx[(d>>16)&0xF],
hx[(d>>12)&0xF], hx[(d>>8)&0xF], hx[(d>>4)&0xF], hx[d&0xF],
hx[(e>>28)&0xF], hx[(e>>24)&0xF], hx[(e>>20)&0xF], hx[(e>>16)&0xF],
hx[(e>>12)&0xF], hx[(e>>8)&0xF], hx[(e>>4)&0xF], hx[e&0xF],
])
def _string2uintlist(s, start, count, result):
"""Build a list of count r_uint's by unpacking the string
s[start:start+4*count] in big-endian order.
"""
for i in range(count):
p = start + i * 4
x = r_uint(ord(s[p+3]))
x |= r_uint(ord(s[p+2])) << 8
x |= r_uint(ord(s[p+1])) << 16
x |= r_uint(ord(s[p])) << 24
result[i] = x
# ======================================================================
# The SHA transformation functions
#
# ======================================================================
UNROLL_ALL = True # this algorithm should be fastest & biggest
def f0_19(B, C, D):
return (B & C) | ((~ B) & D)
def f20_39(B, C, D):
return B ^ C ^ D
def f40_59(B, C, D):
return (B & C) | (B & D) | (C & D)
def f60_79(B, C, D):
return B ^ C ^ D
f = [f0_19, f20_39, f40_59, f60_79]
# Constants to be used
K = [
0x5A827999L, # ( 0 <= t <= 19)
0x6ED9EBA1L, # (20 <= t <= 39)
0x8F1BBCDCL, # (40 <= t <= 59)
0xCA62C1D6L # (60 <= t <= 79)
]
unroll_f_K = unrolling_iterable(zip(f, map(r_uint, K)))
if UNROLL_ALL:
unroll_range_20 = unrolling_iterable(range(20))
class RSHA(object):
"""RPython-level SHA object.
"""
def __init__(self, initialdata=''):
self._init()
self.update(initialdata)
def _init(self):
"Initialisation."
self.count = r_ulonglong(0) # total number of bytes
self.input = "" # pending unprocessed data, < 64 bytes
self.uintbuffer = [r_uint(0)] * 80
# Initial 160 bit message digest (5 times 32 bit).
self.H0 = r_uint(0x67452301L)
self.H1 = r_uint(0xEFCDAB89L)
self.H2 = r_uint(0x98BADCFEL)
self.H3 = r_uint(0x10325476L)
self.H4 = r_uint(0xC3D2E1F0L)
def _transform(self, W):
for t in range(16, 80):
W[t] = _rotateLeft(
W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16], 1)
A = self.H0
B = self.H1
C = self.H2
D = self.H3
E = self.H4
"""
This loop is unrolled (via unroll_f_K) to gain some speed
for t in range(0, 80):
TEMP = _rotateLeft(A, 5) + f[t/20] + E + W[t] + K[t/20]
E = D
D = C
C = _rotateLeft(B, 30) & 0xffffffffL
B = A
A = TEMP & 0xffffffffL
"""
t0 = 0
for f, K in unroll_f_K:
if UNROLL_ALL:
rng20 = unroll_range_20
else:
rng20 = range(20)
for t in rng20:
TEMP = _rotateLeft(A, 5) + f(B, C, D) + E + W[t0+t] + K
E = D
D = C
C = _rotateLeft(B, 30)
B = A
A = TEMP
t0 += 20
self.H0 = self.H0 + A
self.H1 = self.H1 + B
self.H2 = self.H2 + C
self.H3 = self.H3 + D
self.H4 = self.H4 + E
def _finalize(self, digestfunc):
"""Logic to add the final padding and extract the digest.
"""
# Save the state before adding the padding
count = self.count
input = self.input
H0 = self.H0
H1 = self.H1
H2 = self.H2
H3 = self.H3
H4 = self.H4
index = len(input)
if index < 56:
padLen = 56 - index
else:
padLen = 120 - index
if padLen:
self.update('\200' + '\000' * (padLen-1))
# Append length (before padding).
assert len(self.input) == 56
W = self.uintbuffer
_string2uintlist(self.input, 0, 14, W)
length_in_bits = count << 3
W[14] = r_uint(length_in_bits >> 32)
W[15] = r_uint(length_in_bits)
self._transform(W)
# Store state in digest.
digest = digestfunc(self.H0, self.H1, self.H2, self.H3, self.H4)
# Restore the saved state in case this instance is still used
self.count = count
self.input = input
self.H0 = H0
self.H1 = H1
self.H2 = H2
self.H3 = H3
self.H4 = H4
return digest
# Down from here all methods follow the Python Standard Library
# API of the sha module.
def update(self, inBuf):
"""Add to the current message.
Update the md5 object with the string arg. Repeated calls
are equivalent to a single call with the concatenation of all
the arguments, i.e. m.update(a); m.update(b) is equivalent
to m.update(a+b).
The hash is immediately calculated for all full blocks. The final
calculation is made in digest(). It will calculate 1-2 blocks,
depending on how much padding we have to add. This allows us to
keep an intermediate value for the hash, so that we only need to
make minimal recalculation if we call update() to add more data
to the hashed string.
"""
leninBuf = len(inBuf)
self.count += leninBuf
index = len(self.input)
partLen = 64 - index
assert partLen > 0
if leninBuf >= partLen:
W = self.uintbuffer
self.input = self.input + inBuf[:partLen]
_string2uintlist(self.input, 0, 16, W)
self._transform(W)
i = partLen
while i + 64 <= leninBuf:
_string2uintlist(inBuf, i, 16, W)
self._transform(W)
i = i + 64
else:
self.input = inBuf[i:leninBuf]
else:
self.input = self.input + inBuf
def digest(self):
"""Terminate the message-digest computation and return digest.
Return the digest of the strings passed to the update()
method so far. This is a 16-byte string which may contain
non-ASCII characters, including null bytes.
"""
return self._finalize(_state2string)
def hexdigest(self):
"""Terminate and return digest in HEX form.
Like digest() except the digest is returned as a string of
length 32, containing only hexadecimal digits. This may be
used to exchange the value safely in email or other non-
binary environments.
"""
return self._finalize(_state2hexstring)
def copy(self):
"""Return a clone object.
Return a copy ('clone') of the md5 object. This can be used
to efficiently compute the digests of strings that share
a common initial substring.
"""
clone = RSHA()
clone._copyfrom(self)
return clone
def _copyfrom(self, other):
"""Copy all state from 'other' into 'self'.
"""
self.count = other.count
self.input = other.input
self.H0 = other.H0
self.H1 = other.H1
self.H2 = other.H2
self.H3 = other.H3
self.H4 = other.H4
# synonyms to build new RSHA objects, for compatibility with the
# CPython sha module interface.
sha = RSHA
new = RSHA
blocksize = 1
digest_size = 20
digestsize = 20
|