1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
import random
from rpython.tool.algo.graphlib import *
def copy_edges(edges):
result = {}
for key, value in edges.items():
result[key] = value[:]
return result
# ____________________________________________________________
class TestSimple:
edges = {
'A': [Edge('A','B'), Edge('A','C')],
'B': [Edge('B','D'), Edge('B','E')],
'C': [Edge('C','F')],
'D': [Edge('D','D')],
'E': [Edge('E','A'), Edge('E','C')],
'F': [],
'G': [],
}
def test_depth_first_search(self):
# 'D' missing from the list of vertices
lst = depth_first_search('A', list('ABCEFG'), self.edges)
assert lst == [
('start', 'A'),
('start', 'B'),
('start', 'E'),
('start', 'C'),
('start', 'F'),
('stop', 'F'),
('stop', 'C'),
('stop', 'E'),
('stop', 'B'),
('stop', 'A'),
]
def test_strong_components(self):
edges = self.edges
saved = copy_edges(edges)
result = list(strong_components(edges, edges))
assert edges == saved
for comp in result:
comp = list(comp)
comp.sort()
result = [''.join(comp) for comp in result]
result.sort()
assert result == ['ABE', 'C', 'D', 'F', 'G']
def test_all_cycles(self):
edges = self.edges
saved = copy_edges(edges)
cycles = list(all_cycles('A', edges, edges))
assert edges == saved
cycles.sort()
expected = [
[edges['A'][0], edges['B'][1], edges['E'][0]],
[edges['D'][0]],
]
expected.sort()
assert cycles == expected
def test_break_cycles(self):
edges = self.edges
saved = copy_edges(edges)
result = list(break_cycles(edges, edges))
assert edges == saved
assert len(result) == 2
assert edges['D'][0] in result
assert (edges['A'][0] in result or
edges['B'][1] in result or
edges['E'][0] in result)
def test_break_cycles_v(self):
edges = copy_edges(self.edges)
edges['R'] = [Edge('R', 'B')]
saved = copy_edges(edges)
result = list(break_cycles_v(edges, edges))
assert edges == saved
assert len(result) == 2
result.sort()
assert ''.join(result) == 'AD'
# the answers 'BD' and 'DE' are correct too, but 'AD' should
# be picked because 'A' is the cycle's node that is the further
# from the root 'R'.
def test_find_roots(self):
roots = list(find_roots(self.edges, self.edges))
roots.sort()
assert ''.join(roots) in ('AG', 'BG', 'EG')
edges = copy_edges(self.edges)
edges['R'] = [Edge('R', 'B')]
roots = list(find_roots(edges, edges))
roots.sort()
assert ''.join(roots) == 'GR'
class TestLoops:
# a graph with 20 loops of length 10 each, plus an edge from each loop to
# the next, non-cylically
edges = {}
for i in range(200):
j = i+1
if j % 10 == 0:
j -= 10
edges[i] = [Edge(i, j)]
for i in range(19):
edges[i*10].append(Edge(i*10, i*10+15))
vertices = dict([(i, True) for i in range(200)])
def test_strong_components(self):
edges = self.edges
result = list(strong_components(self.vertices, edges))
assert len(result) == 20
result2 = []
for comp in result:
comp = list(comp)
comp.sort()
result2.append(comp)
result2.sort()
for i in range(20):
comp = result2[i]
assert comp == range(i*10, (i+1)*10)
def test_break_cycles(self, edges=None):
edges = edges or self.edges
result = list(break_cycles(self.vertices, edges))
assert len(result) == 20
result = [(edge.source, edge.target) for edge in result]
result.sort()
for i in range(20):
assert i*10 <= result[i][0] <= (i+1)*10
assert i*10 <= result[i][1] <= (i+1)*10
def test_break_cycles_2(self):
edges = copy_edges(self.edges)
edges[190].append(Edge(190, 5))
self.test_break_cycles(edges)
def test_find_roots(self):
roots = find_roots(self.vertices, self.edges)
assert len(roots) == 1
v = list(roots)[0]
assert v in range(10)
def test_find_roots_2(self):
edges = copy_edges(self.edges)
edges[190].append(Edge(190, 5))
roots = find_roots(self.vertices, edges)
assert len(roots) == 1
class TestTree:
edges = make_edge_dict([Edge(i//2, i) for i in range(1, 52)])
def test_strong_components(self):
result = list(strong_components(self.edges, self.edges))
assert len(result) == 52
vertices = []
for comp in result:
assert len(comp) == 1
vertices += comp
vertices.sort()
assert vertices == range(52)
def test_all_cycles(self):
result = list(all_cycles(0, self.edges, self.edges))
assert not result
def test_break_cycles(self):
result = list(break_cycles(self.edges, self.edges))
assert not result
def test_find_roots(self):
roots = find_roots(self.edges, self.edges)
assert len(roots) == 1
v = list(roots)[0]
assert v == 0
class TestChainAndLoop:
edges = make_edge_dict([Edge(i,i+1) for i in range(100)] + [Edge(100,99)])
def test_strong_components(self):
result = list(strong_components(self.edges, self.edges))
assert len(result) == 100
vertices = []
for comp in result:
assert (len(comp) == 1 or
(len(comp) == 2 and 99 in comp and 100 in comp))
vertices += comp
vertices.sort()
assert vertices == range(101)
class TestBugCase:
edges = make_edge_dict([Edge(0,0), Edge(1,0), Edge(1,2), Edge(2,1)])
def test_strong_components(self):
result = list(strong_components(self.edges, self.edges))
assert len(result) == 2
result.sort()
assert list(result[0]) == [0]
assert list(result[1]) in ([1,2], [2,1])
class TestBadCase:
# a complete graph
NUM = 50
edges = make_edge_dict([Edge(i, j) for i in range(NUM)
for j in range(NUM)])
vertices = dict.fromkeys(range(NUM))
def test_break_cycles(self):
result = list(break_cycles(self.edges, self.edges))
print len(result)
assert result
def test_find_roots(self):
roots = find_roots(self.edges, self.edges)
assert len(roots) == 1
assert list(roots)[0] in self.edges
class TestRandom:
edges = make_edge_dict([Edge(random.randrange(0,100),
random.randrange(0,100)) for i in range(150)])
def test_strong_components(self):
result = list(strong_components(self.edges, self.edges))
vertices = []
for comp in result:
vertices += comp
vertices.sort()
expected = self.edges.keys()
expected.sort()
assert vertices == expected
def test_break_cycles(self):
list(break_cycles(self.edges, self.edges))
# assert is_acyclic(): included in break_cycles() itself
def test_break_cycles_v(self):
result = list(break_cycles_v(self.edges, self.edges))
# assert is_acyclic(): included in break_cycles_v() itself
print len(result), 'vertices removed'
def test_find_roots(self):
roots = find_roots(self.edges, self.edges)
reachable = set()
for root in roots:
reachable |= set(vertices_reachable_from(root, self.edges,
self.edges))
assert reachable == set(self.edges)
|