1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
#!/usr/bin/env python
"""
Translator Demo
To analyse and type-annotate the functions and class defined in
this module, starting from the entry point function demo(),
use the following command line:
../pypy/translator/goal/translate.py bpnn.py
Insert '--help' before 'bpnn.py' for a list of translation options,
or see the Overview of Command Line Options for translation at
http://codespeak.net/pypy/dist/pypy/doc/config/commandline.html
"""
# Back-Propagation Neural Networks
#
# Written in Python. See http://www.python.org/
#
# Neil Schemenauer <nascheme@enme.ucalgary.ca>
#
# Modifications to the original (Armin Rigo):
# * import random from PyPy's lib, which is Python 2.2's plain
# Python implementation
# * print a doc about how to start the Translator
import sys
import math
import time
from rpython.rlib import rrandom
PRINT_IT = True
random = rrandom.Random(1)
# calculate a random number where: a <= rand < b
def rand(a, b):
return (b-a)*random.random() + a
# Make a matrix (we could use NumPy to speed this up)
def makeMatrix(I, J, fill=0.0):
m = []
for i in range(I):
m.append([fill]*J)
return m
class NN:
def __init__(self, ni, nh, no):
# number of input, hidden, and output nodes
self.ni = ni + 1 # +1 for bias node
self.nh = nh
self.no = no
# activations for nodes
self.ai = [1.0]*self.ni
self.ah = [1.0]*self.nh
self.ao = [1.0]*self.no
# create weights
self.wi = makeMatrix(self.ni, self.nh)
self.wo = makeMatrix(self.nh, self.no)
# set them to random values
for i in range(self.ni):
for j in range(self.nh):
self.wi[i][j] = rand(-2.0, 2.0)
for j in range(self.nh):
for k in range(self.no):
self.wo[j][k] = rand(-2.0, 2.0)
# last change in weights for momentum
self.ci = makeMatrix(self.ni, self.nh)
self.co = makeMatrix(self.nh, self.no)
def update(self, inputs):
if len(inputs) != self.ni-1:
raise ValueError('wrong number of inputs')
# input activations
for i in range(self.ni-1):
#self.ai[i] = 1.0/(1.0+math.exp(-inputs[i]))
self.ai[i] = inputs[i]
# hidden activations
for j in range(self.nh):
sum = 0.0
for i in range(self.ni):
sum = sum + self.ai[i] * self.wi[i][j]
self.ah[j] = 1.0/(1.0+math.exp(-sum))
# output activations
for k in range(self.no):
sum = 0.0
for j in range(self.nh):
sum = sum + self.ah[j] * self.wo[j][k]
self.ao[k] = 1.0/(1.0+math.exp(-sum))
return self.ao[:]
def backPropagate(self, targets, N, M):
if len(targets) != self.no:
raise ValueError('wrong number of target values')
# calculate error terms for output
output_deltas = [0.0] * self.no
for k in range(self.no):
ao = self.ao[k]
output_deltas[k] = ao*(1-ao)*(targets[k]-ao)
# calculate error terms for hidden
hidden_deltas = [0.0] * self.nh
for j in range(self.nh):
sum = 0.0
for k in range(self.no):
sum = sum + output_deltas[k]*self.wo[j][k]
hidden_deltas[j] = self.ah[j]*(1-self.ah[j])*sum
# update output weights
for j in range(self.nh):
for k in range(self.no):
change = output_deltas[k]*self.ah[j]
self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
self.co[j][k] = change
#print N*change, M*self.co[j][k]
# update input weights
for i in range(self.ni):
for j in range(self.nh):
change = hidden_deltas[j]*self.ai[i]
self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
self.ci[i][j] = change
# calculate error
error = 0.0
for k in range(len(targets)):
delta = targets[k]-self.ao[k]
error = error + 0.5*delta*delta
return error
def test(self, patterns):
for p in patterns:
if PRINT_IT:
print p[0], '->', self.update(p[0])
def weights(self):
if PRINT_IT:
print 'Input weights:'
for i in range(self.ni):
print self.wi[i]
print
print 'Output weights:'
for j in range(self.nh):
print self.wo[j]
def train(self, patterns, iterations=2000, N=0.5, M=0.1):
# N: learning rate
# M: momentum factor
for i in xrange(iterations):
error = 0.0
for p in patterns:
inputs = p[0]
targets = p[1]
self.update(inputs)
error = error + self.backPropagate(targets, N, M)
if PRINT_IT and i % 100 == 0:
print 'error', error
def demo():
# Teach network XOR function
pat = [
[[0,0], [0]],
[[0,1], [1]],
[[1,0], [1]],
[[1,1], [0]]
]
# create a network with two input, three hidden, and one output nodes
n = NN(2, 3, 1)
# train it with some patterns
n.train(pat, 2000)
# test it
n.test(pat)
# __________ Entry point for stand-alone builds __________
def entry_point(argv):
if len(argv) > 1:
N = int(argv[1])
else:
N = 200
T = time.time()
for i in range(N):
demo()
t1 = time.time() - T
print "%d iterations, %s milliseconds per iteration" % (N, 1000.0*t1/N)
return 0
# _____ Define and setup target ___
def target(*args):
return entry_point, None
if __name__ == '__main__':
if len(sys.argv) == 1:
sys.argv.append('1')
entry_point(sys.argv)
print __doc__
|