File: opassembler.py

package info (click to toggle)
pypy 7.0.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 107,216 kB
  • sloc: python: 1,201,787; ansic: 62,419; asm: 5,169; cpp: 3,017; sh: 2,534; makefile: 545; xml: 243; lisp: 45; awk: 4
file content (1346 lines) | stat: -rw-r--r-- 54,504 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
from rpython.jit.backend.ppc.helper.assembler import gen_emit_cmp_op
from rpython.jit.backend.ppc.helper.regalloc import _check_imm_arg
import rpython.jit.backend.ppc.condition as c
import rpython.jit.backend.ppc.register as r
from rpython.jit.backend.ppc.locations import imm
from rpython.jit.backend.ppc.locations import imm as make_imm_loc
from rpython.jit.backend.ppc.arch import (IS_PPC_32, IS_PPC_64, WORD,
                                          MAX_REG_PARAMS, MAX_FREG_PARAMS,
                                          PARAM_SAVE_AREA_OFFSET,
                                          THREADLOCAL_ADDR_OFFSET,
                                          IS_BIG_ENDIAN)

from rpython.jit.metainterp.history import (JitCellToken, TargetToken,
                                            AbstractFailDescr, FLOAT, INT, REF,
                                            ConstInt, VOID)
from rpython.rlib.objectmodel import we_are_translated
from rpython.jit.backend.ppc.helper.assembler import (Saved_Volatiles)
from rpython.jit.backend.ppc.jump import remap_frame_layout
from rpython.jit.backend.ppc.codebuilder import (OverwritingBuilder, scratch_reg,
                                                 PPCBuilder, PPCGuardToken)
from rpython.jit.backend.ppc.regalloc import TempPtr, TempInt
from rpython.jit.backend.llsupport import symbolic, jitframe
from rpython.jit.backend.llsupport.descr import CallDescr
from rpython.jit.backend.llsupport.gcmap import allocate_gcmap
from rpython.rtyper.lltypesystem import rstr, rffi, lltype
from rpython.rtyper.annlowlevel import cast_instance_to_gcref
from rpython.rtyper import rclass
from rpython.jit.metainterp.resoperation import rop
from rpython.jit.codewriter.effectinfo import EffectInfo
from rpython.jit.backend.ppc import callbuilder
from rpython.rlib.rarithmetic import r_uint
from rpython.jit.backend.ppc.vector_ext import VectorAssembler
from rpython.rlib.rjitlog import rjitlog as jl

class IntOpAssembler(object):
        
    _mixin_ = True

    def emit_int_add(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        assert not l0.is_imm()
        if l1.is_imm():
            self.mc.addi(res.value, l0.value, l1.value)
        else:
            self.mc.add(res.value, l0.value, l1.value)

    emit_nursery_ptr_increment = emit_int_add

    def emit_int_sub(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        assert not l0.is_imm()
        if l1.is_imm():
            self.mc.subi(res.value, l0.value, l1.value)
        else:
            self.mc.sub(res.value, l0.value, l1.value)
 
    def emit_int_mul(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        assert not l0.is_imm()
        if l1.is_imm():
            self.mc.mulli(res.value, l0.value, l1.value)
        elif IS_PPC_32:
            self.mc.mullw(res.value, l0.value, l1.value)
        else:
            self.mc.mulld(res.value, l0.value, l1.value)

    def emit_uint_mul_high(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        assert not l0.is_imm()
        assert not l1.is_imm()
        self.mc.mulhdu(res.value, l0.value, l1.value)

    def do_emit_int_binary_ovf(self, op, arglocs):
        l0, l1, res = arglocs[0], arglocs[1], arglocs[2]
        self.mc.load_imm(r.SCRATCH, 0)
        self.mc.mtxer(r.SCRATCH.value)
        return (res.value, l0.value, l1.value)

    def emit_int_add_ovf(self, op, arglocs, regalloc):
        self.mc.addox(*self.do_emit_int_binary_ovf(op, arglocs))

    def emit_int_sub_ovf(self, op, arglocs, regalloc):
        self.mc.subox(*self.do_emit_int_binary_ovf(op, arglocs))

    def emit_int_mul_ovf(self, op, arglocs, regalloc):
        if IS_PPC_32:
            self.mc.mullwox(*self.do_emit_int_binary_ovf(op, arglocs))
        else:
            self.mc.mulldox(*self.do_emit_int_binary_ovf(op, arglocs))

    def emit_int_and(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        self.mc.and_(res.value, l0.value, l1.value)

    def emit_int_or(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        self.mc.or_(res.value, l0.value, l1.value)

    def emit_int_xor(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        self.mc.xor(res.value, l0.value, l1.value)
        
    def emit_int_lshift(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        if IS_PPC_32:
            self.mc.slw(res.value, l0.value, l1.value)
        else:
            self.mc.sld(res.value, l0.value, l1.value)

    def emit_int_rshift(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        if IS_PPC_32:
            self.mc.sraw(res.value, l0.value, l1.value)
        else:
            self.mc.srad(res.value, l0.value, l1.value)

    def emit_uint_rshift(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        if IS_PPC_32:
            self.mc.srw(res.value, l0.value, l1.value)
        else:
            self.mc.srd(res.value, l0.value, l1.value)

    emit_int_le = gen_emit_cmp_op(c.LE)
    emit_int_lt = gen_emit_cmp_op(c.LT)
    emit_int_gt = gen_emit_cmp_op(c.GT)
    emit_int_ge = gen_emit_cmp_op(c.GE)
    emit_int_eq = gen_emit_cmp_op(c.EQ)
    emit_int_ne = gen_emit_cmp_op(c.NE)

    emit_uint_lt = gen_emit_cmp_op(c.LT, signed=False)
    emit_uint_le = gen_emit_cmp_op(c.LE, signed=False)
    emit_uint_gt = gen_emit_cmp_op(c.GT, signed=False)
    emit_uint_ge = gen_emit_cmp_op(c.GE, signed=False)

    emit_int_is_zero = emit_int_eq   # EQ to 0
    emit_int_is_true = emit_int_ne   # NE to 0

    emit_ptr_eq = emit_int_eq
    emit_ptr_ne = emit_int_ne

    emit_instance_ptr_eq = emit_ptr_eq
    emit_instance_ptr_ne = emit_ptr_ne

    def emit_int_neg(self, op, arglocs, regalloc):
        l0, res = arglocs
        self.mc.neg(res.value, l0.value)

    def emit_int_invert(self, op, arglocs, regalloc):
        l0, res = arglocs
        self.mc.not_(res.value, l0.value)

    def emit_int_signext(self, op, arglocs, regalloc):
        l0, res = arglocs
        extend_from = op.getarg(1).getint()
        if extend_from == 1:
            self.mc.extsb(res.value, l0.value)
        elif extend_from == 2:
            self.mc.extsh(res.value, l0.value)
        elif extend_from == 4:
            self.mc.extsw(res.value, l0.value)
        else:
            raise AssertionError(extend_from)

    def emit_int_force_ge_zero(self, op, arglocs, regalloc):
        arg, res = arglocs
        with scratch_reg(self.mc):
            self.mc.nor(r.SCRATCH.value, arg.value, arg.value)
            if IS_PPC_32:
                self.mc.srawi(r.SCRATCH.value, r.SCRATCH.value, 31)
            else:
                # sradi (scratch, scratch, 63)
                self.mc.sradi(r.SCRATCH.value, r.SCRATCH.value, 1, 31)
            self.mc.and_(res.value, arg.value, r.SCRATCH.value)

class FloatOpAssembler(object):
    _mixin_ = True

    def emit_float_add(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        self.mc.fadd(res.value, l0.value, l1.value)

    def emit_float_sub(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        self.mc.fsub(res.value, l0.value, l1.value)

    def emit_float_mul(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        self.mc.fmul(res.value, l0.value, l1.value)

    def emit_float_truediv(self, op, arglocs, regalloc):
        l0, l1, res = arglocs
        self.mc.fdiv(res.value, l0.value, l1.value)

    def emit_float_neg(self, op, arglocs, regalloc):
        l0, res = arglocs
        self.mc.fneg(res.value, l0.value)

    def emit_float_abs(self, op, arglocs, regalloc):
        l0, res = arglocs
        self.mc.fabs(res.value, l0.value)

    def _emit_math_sqrt(self, op, arglocs, regalloc):
        l0, res = arglocs
        self.mc.fsqrt(res.value, l0.value)

    def _emit_threadlocalref_get(self, op, arglocs, regalloc):
        [resloc] = arglocs
        offset = op.getarg(1).getint()   # getarg(0) == 'threadlocalref_get'
        calldescr = op.getdescr()
        size = calldescr.get_result_size()
        sign = calldescr.is_result_signed()
        #
        # This loads the stack location THREADLOCAL_OFS into a
        # register, and then read the word at the given offset.
        # It is only supported if 'translate_support_code' is
        # true; otherwise, the execute_token() was done with a
        # dummy value for the stack location THREADLOCAL_OFS
        #
        assert self.cpu.translate_support_code
        assert resloc.is_reg()
        assert _check_imm_arg(offset)
        self.mc.ld(resloc.value, r.SP.value, THREADLOCAL_ADDR_OFFSET)
        self._load_from_mem(resloc, resloc, imm(offset), imm(size), imm(sign))

    emit_float_le = gen_emit_cmp_op(c.LE, fp=True)
    emit_float_lt = gen_emit_cmp_op(c.LT, fp=True)
    emit_float_gt = gen_emit_cmp_op(c.GT, fp=True)
    emit_float_ge = gen_emit_cmp_op(c.GE, fp=True)
    emit_float_eq = gen_emit_cmp_op(c.EQ, fp=True)
    emit_float_ne = gen_emit_cmp_op(c.NE, fp=True)

    def emit_cast_float_to_int(self, op, arglocs, regalloc):
        l0, temp_loc, res = arglocs
        self.mc.fctidz(temp_loc.value, l0.value)
        self.mc.stfd(temp_loc.value, r.SP.value, PARAM_SAVE_AREA_OFFSET)
        self.mc.ld(res.value, r.SP.value, PARAM_SAVE_AREA_OFFSET)

    def emit_cast_int_to_float(self, op, arglocs, regalloc):
        l0, res = arglocs
        self.mc.std(l0.value, r.SP.value, PARAM_SAVE_AREA_OFFSET)
        self.mc.lfd(res.value, r.SP.value, PARAM_SAVE_AREA_OFFSET)
        self.mc.fcfid(res.value, res.value)

    def emit_convert_float_bytes_to_longlong(self, op, arglocs, regalloc):
        l0, res = arglocs
        self.mc.stfd(l0.value, r.SP.value, PARAM_SAVE_AREA_OFFSET)
        self.mc.ld(res.value, r.SP.value, PARAM_SAVE_AREA_OFFSET)

    def emit_convert_longlong_bytes_to_float(self, op, arglocs, regalloc):
        l0, res = arglocs
        self.mc.std(l0.value, r.SP.value, PARAM_SAVE_AREA_OFFSET)
        self.mc.lfd(res.value, r.SP.value, PARAM_SAVE_AREA_OFFSET)

class GuardOpAssembler(object):

    _mixin_ = True

    def _emit_guard(self, op, arglocs, is_guard_not_invalidated=False):
        if is_guard_not_invalidated:
            fcond = c.cond_none
        else:
            fcond = self.guard_success_cc
            self.guard_success_cc = c.cond_none
            assert fcond != c.cond_none
            fcond = c.negate(fcond)
        token = self.build_guard_token(op, arglocs[0].value, arglocs[1:], fcond)
        token.pos_jump_offset = self.mc.currpos()
        assert token.guard_not_invalidated() == is_guard_not_invalidated
        if not is_guard_not_invalidated:
            self.mc.trap()     # has to be patched later on
        self.pending_guard_tokens.append(token)

    def build_guard_token(self, op, frame_depth, arglocs, fcond):
        descr = op.getdescr()
        gcmap = allocate_gcmap(self, frame_depth, r.JITFRAME_FIXED_SIZE)
        faildescrindex = self.get_gcref_from_faildescr(descr)
        token = PPCGuardToken(self.cpu, gcmap, descr, op.getfailargs(),
                              arglocs, op.getopnum(), frame_depth,
                              faildescrindex,
                              fcond)
        return token

    def emit_guard_true(self, op, arglocs, regalloc):
        self._emit_guard(op, arglocs)

    def emit_guard_false(self, op, arglocs, regalloc):
        self.guard_success_cc = c.negate(self.guard_success_cc)
        self._emit_guard(op, arglocs)

    def emit_guard_overflow(self, op, arglocs, regalloc):
        self.guard_success_cc = c.SO
        self._emit_guard(op, arglocs)

    def emit_guard_no_overflow(self, op, arglocs, regalloc):
        self.guard_success_cc = c.NS
        self._emit_guard(op, arglocs)

    def emit_guard_value(self, op, arglocs, regalloc):
        l0 = arglocs[0]
        l1 = arglocs[1]
        failargs = arglocs[2:]

        if l0.is_reg():
            if l1.is_imm():
                self.mc.cmp_op(0, l0.value, l1.getint(), imm=True)
            else:
                self.mc.cmp_op(0, l0.value, l1.value)
        elif l0.is_fp_reg():
            assert l1.is_fp_reg()
            self.mc.cmp_op(0, l0.value, l1.value, fp=True)
        self.guard_success_cc = c.EQ
        self._emit_guard(op, failargs)

    emit_guard_nonnull = emit_guard_true
    emit_guard_isnull = emit_guard_false

    def emit_guard_class(self, op, arglocs, regalloc):
        self._cmp_guard_class(op, arglocs, regalloc)
        self.guard_success_cc = c.EQ
        self._emit_guard(op, arglocs[2:])

    def emit_guard_nonnull_class(self, op, arglocs, regalloc):
        self.mc.cmp_op(0, arglocs[0].value, 1, imm=True, signed=False)
        patch_pos = self.mc.currpos()
        self.mc.trap()
        self._cmp_guard_class(op, arglocs, regalloc)
        pmc = OverwritingBuilder(self.mc, patch_pos, 1)
        pmc.blt(self.mc.currpos() - patch_pos)
        pmc.overwrite()
        self.guard_success_cc = c.EQ
        self._emit_guard(op, arglocs[2:])

    def _cmp_guard_class(self, op, locs, regalloc):
        offset = self.cpu.vtable_offset
        if offset is not None:
            # could be one instruction shorter, but don't care because
            # it's not this case that is commonly translated
            self.mc.load(r.SCRATCH.value, locs[0].value, offset)
            self.mc.load_imm(r.SCRATCH2, locs[1].value)
            self.mc.cmp_op(0, r.SCRATCH.value, r.SCRATCH2.value)
        else:
            expected_typeid = (self.cpu.gc_ll_descr
                    .get_typeid_from_classptr_if_gcremovetypeptr(locs[1].value))
            self._cmp_guard_gc_type(locs[0], expected_typeid)

    def _read_typeid(self, targetreg, loc_ptr):
        # Note that the typeid half-word is at offset 0 on a little-endian
        # machine; it is at offset 2 or 4 on a big-endian machine.
        assert self.cpu.supports_guard_gc_type
        if IS_PPC_32:
            self.mc.lhz(targetreg.value, loc_ptr.value, 2 * IS_BIG_ENDIAN)
        else:
            self.mc.lwz(targetreg.value, loc_ptr.value, 4 * IS_BIG_ENDIAN)

    def _cmp_guard_gc_type(self, loc_ptr, expected_typeid):
        self._read_typeid(r.SCRATCH2, loc_ptr)
        assert 0 <= expected_typeid <= 0x7fffffff   # 4 bytes are always enough
        if expected_typeid > 0xffff:     # if 2 bytes are not enough
            self.mc.subis(r.SCRATCH2.value, r.SCRATCH2.value,
                          expected_typeid >> 16)
            expected_typeid = expected_typeid & 0xffff
        self.mc.cmp_op(0, r.SCRATCH2.value, expected_typeid,
                       imm=True, signed=False)

    def emit_guard_gc_type(self, op, arglocs, regalloc):
        self._cmp_guard_gc_type(arglocs[0], arglocs[1].value)
        self.guard_success_cc = c.EQ
        self._emit_guard(op, arglocs[2:])

    def emit_guard_is_object(self, op, arglocs, regalloc):
        assert self.cpu.supports_guard_gc_type
        loc_object = arglocs[0]
        # idea: read the typeid, fetch one byte of the field 'infobits' from
        # the big typeinfo table, and check the flag 'T_IS_RPYTHON_INSTANCE'.
        base_type_info, shift_by, sizeof_ti = (
            self.cpu.gc_ll_descr.get_translated_info_for_typeinfo())
        infobits_offset, IS_OBJECT_FLAG = (
            self.cpu.gc_ll_descr.get_translated_info_for_guard_is_object())

        self._read_typeid(r.SCRATCH2, loc_object)
        self.mc.load_imm(r.SCRATCH, base_type_info + infobits_offset)
        assert shift_by == 0     # on PPC64; fixme for PPC32
        self.mc.lbzx(r.SCRATCH2.value, r.SCRATCH2.value, r.SCRATCH.value)
        self.mc.andix(r.SCRATCH2.value, r.SCRATCH2.value, IS_OBJECT_FLAG & 0xff)
        self.guard_success_cc = c.NE
        self._emit_guard(op, arglocs[1:])

    def emit_guard_subclass(self, op, arglocs, regalloc):
        assert self.cpu.supports_guard_gc_type
        loc_object = arglocs[0]
        loc_check_against_class = arglocs[1]
        offset = self.cpu.vtable_offset
        offset2 = self.cpu.subclassrange_min_offset
        if offset is not None:
            # read this field to get the vtable pointer
            self.mc.load(r.SCRATCH2.value, loc_object.value, offset)
            # read the vtable's subclassrange_min field
            assert _check_imm_arg(offset2)
            self.mc.ld(r.SCRATCH2.value, r.SCRATCH2.value, offset2)
        else:
            # read the typeid
            self._read_typeid(r.SCRATCH, loc_object)
            # read the vtable's subclassrange_min field, as a single
            # step with the correct offset
            base_type_info, shift_by, sizeof_ti = (
                self.cpu.gc_ll_descr.get_translated_info_for_typeinfo())
            self.mc.load_imm(r.SCRATCH2, base_type_info + sizeof_ti + offset2)
            assert shift_by == 0     # on PPC64; fixme for PPC32
            self.mc.ldx(r.SCRATCH2.value, r.SCRATCH2.value, r.SCRATCH.value)
        # get the two bounds to check against
        vtable_ptr = loc_check_against_class.getint()
        vtable_ptr = rffi.cast(rclass.CLASSTYPE, vtable_ptr)
        check_min = vtable_ptr.subclassrange_min
        check_max = vtable_ptr.subclassrange_max
        assert check_max > check_min
        check_diff = check_max - check_min - 1
        # right now, a full PyPy uses less than 6000 numbers,
        # so we'll assert here that it always fit inside 15 bits
        assert 0 <= check_min <= 0x7fff
        assert 0 <= check_diff <= 0xffff
        # check by doing the unsigned comparison (tmp - min) < (max - min)
        self.mc.subi(r.SCRATCH2.value, r.SCRATCH2.value, check_min)
        self.mc.cmp_op(0, r.SCRATCH2.value, check_diff, imm=True, signed=False)
        # the guard passes if we get a result of "below or equal"
        self.guard_success_cc = c.LE
        self._emit_guard(op, arglocs[2:])

    def emit_guard_not_invalidated(self, op, arglocs, regalloc):
        self._emit_guard(op, arglocs, is_guard_not_invalidated=True)

    def emit_guard_not_forced(self, op, arglocs, regalloc):
        ofs = self.cpu.get_ofs_of_frame_field('jf_descr')
        self.mc.ld(r.SCRATCH.value, r.SPP.value, ofs)
        self.mc.cmp_op(0, r.SCRATCH.value, 0, imm=True)
        self.guard_success_cc = c.EQ
        self._emit_guard(op, arglocs)

    def emit_guard_not_forced_2(self, op, arglocs, regalloc):
        guard_token = self.build_guard_token(op, arglocs[0].value, arglocs[1:],
                                             c.cond_none)
        self._finish_gcmap = guard_token.gcmap
        self._store_force_index(op)
        self.store_info_on_descr(0, guard_token)


class MiscOpAssembler(object):

    _mixin_ = True

    def emit_label(self, op, arglocs, regalloc):
        pass

    def emit_increment_debug_counter(self, op, arglocs, regalloc):
        [addr_loc, value_loc] = arglocs
        self.mc.load(value_loc.value, addr_loc.value, 0)
        self.mc.addi(value_loc.value, value_loc.value, 1)   # can't use r0!
        self.mc.store(value_loc.value, addr_loc.value, 0)

    def emit_finish(self, op, arglocs, regalloc):
        base_ofs = self.cpu.get_baseofs_of_frame_field()
        if len(arglocs) > 0:
            [return_val] = arglocs
            if op.getarg(0).type == FLOAT:
                self.mc.stfd(return_val.value, r.SPP.value, base_ofs)
            else:
                self.mc.std(return_val.value, r.SPP.value, base_ofs)

        ofs = self.cpu.get_ofs_of_frame_field('jf_descr')
        ofs2 = self.cpu.get_ofs_of_frame_field('jf_gcmap')

        descr = op.getdescr()
        faildescrindex = self.get_gcref_from_faildescr(descr)
        self._load_from_gc_table(r.r5, r.r5, faildescrindex)

        # gcmap logic here:
        arglist = op.getarglist()
        if arglist and arglist[0].type == REF:
            if self._finish_gcmap:
                # we're returning with a guard_not_forced_2, and
                # additionally we need to say that the result contains
                # a reference too:
                self._finish_gcmap[0] |= r_uint(1)
                gcmap = self._finish_gcmap
            else:
                gcmap = self.gcmap_for_finish
        elif self._finish_gcmap:
            # we're returning with a guard_not_forced_2
            gcmap = self._finish_gcmap
        else:
            gcmap = lltype.nullptr(jitframe.GCMAP)
        self.load_gcmap(self.mc, r.r2, gcmap)

        self.mc.std(r.r5.value, r.SPP.value, ofs)
        self.mc.store(r.r2.value, r.SPP.value, ofs2)

        # exit function
        self._call_footer()

    def emit_jump(self, op, arglocs, regalloc):
        # The backend's logic assumes that the target code is in a piece of
        # assembler that was also called with the same number of arguments,
        # so that the locations [ebp+8..] of the input arguments are valid
        # stack locations both before and after the jump.
        #
        descr = op.getdescr()
        assert isinstance(descr, TargetToken)
        my_nbargs = self.current_clt._debug_nbargs
        target_nbargs = descr._ppc_clt._debug_nbargs
        assert my_nbargs == target_nbargs

        if descr in self.target_tokens_currently_compiling:
            self.mc.b_offset(descr._ll_loop_code)
        else:
            self.mc.b_abs(descr._ll_loop_code)

    def _genop_same_as(self, op, arglocs, regalloc):
        argloc, resloc = arglocs
        if argloc is not resloc:
            self.regalloc_mov(argloc, resloc)

    emit_same_as_i = _genop_same_as
    emit_same_as_r = _genop_same_as
    emit_same_as_f = _genop_same_as
    emit_cast_ptr_to_int = _genop_same_as
    emit_cast_int_to_ptr = _genop_same_as

    def emit_guard_no_exception(self, op, arglocs, regalloc):
        self.mc.load_from_addr(r.SCRATCH2, r.SCRATCH2, self.cpu.pos_exception())
        self.mc.cmp_op(0, r.SCRATCH2.value, 0, imm=True)
        self.guard_success_cc = c.EQ
        self._emit_guard(op, arglocs)
        # If the previous operation was a COND_CALL, overwrite its conditional
        # jump to jump over this GUARD_NO_EXCEPTION as well, if we can
        if self._find_nearby_operation(regalloc,-1).getopnum() == rop.COND_CALL:
            jmp_adr, BI, BO = self.previous_cond_call_jcond
            relative_target = self.mc.currpos() - jmp_adr
            pmc = OverwritingBuilder(self.mc, jmp_adr, 1)
            pmc.bc(BO, BI, relative_target)
            pmc.overwrite()

    def emit_save_exc_class(self, op, arglocs, regalloc):
        [resloc] = arglocs
        diff = self.mc.load_imm_plus(r.r2, self.cpu.pos_exception())
        self.mc.load(resloc.value, r.r2.value, diff)

    def emit_save_exception(self, op, arglocs, regalloc):
        [resloc] = arglocs
        self._store_and_reset_exception(self.mc, resloc)

    def emit_restore_exception(self, op, arglocs, regalloc):
        self._restore_exception(self.mc, arglocs[1], arglocs[0])

    def emit_guard_exception(self, op, arglocs, regalloc):
        loc, resloc = arglocs[:2]
        failargs = arglocs[2:]

        mc = self.mc
        mc.load_imm(r.SCRATCH2, self.cpu.pos_exc_value())
        diff = self.cpu.pos_exception() - self.cpu.pos_exc_value()
        assert _check_imm_arg(diff)

        mc.load(r.SCRATCH.value, r.SCRATCH2.value, diff)
        mc.cmp_op(0, r.SCRATCH.value, loc.value)
        self.guard_success_cc = c.EQ
        self._emit_guard(op, failargs)

        if resloc:
            mc.load(resloc.value, r.SCRATCH2.value, 0)
        mc.load_imm(r.SCRATCH, 0)
        mc.store(r.SCRATCH.value, r.SCRATCH2.value, 0)
        mc.store(r.SCRATCH.value, r.SCRATCH2.value, diff)

    def _load_from_gc_table(self, rD, rT, index):
        # rT is a temporary, may be equal to rD, must be != r0
        addr = self.gc_table_addr + index * WORD
        self.mc.load_from_addr(rD, rT, addr)

    def emit_load_from_gc_table(self, op, arglocs, regalloc):
        index = op.getarg(0).getint()
        [resloc] = arglocs
        assert resloc.is_reg()
        self._load_from_gc_table(resloc, resloc, index)


class CallOpAssembler(object):

    _mixin_ = True

    def _emit_call(self, op, arglocs, is_call_release_gil=False):
        resloc = arglocs[0]
        func_index = 1 + is_call_release_gil
        adr = arglocs[func_index]
        arglist = arglocs[func_index+1:]

        cb = callbuilder.CallBuilder(self, adr, arglist, resloc)

        descr = op.getdescr()
        assert isinstance(descr, CallDescr)
        cb.argtypes = descr.get_arg_types()
        cb.restype  = descr.get_result_type()

        if is_call_release_gil:
            saveerrloc = arglocs[1]
            assert saveerrloc.is_imm()
            cb.emit_call_release_gil(saveerrloc.value)
        else:
            effectinfo = descr.get_extra_info()
            if effectinfo is None or effectinfo.check_can_collect():
                cb.emit()
            else:
                cb.emit_no_collect()

    def _genop_call(self, op, arglocs, regalloc):
        oopspecindex = regalloc.get_oopspecindex(op)
        if oopspecindex == EffectInfo.OS_MATH_SQRT:
            return self._emit_math_sqrt(op, arglocs, regalloc)
        if oopspecindex == EffectInfo.OS_THREADLOCALREF_GET:
            return self._emit_threadlocalref_get(op, arglocs, regalloc)
        self._emit_call(op, arglocs)

    emit_call_i = _genop_call
    emit_call_r = _genop_call
    emit_call_f = _genop_call
    emit_call_n = _genop_call

    def _genop_call_may_force(self, op, arglocs, regalloc):
        self._store_force_index(self._find_nearby_operation(regalloc, +1))
        self._emit_call(op, arglocs)

    emit_call_may_force_i = _genop_call_may_force
    emit_call_may_force_r = _genop_call_may_force
    emit_call_may_force_f = _genop_call_may_force
    emit_call_may_force_n = _genop_call_may_force

    def _genop_call_release_gil(self, op, arglocs, regalloc):
        self._store_force_index(self._find_nearby_operation(regalloc, +1))
        self._emit_call(op, arglocs, is_call_release_gil=True)

    emit_call_release_gil_i = _genop_call_release_gil
    emit_call_release_gil_f = _genop_call_release_gil
    emit_call_release_gil_n = _genop_call_release_gil

    def _store_force_index(self, guard_op):
        assert (guard_op.getopnum() == rop.GUARD_NOT_FORCED or
                guard_op.getopnum() == rop.GUARD_NOT_FORCED_2)
        faildescr = guard_op.getdescr()
        ofs = self.cpu.get_ofs_of_frame_field('jf_force_descr')
        faildescrindex = self.get_gcref_from_faildescr(faildescr)
        self._load_from_gc_table(r.r2, r.r2, faildescrindex)
        self.mc.store(r.r2.value, r.SPP.value, ofs)

    def _find_nearby_operation(self, regalloc, delta):
        return regalloc.operations[regalloc.rm.position + delta]

    _COND_CALL_SAVE_REGS = [r.r3, r.r4, r.r5, r.r6, r.r12]

    def emit_cond_call(self, op, arglocs, regalloc):
        resloc = arglocs[0]
        arglocs = arglocs[1:]

        fcond = self.guard_success_cc
        self.guard_success_cc = c.cond_none
        assert fcond != c.cond_none

        jmp_adr = self.mc.get_relative_pos()
        self.mc.trap()        # patched later to a 'bc'

        self.load_gcmap(self.mc, r.r2, regalloc.get_gcmap([resloc]))

        # save away r3, r4, r5, r6, r12 into the jitframe
        should_be_saved = [
            reg for reg in self._regalloc.rm.reg_bindings.itervalues()
                if reg in self._COND_CALL_SAVE_REGS]
        self._push_core_regs_to_jitframe(self.mc, should_be_saved)
        #
        # load the 0-to-4 arguments into these registers, with the address of
        # the function to call into r12
        remap_frame_layout(self, arglocs,
                           [r.r12, r.r3, r.r4, r.r5, r.r6][:len(arglocs)],
                           r.SCRATCH)
        #
        # figure out which variant of cond_call_slowpath to call, and call it
        callee_only = False
        floats = False
        for reg in regalloc.rm.reg_bindings.values():
            if reg not in regalloc.rm.save_around_call_regs:
                break
        else:
            callee_only = True
        if regalloc.fprm.reg_bindings:
            floats = True
        cond_call_adr = self.cond_call_slowpath[floats * 2 + callee_only]
        self.mc.bl_abs(cond_call_adr)
        # restoring the registers saved above, and doing pop_gcmap(), is left
        # to the cond_call_slowpath helper.  If we have a result, move
        # it from r2 to its expected location.
        if resloc is not None:
            self.mc.mr(resloc.value, r.SCRATCH2.value)
        relative_target = self.mc.currpos() - jmp_adr
        pmc = OverwritingBuilder(self.mc, jmp_adr, 1)
        BI, BO = c.encoding[fcond]
        pmc.bc(BO, BI, relative_target)
        pmc.overwrite()
        # might be overridden again to skip over the following
        # guard_no_exception too
        self.previous_cond_call_jcond = jmp_adr, BI, BO

    emit_cond_call_value_i = emit_cond_call
    emit_cond_call_value_r = emit_cond_call


class FieldOpAssembler(object):

    _mixin_ = True

    def _write_to_mem(self, value_loc, base_loc, ofs, size_loc):
        assert size_loc.is_imm()
        size = size_loc.value
        if size == 8:
            if value_loc.is_fp_reg():
                if ofs.is_imm():
                    self.mc.stfd(value_loc.value, base_loc.value, ofs.value)
                else:
                    self.mc.stfdx(value_loc.value, base_loc.value, ofs.value)
            else:
                if ofs.is_imm():
                    self.mc.std(value_loc.value, base_loc.value, ofs.value)
                else:
                    self.mc.stdx(value_loc.value, base_loc.value, ofs.value)
        elif size == 4:
            if ofs.is_imm():
                self.mc.stw(value_loc.value, base_loc.value, ofs.value)
            else:
                self.mc.stwx(value_loc.value, base_loc.value, ofs.value)
        elif size == 2:
            if ofs.is_imm():
                self.mc.sth(value_loc.value, base_loc.value, ofs.value)
            else:
                self.mc.sthx(value_loc.value, base_loc.value, ofs.value)
        elif size == 1:
            if ofs.is_imm():
                self.mc.stb(value_loc.value, base_loc.value, ofs.value)
            else:
                self.mc.stbx(value_loc.value, base_loc.value, ofs.value)
        else:
            assert 0, "size not supported"

    def emit_gc_store(self, op, arglocs, regalloc):
        value_loc, base_loc, ofs_loc, size_loc = arglocs
        self._write_to_mem(value_loc, base_loc, ofs_loc, size_loc)

    def _apply_offset(self, index_loc, ofs_loc):
        # If offset != 0 then we have to add it here.  Note that
        # mc.addi() would not be valid with operand r0.
        assert ofs_loc.is_imm()                # must be an immediate...
        assert _check_imm_arg(ofs_loc.getint())   # ...that fits 16 bits
        assert index_loc is not r.SCRATCH2
        # (simplified version of _apply_scale())
        if ofs_loc.value > 0:
            self.mc.addi(r.SCRATCH2.value, index_loc.value, ofs_loc.value)
            index_loc = r.SCRATCH2
        return index_loc

    def emit_gc_store_indexed(self, op, arglocs, regalloc):
        base_loc, index_loc, value_loc, ofs_loc, size_loc = arglocs
        index_loc = self._apply_offset(index_loc, ofs_loc)
        self._write_to_mem(value_loc, base_loc, index_loc, size_loc)

    def _load_from_mem(self, res, base_loc, ofs, size_loc, sign_loc):
        # res, base_loc, ofs, size and signed are all locations
        assert base_loc is not r.SCRATCH
        assert size_loc.is_imm()
        size = size_loc.value
        assert sign_loc.is_imm()
        sign = sign_loc.value
        if size == 8:
            if res.is_fp_reg():
                if ofs.is_imm():
                    self.mc.lfd(res.value, base_loc.value, ofs.value)
                else:
                    self.mc.lfdx(res.value, base_loc.value, ofs.value)
            else:
                if ofs.is_imm():
                    self.mc.ld(res.value, base_loc.value, ofs.value)
                else:
                    self.mc.ldx(res.value, base_loc.value, ofs.value)
        elif size == 4:
            if IS_PPC_64 and sign:
                if ofs.is_imm():
                    self.mc.lwa(res.value, base_loc.value, ofs.value)
                else:
                    self.mc.lwax(res.value, base_loc.value, ofs.value)
            else:
                if ofs.is_imm():
                    self.mc.lwz(res.value, base_loc.value, ofs.value)
                else:
                    self.mc.lwzx(res.value, base_loc.value, ofs.value)
        elif size == 2:
            if sign:
                if ofs.is_imm():
                    self.mc.lha(res.value, base_loc.value, ofs.value)
                else:
                    self.mc.lhax(res.value, base_loc.value, ofs.value)
            else:
                if ofs.is_imm():
                    self.mc.lhz(res.value, base_loc.value, ofs.value)
                else:
                    self.mc.lhzx(res.value, base_loc.value, ofs.value)
        elif size == 1:
            if ofs.is_imm():
                self.mc.lbz(res.value, base_loc.value, ofs.value)
            else:
                self.mc.lbzx(res.value, base_loc.value, ofs.value)
            if sign:
                self.mc.extsb(res.value, res.value)
        else:
            assert 0, "size not supported"

    def _genop_gc_load(self, op, arglocs, regalloc):
        base_loc, ofs_loc, res_loc, size_loc, sign_loc = arglocs
        self._load_from_mem(res_loc, base_loc, ofs_loc, size_loc, sign_loc)

    emit_gc_load_i = _genop_gc_load
    emit_gc_load_r = _genop_gc_load
    emit_gc_load_f = _genop_gc_load

    def _genop_gc_load_indexed(self, op, arglocs, regalloc):
        base_loc, index_loc, res_loc, ofs_loc, size_loc, sign_loc = arglocs
        index_loc = self._apply_offset(index_loc, ofs_loc)
        self._load_from_mem(res_loc, base_loc, index_loc, size_loc, sign_loc)

    emit_gc_load_indexed_i = _genop_gc_load_indexed
    emit_gc_load_indexed_r = _genop_gc_load_indexed
    emit_gc_load_indexed_f = _genop_gc_load_indexed

    SIZE2SCALE = dict([(1<<_i, _i) for _i in range(32)])

    def _multiply_by_constant(self, loc, multiply_by, scratch_loc):
        # XXX should die together with _apply_scale() but can't because
        # of emit_zero_array() and malloc_cond_varsize() at the moment
        assert loc.is_reg()
        if multiply_by == 1:
            return loc
        try:
            scale = self.SIZE2SCALE[multiply_by]
        except KeyError:
            if _check_imm_arg(multiply_by):
                self.mc.mulli(scratch_loc.value, loc.value, multiply_by)
            else:
                self.mc.load_imm(scratch_loc, multiply_by)
                if IS_PPC_32:
                    self.mc.mullw(scratch_loc.value, loc.value,
                                  scratch_loc.value)
                else:
                    self.mc.mulld(scratch_loc.value, loc.value,
                                  scratch_loc.value)
        else:
            self.mc.sldi(scratch_loc.value, loc.value, scale)
        return scratch_loc

    def _copy_in_scratch2(self, loc):
        if loc.is_imm():
            self.mc.li(r.SCRATCH2.value, loc.value)
        elif loc is not r.SCRATCH2:
            self.mc.mr(r.SCRATCH2.value, loc.value)
        return r.SCRATCH2

    # RPythonic workaround for emit_zero_array()
    def eza_stXux(self, a, b, c, itemsize):
        if itemsize & 1:                  self.mc.stbux(a, b, c)
        elif itemsize & 2:                self.mc.sthux(a, b, c)
        elif (itemsize & 4) or IS_PPC_32: self.mc.stwux(a, b, c)
        else:                             self.mc.stdux(a, b, c)
    def eza_stXu(self, a, b, c, itemsize):
        if itemsize & 1:                  self.mc.stbu(a, b, c)
        elif itemsize & 2:                self.mc.sthu(a, b, c)
        elif (itemsize & 4) or IS_PPC_32: self.mc.stwu(a, b, c)
        else:                             self.mc.stdu(a, b, c)

    def emit_zero_array(self, op, arglocs, regalloc):
        base_loc, startindex_loc, length_loc, ofs_loc = arglocs

        stepsize = 8
        shift_by = 3
        if IS_PPC_32:
            stepsize = 4
            shift_by = 2

        if length_loc.is_imm():
            if length_loc.value <= 0:
                return     # nothing to do

        if startindex_loc.is_imm():
            self.mc.load_imm(r.SCRATCH2, startindex_loc.value)
            startindex_loc = r.SCRATCH2
        if ofs_loc.is_imm():
            self.mc.addi(r.SCRATCH2.value, startindex_loc.value, ofs_loc.value)
        else:
            self.mc.add(r.SCRATCH2.value, startindex_loc.value, ofs_loc.value)
        ofs_loc = r.SCRATCH2
        assert base_loc.is_core_reg()
        self.mc.add(ofs_loc.value, ofs_loc.value, base_loc.value)
        # ofs_loc is now the real address pointing to the first
        # byte to be zeroed

        prev_length_loc = length_loc
        if length_loc.is_imm():
            self.mc.load_imm(r.SCRATCH, length_loc.value)
            length_loc = r.SCRATCH

        self.mc.cmp_op(0, length_loc.value, stepsize, imm=True)
        jlt_location = self.mc.currpos()
        self.mc.trap()

        self.mc.sradi(r.SCRATCH.value, length_loc.value, 0, shift_by)
        self.mc.mtctr(r.SCRATCH.value) # store the length in count register

        self.mc.li(r.SCRATCH.value, 0)

        # NOTE the following assumes that bytes have been passed to both startindex
        # and length. Thus we zero 4/8 bytes in a loop in 1) and every remaining
        # byte is zeroed in another loop in 2)

        self.mc.subi(ofs_loc.value, ofs_loc.value, stepsize)

        # first store of case 1)
        # 1) The next loop copies WORDS into the memory chunk starting at startindex
        # ending at startindex + length. These are bytes
        loop_location = self.mc.currpos()
        self.eza_stXu(r.SCRATCH.value, ofs_loc.value, stepsize, stepsize)
        self.mc.bdnz(loop_location - self.mc.currpos())

        self.mc.addi(ofs_loc.value, ofs_loc.value, stepsize)

        pmc = OverwritingBuilder(self.mc, jlt_location, 1)
        pmc.blt(self.mc.currpos() - jlt_location)    # jump if length < WORD
        pmc.overwrite()

        # 2) There might be some bytes left to be written.
        # following scenario: length_loc == 3 bytes, stepsize == 4!
        # need to write the last bytes.

        # move the last bytes to the count register
        length_loc = prev_length_loc
        if length_loc.is_imm():
            self.mc.load_imm(r.SCRATCH, length_loc.value & (stepsize-1))
        else:
            self.mc.andix(r.SCRATCH.value, length_loc.value, (stepsize-1) & 0xff)

        self.mc.cmp_op(0, r.SCRATCH.value, 0, imm=True)
        jle_location = self.mc.currpos()
        self.mc.trap()

        self.mc.mtctr(r.SCRATCH.value)
        self.mc.li(r.SCRATCH.value, 0)

        self.mc.subi(ofs_loc.value, ofs_loc.value, 1)

        loop_location = self.mc.currpos()
        self.eza_stXu(r.SCRATCH.value, ofs_loc.value, 1, 1)
        self.mc.bdnz(loop_location - self.mc.currpos())

        pmc = OverwritingBuilder(self.mc, jle_location, 1)
        pmc.ble(self.mc.currpos() - jle_location)    # !GT
        pmc.overwrite()


class StrOpAssembler(object):

    _mixin_ = True

    def emit_copystrcontent(self, op, arglocs, regalloc):
        self._emit_copycontent(arglocs, is_unicode=False)

    def emit_copyunicodecontent(self, op, arglocs, regalloc):
        self._emit_copycontent(arglocs, is_unicode=True)

    def _emit_load_for_copycontent(self, dst, src_ptr, src_ofs, scale):
        if src_ofs.is_imm():
            value = src_ofs.value << scale
            if value < 32768:
                self.mc.addi(dst.value, src_ptr.value, value)
            else:
                self.mc.load_imm(dst, value)
                self.mc.add(dst.value, src_ptr.value, dst.value)
        elif scale == 0:
            self.mc.add(dst.value, src_ptr.value, src_ofs.value)
        else:
            self.mc.sldi(dst.value, src_ofs.value, scale)
            self.mc.add(dst.value, src_ptr.value, dst.value)

    def _emit_copycontent(self, arglocs, is_unicode):
        [src_ptr_loc, dst_ptr_loc,
         src_ofs_loc, dst_ofs_loc, length_loc] = arglocs

        if is_unicode:
            basesize, itemsize, _ = symbolic.get_array_token(rstr.UNICODE,
                                        self.cpu.translate_support_code)
            if   itemsize == 2: scale = 1
            elif itemsize == 4: scale = 2
            else: raise AssertionError
        else:
            basesize, itemsize, _ = symbolic.get_array_token(rstr.STR,
                                        self.cpu.translate_support_code)
            assert itemsize == 1
            basesize -= 1     # for the extra null character
            scale = 0

        self._emit_load_for_copycontent(r.r0, src_ptr_loc, src_ofs_loc, scale)
        self._emit_load_for_copycontent(r.r2, dst_ptr_loc, dst_ofs_loc, scale)

        if length_loc.is_imm():
            length = length_loc.getint()
            self.mc.load_imm(r.r5, length << scale)
        else:
            if scale > 0:
                self.mc.sldi(r.r5.value, length_loc.value, scale)
            elif length_loc is not r.r5:
                self.mc.mr(r.r5.value, length_loc.value)

        self.mc.mr(r.r4.value, r.r0.value)
        self.mc.addi(r.r4.value, r.r4.value, basesize)
        self.mc.addi(r.r3.value, r.r2.value, basesize)

        self.mc.load_imm(self.mc.RAW_CALL_REG, self.memcpy_addr)
        self.mc.raw_call()


class UnicodeOpAssembler(object):
    _mixin_ = True
    # empty!


class AllocOpAssembler(object):

    _mixin_ = True

    def emit_check_memory_error(self, op, arglocs, regalloc):
        self.propagate_memoryerror_if_reg_is_null(arglocs[0])

    def emit_call_malloc_nursery(self, op, arglocs, regalloc):
        # registers r.RES and r.RSZ are allocated for this call
        size_box = op.getarg(0)
        assert isinstance(size_box, ConstInt)
        size = size_box.getint()
        gc_ll_descr = self.cpu.gc_ll_descr
        gcmap = regalloc.get_gcmap([r.RES, r.RSZ])
        self.malloc_cond(
            gc_ll_descr.get_nursery_free_addr(),
            gc_ll_descr.get_nursery_top_addr(),
            size, gcmap)

    def emit_call_malloc_nursery_varsize_frame(self, op, arglocs, regalloc):
        # registers r.RES and r.RSZ are allocated for this call
        [sizeloc] = arglocs
        gc_ll_descr = self.cpu.gc_ll_descr
        gcmap = regalloc.get_gcmap([r.RES, r.RSZ])
        self.malloc_cond_varsize_frame(
            gc_ll_descr.get_nursery_free_addr(),
            gc_ll_descr.get_nursery_top_addr(),
            sizeloc, gcmap)

    def emit_call_malloc_nursery_varsize(self, op, arglocs, regalloc):
        # registers r.RES and r.RSZ are allocated for this call
        gc_ll_descr = self.cpu.gc_ll_descr
        if not hasattr(gc_ll_descr, 'max_size_of_young_obj'):
            raise Exception("unreachable code")
            # for boehm, this function should never be called
        [lengthloc] = arglocs
        arraydescr = op.getdescr()
        itemsize = op.getarg(1).getint()
        maxlength = (gc_ll_descr.max_size_of_young_obj - WORD * 2) / itemsize
        gcmap = regalloc.get_gcmap([r.RES, r.RSZ])
        self.malloc_cond_varsize(
            op.getarg(0).getint(),
            gc_ll_descr.get_nursery_free_addr(),
            gc_ll_descr.get_nursery_top_addr(),
            lengthloc, itemsize, maxlength, gcmap, arraydescr)

    def emit_debug_merge_point(self, op, arglocs, regalloc):
        pass

    emit_jit_debug = emit_debug_merge_point
    emit_keepalive = emit_debug_merge_point

    def emit_enter_portal_frame(self, op, arglocs, regalloc):
        self.enter_portal_frame(op)

    def emit_leave_portal_frame(self, op, arglocs, regalloc):
        self.leave_portal_frame(op)

    def _write_barrier_fastpath(self, mc, descr, arglocs, regalloc, array=False,
                                is_frame=False):
        # Write code equivalent to write_barrier() in the GC: it checks
        # a flag in the object at arglocs[0], and if set, it calls a
        # helper piece of assembler.  The latter saves registers as needed
        # and call the function remember_young_pointer() from the GC.
        if we_are_translated():
            cls = self.cpu.gc_ll_descr.has_write_barrier_class()
            assert cls is not None and isinstance(descr, cls)
        #
        card_marking_mask = 0
        mask = descr.jit_wb_if_flag_singlebyte
        if array and descr.jit_wb_cards_set != 0:
            # assumptions the rest of the function depends on:
            assert (descr.jit_wb_cards_set_byteofs ==
                    descr.jit_wb_if_flag_byteofs)
            card_marking_mask = descr.jit_wb_cards_set_singlebyte
        #
        loc_base = arglocs[0]
        assert loc_base.is_reg()
        if is_frame:
            assert loc_base is r.SPP
        assert _check_imm_arg(descr.jit_wb_if_flag_byteofs)
        mc.lbz(r.SCRATCH2.value, loc_base.value, descr.jit_wb_if_flag_byteofs)
        mc.andix(r.SCRATCH.value, r.SCRATCH2.value, mask & 0xFF)

        jz_location = mc.get_relative_pos()
        mc.trap()        # patched later with 'beq'

        # for cond_call_gc_wb_array, also add another fast path:
        # if GCFLAG_CARDS_SET, then we can just set one bit and be done
        if card_marking_mask:
            # GCFLAG_CARDS_SET is in the same byte, loaded in r2 already
            mc.andix(r.SCRATCH.value, r.SCRATCH2.value,
                     card_marking_mask & 0xFF)
            js_location = mc.get_relative_pos()
            mc.trap()        # patched later with 'bne'
        else:
            js_location = 0

        # Write only a CALL to the helper prepared in advance, passing it as
        # argument the address of the structure we are writing into
        # (the first argument to COND_CALL_GC_WB).
        helper_num = (card_marking_mask != 0)
        if is_frame:
            helper_num = 4
        elif regalloc.fprm.reg_bindings:
            helper_num += 2
        if self.wb_slowpath[helper_num] == 0:    # tests only
            assert not we_are_translated()
            assert not is_frame
            self.cpu.gc_ll_descr.write_barrier_descr = descr
            self._build_wb_slowpath(card_marking_mask != 0,
                                    bool(regalloc.fprm.reg_bindings))
            assert self.wb_slowpath[helper_num] != 0
        #
        if not is_frame:
            mc.mr(r.r0.value, loc_base.value)    # unusual argument location
        mc.load_imm(r.SCRATCH2, self.wb_slowpath[helper_num])
        mc.mtctr(r.SCRATCH2.value)
        mc.bctrl()

        if card_marking_mask:
            # The helper ends again with a check of the flag in the object.
            # So here, we can simply write again a beq, which will be
            # taken if GCFLAG_CARDS_SET is still not set.
            jns_location = mc.get_relative_pos()
            mc.trap()
            #
            # patch the 'bne' above
            currpos = mc.currpos()
            pmc = OverwritingBuilder(mc, js_location, 1)
            pmc.bne(currpos - js_location)
            pmc.overwrite()
            #
            # case GCFLAG_CARDS_SET: emit a few instructions to do
            # directly the card flag setting
            loc_index = arglocs[1]
            if loc_index.is_reg():

                tmp_loc = arglocs[2]
                n = descr.jit_wb_card_page_shift

                # compute in tmp_loc the byte offset:
                #     ~(index >> (card_page_shift + 3))   ('~' is 'not_' below)
                mc.srli_op(tmp_loc.value, loc_index.value, n + 3)

                # compute in r2 the index of the bit inside the byte:
                #     (index >> card_page_shift) & 7
                mc.rldicl(r.SCRATCH2.value, loc_index.value, 64 - n, 61)
                mc.li(r.SCRATCH.value, 1)
                mc.not_(tmp_loc.value, tmp_loc.value)

                # set r2 to 1 << r2
                mc.sl_op(r.SCRATCH2.value, r.SCRATCH.value, r.SCRATCH2.value)

                # set this bit inside the byte of interest
                mc.lbzx(r.SCRATCH.value, loc_base.value, tmp_loc.value)
                mc.or_(r.SCRATCH.value, r.SCRATCH.value, r.SCRATCH2.value)
                mc.stbx(r.SCRATCH.value, loc_base.value, tmp_loc.value)
                # done

            else:
                byte_index = loc_index.value >> descr.jit_wb_card_page_shift
                byte_ofs = ~(byte_index >> 3)
                byte_val = 1 << (byte_index & 7)
                assert _check_imm_arg(byte_ofs)

                mc.lbz(r.SCRATCH.value, loc_base.value, byte_ofs)
                mc.ori(r.SCRATCH.value, r.SCRATCH.value, byte_val)
                mc.stb(r.SCRATCH.value, loc_base.value, byte_ofs)
            #
            # patch the beq just above
            currpos = mc.currpos()
            pmc = OverwritingBuilder(mc, jns_location, 1)
            pmc.beq(currpos - jns_location)
            pmc.overwrite()

        # patch the JZ above
        currpos = mc.currpos()
        pmc = OverwritingBuilder(mc, jz_location, 1)
        pmc.beq(currpos - jz_location)
        pmc.overwrite()

    def emit_cond_call_gc_wb(self, op, arglocs, regalloc):
        self._write_barrier_fastpath(self.mc, op.getdescr(), arglocs, regalloc)

    def emit_cond_call_gc_wb_array(self, op, arglocs, regalloc):
        self._write_barrier_fastpath(self.mc, op.getdescr(), arglocs, regalloc,
                                     array=True)


class ForceOpAssembler(object):

    _mixin_ = True
    
    def emit_force_token(self, op, arglocs, regalloc):
        res_loc = arglocs[0]
        self.mc.mr(res_loc.value, r.SPP.value)

    def _genop_call_assembler(self, op, arglocs, regalloc):
        if len(arglocs) == 3:
            [result_loc, argloc, vloc] = arglocs
        else:
            [result_loc, argloc] = arglocs
            vloc = imm(0)
        self._store_force_index(self._find_nearby_operation(regalloc, +1))
        # 'result_loc' is either r3 or f1, or None
        self.call_assembler(op, argloc, vloc, result_loc, r.r3)

    emit_call_assembler_i = _genop_call_assembler
    emit_call_assembler_r = _genop_call_assembler
    emit_call_assembler_f = _genop_call_assembler
    emit_call_assembler_n = _genop_call_assembler

    imm = staticmethod(imm)   # for call_assembler()

    def _call_assembler_emit_call(self, addr, argloc, _):
        self.regalloc_mov(argloc, r.r3)
        self.mc.ld(r.r4.value, r.SP.value, THREADLOCAL_ADDR_OFFSET)

        cb = callbuilder.CallBuilder(self, addr, [r.r3, r.r4], r.r3)
        cb.emit()

    def _call_assembler_emit_helper_call(self, addr, arglocs, result_loc):
        cb = callbuilder.CallBuilder(self, addr, arglocs, result_loc)
        cb.emit()

    def _call_assembler_check_descr(self, value, tmploc):
        ofs = self.cpu.get_ofs_of_frame_field('jf_descr')
        self.mc.ld(r.r5.value, r.r3.value, ofs)
        if _check_imm_arg(value):
            self.mc.cmp_op(0, r.r5.value, value, imm=True)
        else:
            self.mc.load_imm(r.r4, value)
            self.mc.cmp_op(0, r.r5.value, r.r4.value, imm=False)
        jump_if_eq = self.mc.currpos()
        self.mc.trap()      # patched later
        return jump_if_eq

    def _call_assembler_patch_je(self, result_loc, je_location):
        jump_to_done = self.mc.currpos()
        self.mc.trap()      # patched later
        #
        currpos = self.mc.currpos()
        pmc = OverwritingBuilder(self.mc, je_location, 1)
        pmc.beq(currpos - je_location)
        pmc.overwrite()
        #
        return jump_to_done

    def _call_assembler_load_result(self, op, result_loc):
        if op.type != VOID:
            # load the return value from the dead frame's value index 0
            kind = op.type
            descr = self.cpu.getarraydescr_for_frame(kind)
            ofs = self.cpu.unpack_arraydescr(descr)
            if kind == FLOAT:
                assert result_loc is r.f1
                self.mc.lfd(r.f1.value, r.r3.value, ofs)
            else:
                assert result_loc is r.r3
                self.mc.ld(r.r3.value, r.r3.value, ofs)

    def _call_assembler_patch_jmp(self, jmp_location):
        currpos = self.mc.currpos()
        pmc = OverwritingBuilder(self.mc, jmp_location, 1)
        pmc.b(currpos - jmp_location)
        pmc.overwrite()

    def redirect_call_assembler(self, oldlooptoken, newlooptoken):
        # some minimal sanity checking
        old_nbargs = oldlooptoken.compiled_loop_token._debug_nbargs
        new_nbargs = newlooptoken.compiled_loop_token._debug_nbargs
        assert old_nbargs == new_nbargs
        oldadr = oldlooptoken._ll_function_addr
        target = newlooptoken._ll_function_addr
        # copy frame-info data
        baseofs = self.cpu.get_baseofs_of_frame_field()
        newlooptoken.compiled_loop_token.update_frame_info(
            oldlooptoken.compiled_loop_token, baseofs)
        if IS_PPC_64 and IS_BIG_ENDIAN:
            # PPC64 big-endian trampolines are data so overwrite the code
            # address in the function descriptor at the old address.
            # Copy the whole 3-word trampoline, even though the other
            # words are always zero so far.  That's not enough in all
            # cases: if the "target" trampoline is itself redirected
            # later, then the "old" trampoline won't be updated; so
            # we still need the jump below to be safe.
            odata = rffi.cast(rffi.CArrayPtr(lltype.Signed), oldadr)
            tdata = rffi.cast(rffi.CArrayPtr(lltype.Signed), target)
            odata[0] = tdata[0]
            odata[1] = tdata[1]
            odata[2] = tdata[2]
            oldadr += 3 * WORD
            target += 3 * WORD
        # we overwrite the instructions at the old _ll_function_addr
        # to start with a JMP to the new _ll_function_addr.
        mc = PPCBuilder()
        mc.b_abs(target)
        mc.copy_to_raw_memory(oldadr)
        jl.redirect_assembler(oldlooptoken, newlooptoken, newlooptoken.number)


class OpAssembler(IntOpAssembler, GuardOpAssembler,
                  MiscOpAssembler, FieldOpAssembler,
                  StrOpAssembler, CallOpAssembler,
                  UnicodeOpAssembler, ForceOpAssembler,
                  AllocOpAssembler, FloatOpAssembler,
                  VectorAssembler):
    _mixin_ = True

    def nop(self):
        self.mc.ori(0, 0, 0)