File: regalloc.py

package info (click to toggle)
pypy 7.0.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 107,216 kB
  • sloc: python: 1,201,787; ansic: 62,419; asm: 5,169; cpp: 3,017; sh: 2,534; makefile: 545; xml: 243; lisp: 45; awk: 4
file content (1566 lines) | stat: -rw-r--r-- 66,606 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566

""" Register allocation scheme.
"""

from rpython.jit.backend.llsupport import symbolic
from rpython.jit.backend.llsupport.descr import CallDescr, unpack_arraydescr
from rpython.jit.backend.llsupport.gcmap import allocate_gcmap
from rpython.jit.backend.llsupport.regalloc import (FrameManager, BaseRegalloc,
     RegisterManager, TempVar, compute_vars_longevity, is_comparison_or_ovf_op,
     valid_addressing_size, get_scale, SAVE_DEFAULT_REGS, SAVE_GCREF_REGS,
     SAVE_ALL_REGS)
from rpython.jit.backend.x86 import rx86
from rpython.jit.backend.x86.arch import (WORD, JITFRAME_FIXED_SIZE, IS_X86_32,
    IS_X86_64, DEFAULT_FRAME_BYTES)
from rpython.jit.backend.x86.jump import remap_frame_layout_mixed
from rpython.jit.backend.x86.regloc import (FrameLoc, RegLoc, ConstFloatLoc,
    FloatImmedLoc, ImmedLoc, imm, imm0, imm1, ecx, eax, edx, ebx, esi, edi,
    ebp, r8, r9, r10, r11, r12, r13, r14, r15, xmm0, xmm1, xmm2, xmm3, xmm4,
    xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14,
    X86_64_SCRATCH_REG, X86_64_XMM_SCRATCH_REG)
from rpython.jit.backend.x86.vector_ext import VectorRegallocMixin
from rpython.jit.codewriter import longlong
from rpython.jit.codewriter.effectinfo import EffectInfo
from rpython.jit.metainterp.history import (Const, ConstInt, ConstPtr,
    ConstFloat, INT, REF, FLOAT, VECTOR, TargetToken, AbstractFailDescr)
from rpython.jit.metainterp.resoperation import rop
from rpython.jit.metainterp.resume import AccumInfo
from rpython.rlib import rgc
from rpython.rlib.objectmodel import we_are_translated
from rpython.rlib.rarithmetic import r_longlong, r_uint
from rpython.rtyper.lltypesystem import lltype, rffi, rstr
from rpython.rtyper.lltypesystem.lloperation import llop
from rpython.jit.backend.x86.regloc import AddressLoc


class X86RegisterManager(RegisterManager):
    box_types = [INT, REF]
    all_regs = [ecx, eax, edx, ebx, esi, edi]
    no_lower_byte_regs = [esi, edi]
    save_around_call_regs = [eax, edx, ecx]
    frame_reg = ebp

    def call_result_location(self, v):
        return eax

    def convert_to_imm(self, c):
        if isinstance(c, ConstInt):
            return imm(c.value)
        elif isinstance(c, ConstPtr):
            if we_are_translated() and c.value and rgc.can_move(c.value):
                not_implemented("convert_to_imm: ConstPtr needs special care")
            return imm(rffi.cast(lltype.Signed, c.value))
        else:
            not_implemented("convert_to_imm: got a %s" % c)

class X86_64_RegisterManager(X86RegisterManager):
    # r11 omitted because it's used as scratch
    all_regs = [ecx, eax, edx, ebx, esi, edi, r8, r9, r10, r12, r13, r14, r15]

    no_lower_byte_regs = []
    save_around_call_regs = [eax, ecx, edx, esi, edi, r8, r9, r10]

class X86XMMRegisterManager(RegisterManager):
    box_types = [FLOAT, INT] # yes INT!
    all_regs = [xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7]
    # we never need lower byte I hope
    save_around_call_regs = all_regs

    def convert_to_imm(self, c):
        adr = self.assembler.datablockwrapper.malloc_aligned(8, 8)
        x = c.getfloatstorage()
        rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[0] = x
        return ConstFloatLoc(adr)

    def convert_to_imm_16bytes_align(self, c):
        adr = self.assembler.datablockwrapper.malloc_aligned(16, 16)
        x = c.getfloatstorage()
        y = longlong.ZEROF
        rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[0] = x
        rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[1] = y
        return ConstFloatLoc(adr)

    def expand_float(self, size, const):
        if size == 4:
            loc = self.expand_single_float(const)
        else:
            loc = self.expand_double_float(const)
        return loc

    def expand_double_float(self, f):
        adr = self.assembler.datablockwrapper.malloc_aligned(16, 16)
        fs = f.getfloatstorage()
        rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[0] = fs
        rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[1] = fs
        return ConstFloatLoc(adr)

    def expand_single_float(self, f):
        adr = self.assembler.datablockwrapper.malloc_aligned(16, 16)
        fs = rffi.cast(lltype.SingleFloat, f.getfloatstorage())
        rffi.cast(rffi.CArrayPtr(lltype.SingleFloat), adr)[0] = fs
        rffi.cast(rffi.CArrayPtr(lltype.SingleFloat), adr)[1] = fs
        rffi.cast(rffi.CArrayPtr(lltype.SingleFloat), adr)[2] = fs
        rffi.cast(rffi.CArrayPtr(lltype.SingleFloat), adr)[3] = fs
        return ConstFloatLoc(adr)

    def call_result_location(self, v):
        return xmm0

class X86_64_XMMRegisterManager(X86XMMRegisterManager):
    # xmm15 reserved for scratch use
    all_regs = [xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14]
    save_around_call_regs = all_regs

class X86FrameManager(FrameManager):
    def __init__(self, base_ofs):
        FrameManager.__init__(self)
        self.base_ofs = base_ofs

    def frame_pos(self, i, box_type):
        return FrameLoc(i, get_ebp_ofs(self.base_ofs, i), box_type)

    @staticmethod
    def frame_size(box_type):
        if IS_X86_32 and box_type == FLOAT:
            return 2
        else:
            return 1

    @staticmethod
    def get_loc_index(loc):
        assert isinstance(loc, FrameLoc)
        return loc.position

if WORD == 4:
    gpr_reg_mgr_cls = X86RegisterManager
    xmm_reg_mgr_cls = X86XMMRegisterManager
elif WORD == 8:
    gpr_reg_mgr_cls = X86_64_RegisterManager
    xmm_reg_mgr_cls = X86_64_XMMRegisterManager
else:
    raise AssertionError("Word size should be 4 or 8")

gpr_reg_mgr_cls.all_reg_indexes = [-1] * WORD * 2 # eh, happens to be true
for _i, _reg in enumerate(gpr_reg_mgr_cls.all_regs):
    gpr_reg_mgr_cls.all_reg_indexes[_reg.value] = _i


class RegAlloc(BaseRegalloc, VectorRegallocMixin):

    def __init__(self, assembler, translate_support_code=False):
        assert isinstance(translate_support_code, bool)
        # variables that have place in register
        self.assembler = assembler
        self.translate_support_code = translate_support_code
        # to be read/used by the assembler too
        self.jump_target_descr = None
        self.final_jump_op = None

    def _prepare(self, inputargs, operations, allgcrefs):
        for box in inputargs:
            assert box.get_forwarded() is None
        cpu = self.assembler.cpu
        self.fm = X86FrameManager(cpu.get_baseofs_of_frame_field())
        operations = cpu.gc_ll_descr.rewrite_assembler(cpu, operations,
                                                       allgcrefs)
        # compute longevity of variables
        longevity, last_real_usage = compute_vars_longevity(
                                                    inputargs, operations)
        self.longevity = longevity
        self.last_real_usage = last_real_usage
        self.rm = gpr_reg_mgr_cls(self.longevity,
                                  frame_manager = self.fm,
                                  assembler = self.assembler)
        self.xrm = xmm_reg_mgr_cls(self.longevity, frame_manager = self.fm,
                                   assembler = self.assembler)
        return operations

    def prepare_loop(self, inputargs, operations, looptoken, allgcrefs):
        operations = self._prepare(inputargs, operations, allgcrefs)
        self._set_initial_bindings(inputargs, looptoken)
        # note: we need to make a copy of inputargs because possibly_free_vars
        # is also used on op args, which is a non-resizable list
        self.possibly_free_vars(list(inputargs))
        if WORD == 4:       # see redirect_call_assembler()
            self.min_bytes_before_label = 5
        else:
            self.min_bytes_before_label = 13
        return operations

    def prepare_bridge(self, inputargs, arglocs, operations, allgcrefs,
                       frame_info):
        operations = self._prepare(inputargs, operations, allgcrefs)
        self._update_bindings(arglocs, inputargs)
        self.min_bytes_before_label = 0
        return operations

    def ensure_next_label_is_at_least_at_position(self, at_least_position):
        self.min_bytes_before_label = max(self.min_bytes_before_label,
                                          at_least_position)

    def get_final_frame_depth(self):
        return self.fm.get_frame_depth()

    def possibly_free_var(self, var):
        if var.type == FLOAT or var.is_vector():
            self.xrm.possibly_free_var(var)
        else:
            self.rm.possibly_free_var(var)

    def possibly_free_vars_for_op(self, op):
        for i in range(op.numargs()):
            var = op.getarg(i)
            if var is not None: # xxx kludgy
                self.possibly_free_var(var)
        if op.type != 'v':
            self.possibly_free_var(op)

    def possibly_free_vars(self, vars):
        for var in vars:
            if var is not None: # xxx kludgy
                self.possibly_free_var(var)

    def make_sure_var_in_reg(self, var, forbidden_vars=[],
                             selected_reg=None, need_lower_byte=False):
        if var.type == FLOAT or var.is_vector():
            if isinstance(var, ConstFloat):
                return FloatImmedLoc(var.getfloatstorage())
            return self.xrm.make_sure_var_in_reg(var, forbidden_vars,
                                                 selected_reg, need_lower_byte)
        else:
            return self.rm.make_sure_var_in_reg(var, forbidden_vars,
                                                selected_reg, need_lower_byte)

    def force_allocate_reg(self, var, forbidden_vars=[], selected_reg=None,
                           need_lower_byte=False):
        if var.type == FLOAT or var.is_vector():
            return self.xrm.force_allocate_reg(var, forbidden_vars,
                                               selected_reg, need_lower_byte)
        else:
            return self.rm.force_allocate_reg(var, forbidden_vars,
                                              selected_reg, need_lower_byte)

    def force_allocate_reg_or_cc(self, var):
        assert var.type == INT
        if self.next_op_can_accept_cc(self.operations, self.rm.position):
            # hack: return the ebp location to mean "lives in CC".  This
            # ebp will not actually be used, and the location will be freed
            # after the next op as usual.
            self.rm.force_allocate_frame_reg(var)
            return ebp
        else:
            # else, return a regular register (not ebp).
            return self.rm.force_allocate_reg(var, need_lower_byte=True)

    def force_spill_var(self, var):
        if var.type == FLOAT:
            return self.xrm.force_spill_var(var)
        else:
            return self.rm.force_spill_var(var)

    def load_xmm_aligned_16_bytes(self, var, forbidden_vars=[]):
        # Load 'var' in a register; but if it is a constant, we can return
        # a 16-bytes-aligned ConstFloatLoc.
        if isinstance(var, Const):
            return self.xrm.convert_to_imm_16bytes_align(var)
        else:
            return self.xrm.make_sure_var_in_reg(var, forbidden_vars)

    def _update_bindings(self, locs, inputargs):
        # XXX this should probably go to llsupport/regalloc.py
        used = {}
        i = 0
        for loc in locs:
            if loc is None: # xxx bit kludgy
                loc = ebp
            arg = inputargs[i]
            i += 1
            if isinstance(loc, RegLoc):
                if arg.type == FLOAT:
                    self.xrm.reg_bindings[arg] = loc
                    used[loc] = None
                else:
                    if loc is ebp:
                        self.rm.bindings_to_frame_reg[arg] = None
                    else:
                        self.rm.reg_bindings[arg] = loc
                        used[loc] = None
            else:
                self.fm.bind(arg, loc)
        self.rm.free_regs = []
        for reg in self.rm.all_regs:
            if reg not in used:
                self.rm.free_regs.append(reg)
        self.xrm.free_regs = []
        for reg in self.xrm.all_regs:
            if reg not in used:
                self.xrm.free_regs.append(reg)
        self.possibly_free_vars(list(inputargs))
        self.fm.finish_binding()
        self.rm._check_invariants()
        self.xrm._check_invariants()

    def perform(self, op, arglocs, result_loc):
        if not we_are_translated():
            self.assembler.dump('%s <- %s(%s)' % (result_loc, op, arglocs))
        self.assembler.regalloc_perform(op, arglocs, result_loc)

    def perform_llong(self, op, arglocs, result_loc):
        if not we_are_translated():
            self.assembler.dump('%s <- %s(%s)' % (result_loc, op, arglocs))
        self.assembler.regalloc_perform_llong(op, arglocs, result_loc)

    def perform_math(self, op, arglocs, result_loc):
        if not we_are_translated():
            self.assembler.dump('%s <- %s(%s)' % (result_loc, op, arglocs))
        self.assembler.regalloc_perform_math(op, arglocs, result_loc)

    def locs_for_fail(self, guard_op):
        faillocs = [self.loc(arg) for arg in guard_op.getfailargs()]
        descr = guard_op.getdescr()
        if not descr:
            return faillocs
        assert isinstance(descr, AbstractFailDescr)
        if descr.rd_vector_info:
            accuminfo = descr.rd_vector_info
            while accuminfo:
                accuminfo.location = faillocs[accuminfo.getpos_in_failargs()]
                loc = self.loc(accuminfo.getoriginal())
                faillocs[accuminfo.getpos_in_failargs()] = loc
                accuminfo = accuminfo.next()
        return faillocs

    def perform_guard(self, guard_op, arglocs, result_loc):
        faillocs = self.locs_for_fail(guard_op)
        if not we_are_translated():
            if result_loc is not None:
                self.assembler.dump('%s <- %s(%s)' % (result_loc, guard_op,
                                                      arglocs))
            else:
                self.assembler.dump('%s(%s)' % (guard_op, arglocs))
        self.assembler.regalloc_perform_guard(guard_op, faillocs, arglocs,
                                              result_loc,
                                              self.fm.get_frame_depth())
        self.possibly_free_vars(guard_op.getfailargs())

    def perform_discard(self, op, arglocs):
        if not we_are_translated():
            self.assembler.dump('%s(%s)' % (op, arglocs))
        self.assembler.regalloc_perform_discard(op, arglocs)

    def walk_operations(self, inputargs, operations):
        i = 0
        self.operations = operations
        while i < len(operations):
            op = operations[i]
            self.assembler.mc.mark_op(op)
            assert self.assembler.mc._frame_size == DEFAULT_FRAME_BYTES
            self.rm.position = i
            self.xrm.position = i
            if rop.has_no_side_effect(op.opnum) and op not in self.longevity:
                i += 1
                self.possibly_free_vars_for_op(op)
                continue
            if not we_are_translated() and op.getopnum() == rop.FORCE_SPILL:
                self._consider_force_spill(op)
            else:
                oplist[op.getopnum()](self, op)
            self.possibly_free_vars_for_op(op)
            self.rm._check_invariants()
            self.xrm._check_invariants()
            i += 1
        assert not self.rm.reg_bindings
        assert not self.xrm.reg_bindings
        if not we_are_translated():
            self.assembler.mc.UD2()
        self.flush_loop()
        self.assembler.mc.mark_op(None) # end of the loop
        self.operations = None
        for arg in inputargs:
            self.possibly_free_var(arg)

    def flush_loop(self):
        # Force the code to be aligned to a multiple of 16.  Also,
        # rare case: if the loop is too short, or if we are just after
        # a GUARD_NOT_INVALIDATED, we need to make sure we insert enough
        # NOPs.  This is important to ensure that there are enough bytes
        # produced, because GUARD_NOT_INVALIDATED or
        # redirect_call_assembler() will maybe overwrite them.  (In that
        # rare case we don't worry too much about alignment.)
        mc = self.assembler.mc
        current_pos = mc.get_relative_pos()
        target_pos = (current_pos + 15) & ~15
        target_pos = max(target_pos, self.min_bytes_before_label)
        insert_nops = target_pos - current_pos
        assert 0 <= insert_nops <= 15
        for c in mc.MULTIBYTE_NOPs[insert_nops]:
            mc.writechar(c)

    def loc(self, v):
        if v is None: # xxx kludgy
            return None
        if v.type == FLOAT or v.is_vector():
            return self.xrm.loc(v)
        return self.rm.loc(v)

    def load_condition_into_cc(self, box):
        if self.assembler.guard_success_cc == rx86.cond_none:
            self.assembler.test_location(self.loc(box))
            self.assembler.guard_success_cc = rx86.Conditions['NZ']


    def _consider_guard_cc(self, op):
        arg = op.getarg(0)
        self.load_condition_into_cc(arg)
        self.perform_guard(op, [], None)

    consider_guard_true = _consider_guard_cc
    consider_guard_false = _consider_guard_cc
    consider_guard_nonnull = _consider_guard_cc
    consider_guard_isnull = _consider_guard_cc

    def consider_finish(self, op):
        # the frame is in ebp, but we have to point where in the frame is
        # the potential argument to FINISH
        if op.numargs() == 1:
            loc = self.make_sure_var_in_reg(op.getarg(0))
            locs = [loc]
        else:
            locs = []
        self.perform(op, locs, None)

    def consider_guard_no_exception(self, op):
        self.perform_guard(op, [], None)

    def consider_guard_not_invalidated(self, op):
        mc = self.assembler.mc
        n = mc.get_relative_pos(break_basic_block=False)
        self.perform_guard(op, [], None)
        assert n == mc.get_relative_pos(break_basic_block=False)
        # ensure that the next label is at least 5 bytes farther than
        # the current position.  Otherwise, when invalidating the guard,
        # we would overwrite randomly the next label's position.
        self.ensure_next_label_is_at_least_at_position(n + 5)

    def consider_guard_exception(self, op):
        loc = self.rm.make_sure_var_in_reg(op.getarg(0))
        box = TempVar()
        args = op.getarglist()
        loc1 = self.rm.force_allocate_reg(box, args)
        if op in self.longevity:
            # this means, is it ever used
            resloc = self.rm.force_allocate_reg(op, args + [box])
        else:
            resloc = None
        self.perform_guard(op, [loc, loc1], resloc)
        self.rm.possibly_free_var(box)

    def consider_save_exception(self, op):
        resloc = self.rm.force_allocate_reg(op)
        self.perform(op, [], resloc)
    consider_save_exc_class = consider_save_exception

    def consider_restore_exception(self, op):
        args = op.getarglist()
        loc0 = self.rm.make_sure_var_in_reg(op.getarg(0), args)  # exc class
        loc1 = self.rm.make_sure_var_in_reg(op.getarg(1), args)  # exc instance
        self.perform_discard(op, [loc0, loc1])

    consider_guard_no_overflow = consider_guard_no_exception
    consider_guard_overflow    = consider_guard_no_exception
    consider_guard_not_forced  = consider_guard_no_exception

    def consider_guard_value(self, op):
        x = self.make_sure_var_in_reg(op.getarg(0))
        loc = self.assembler.cpu.all_reg_indexes[x.value]
        op.getdescr().make_a_counter_per_value(op, loc)
        y = self.loc(op.getarg(1))
        self.perform_guard(op, [x, y], None)

    def consider_guard_class(self, op):
        assert not isinstance(op.getarg(0), Const)
        x = self.rm.make_sure_var_in_reg(op.getarg(0))
        y = self.loc(op.getarg(1))
        self.perform_guard(op, [x, y], None)

    consider_guard_nonnull_class = consider_guard_class
    consider_guard_gc_type = consider_guard_class

    def consider_guard_is_object(self, op):
        x = self.make_sure_var_in_reg(op.getarg(0))
        tmp_box = TempVar()
        y = self.rm.force_allocate_reg(tmp_box, [op.getarg(0)])
        self.rm.possibly_free_var(tmp_box)
        self.perform_guard(op, [x, y], None)

    def consider_guard_subclass(self, op):
        x = self.make_sure_var_in_reg(op.getarg(0))
        tmp_box = TempVar()
        z = self.rm.force_allocate_reg(tmp_box, [op.getarg(0)])
        y = self.loc(op.getarg(1))
        self.rm.possibly_free_var(tmp_box)
        self.perform_guard(op, [x, y, z], None)

    def _consider_binop_part(self, op, symm=False):
        x = op.getarg(0)
        y = op.getarg(1)
        argloc = self.loc(y)
        #
        # For symmetrical operations, if 'y' is already in a register
        # and won't be used after the current operation finishes,
        # then swap the role of 'x' and 'y'
        if (symm and isinstance(argloc, RegLoc) and
                self.rm.longevity[y][1] == self.rm.position):
            x, y = y, x
            argloc = self.loc(y)
        #
        args = op.getarglist()
        loc = self.rm.force_result_in_reg(op, x, args)
        return loc, argloc

    def _consider_binop(self, op):
        loc, argloc = self._consider_binop_part(op)
        self.perform(op, [loc, argloc], loc)

    def _consider_binop_symm(self, op):
        loc, argloc = self._consider_binop_part(op, symm=True)
        self.perform(op, [loc, argloc], loc)

    def _consider_lea(self, op, loc):
        argloc = self.loc(op.getarg(1))
        resloc = self.force_allocate_reg(op)
        self.perform(op, [loc, argloc], resloc)

    def consider_int_add(self, op):
        loc = self.loc(op.getarg(0))
        y = op.getarg(1)
        if (isinstance(loc, RegLoc) and
            isinstance(y, ConstInt) and rx86.fits_in_32bits(y.value)):
            self._consider_lea(op, loc)
        else:
            self._consider_binop_symm(op)

    consider_nursery_ptr_increment = consider_int_add

    def consider_int_sub(self, op):
        loc = self.loc(op.getarg(0))
        y = op.getarg(1)
        if (isinstance(loc, RegLoc) and
            isinstance(y, ConstInt) and rx86.fits_in_32bits(-y.value)):
            self._consider_lea(op, loc)
        else:
            self._consider_binop(op)

    consider_int_mul = _consider_binop_symm
    consider_int_and = _consider_binop_symm
    consider_int_or  = _consider_binop_symm
    consider_int_xor = _consider_binop_symm

    consider_int_mul_ovf = _consider_binop_symm
    consider_int_sub_ovf = _consider_binop
    consider_int_add_ovf = _consider_binop_symm

    def consider_uint_mul_high(self, op):
        arg1, arg2 = op.getarglist()
        # should support all cases, but is optimized for (box, const)
        if isinstance(arg1, Const):
            arg1, arg2 = arg2, arg1
        self.rm.make_sure_var_in_reg(arg2, selected_reg=eax)
        l1 = self.loc(arg1)
        # l1 is a register != eax, or stack_bp; or, just possibly, it
        # can be == eax if arg1 is arg2
        assert not isinstance(l1, ImmedLoc)
        assert l1 is not eax or arg1 is arg2
        #
        # eax will be trash after the operation
        self.rm.possibly_free_var(arg2)
        tmpvar = TempVar()
        self.rm.force_allocate_reg(tmpvar, selected_reg=eax)
        self.rm.possibly_free_var(tmpvar)
        #
        self.rm.force_allocate_reg(op, selected_reg=edx)
        self.perform(op, [l1], edx)

    def consider_int_neg(self, op):
        res = self.rm.force_result_in_reg(op, op.getarg(0))
        self.perform(op, [res], res)

    consider_int_invert = consider_int_neg

    def consider_int_signext(self, op):
        argloc = self.loc(op.getarg(0))
        numbytesloc = self.loc(op.getarg(1))
        resloc = self.force_allocate_reg(op)
        self.perform(op, [argloc, numbytesloc], resloc)

    def consider_int_lshift(self, op):
        if isinstance(op.getarg(1), Const):
            loc2 = self.rm.convert_to_imm(op.getarg(1))
        else:
            loc2 = self.rm.make_sure_var_in_reg(op.getarg(1), selected_reg=ecx)
        args = op.getarglist()
        loc1 = self.rm.force_result_in_reg(op, op.getarg(0), args)
        self.perform(op, [loc1, loc2], loc1)

    consider_int_rshift  = consider_int_lshift
    consider_uint_rshift = consider_int_lshift

    def _consider_compop(self, op):
        vx = op.getarg(0)
        vy = op.getarg(1)
        arglocs = [self.loc(vx), self.loc(vy)]
        args = op.getarglist()
        if (vx in self.rm.reg_bindings or vy in self.rm.reg_bindings or
            isinstance(vx, Const) or isinstance(vy, Const)):
            pass
        else:
            arglocs[0] = self.rm.make_sure_var_in_reg(vx)
        loc = self.force_allocate_reg_or_cc(op)
        self.perform(op, arglocs, loc)

    consider_int_lt = _consider_compop
    consider_int_gt = _consider_compop
    consider_int_ge = _consider_compop
    consider_int_le = _consider_compop
    consider_int_ne = _consider_compop
    consider_int_eq = _consider_compop
    consider_uint_gt = _consider_compop
    consider_uint_lt = _consider_compop
    consider_uint_le = _consider_compop
    consider_uint_ge = _consider_compop
    consider_ptr_eq = consider_instance_ptr_eq = _consider_compop
    consider_ptr_ne = consider_instance_ptr_ne = _consider_compop

    def _consider_float_op(self, op):
        loc1 = self.xrm.loc(op.getarg(1))
        args = op.getarglist()
        loc0 = self.xrm.force_result_in_reg(op, op.getarg(0), args)
        self.perform(op, [loc0, loc1], loc0)

    consider_float_add = _consider_float_op      # xxx could be _symm
    consider_float_sub = _consider_float_op
    consider_float_mul = _consider_float_op      # xxx could be _symm
    consider_float_truediv = _consider_float_op

    def _consider_float_cmp(self, op):
        vx = op.getarg(0)
        vy = op.getarg(1)
        arglocs = [self.loc(vx), self.loc(vy)]
        if not (isinstance(arglocs[0], RegLoc) or
                isinstance(arglocs[1], RegLoc)):
            if isinstance(vx, Const):
                arglocs[1] = self.xrm.make_sure_var_in_reg(vy)
            else:
                arglocs[0] = self.xrm.make_sure_var_in_reg(vx)
        loc = self.force_allocate_reg_or_cc(op)
        self.perform(op, arglocs, loc)

    consider_float_lt = _consider_float_cmp
    consider_float_le = _consider_float_cmp
    consider_float_eq = _consider_float_cmp
    consider_float_ne = _consider_float_cmp
    consider_float_gt = _consider_float_cmp
    consider_float_ge = _consider_float_cmp

    def _consider_float_unary_op(self, op):
        loc0 = self.xrm.force_result_in_reg(op, op.getarg(0))
        self.perform(op, [loc0], loc0)

    consider_float_neg = _consider_float_unary_op
    consider_float_abs = _consider_float_unary_op

    def consider_cast_float_to_int(self, op):
        loc0 = self.xrm.make_sure_var_in_reg(op.getarg(0))
        loc1 = self.rm.force_allocate_reg(op)
        self.perform(op, [loc0], loc1)

    def consider_cast_int_to_float(self, op):
        loc0 = self.rm.make_sure_var_in_reg(op.getarg(0))
        loc1 = self.xrm.force_allocate_reg(op)
        self.perform(op, [loc0], loc1)

    def consider_cast_float_to_singlefloat(self, op):
        loc0 = self.xrm.make_sure_var_in_reg(op.getarg(0))
        loc1 = self.rm.force_allocate_reg(op)
        tmpxvar = TempVar()
        loctmp = self.xrm.force_allocate_reg(tmpxvar)   # may be equal to loc0
        self.xrm.possibly_free_var(tmpxvar)
        self.perform(op, [loc0, loctmp], loc1)

    consider_cast_singlefloat_to_float = consider_cast_int_to_float

    def consider_convert_float_bytes_to_longlong(self, op):
        if longlong.is_64_bit:
            loc0 = self.xrm.make_sure_var_in_reg(op.getarg(0))
            loc1 = self.rm.force_allocate_reg(op)
            self.perform(op, [loc0], loc1)
        else:
            arg0 = op.getarg(0)
            loc0 = self.xrm.loc(arg0)
            loc1 = self.xrm.force_allocate_reg(op, forbidden_vars=[arg0])
            self.perform(op, [loc0], loc1)

    def consider_convert_longlong_bytes_to_float(self, op):
        if longlong.is_64_bit:
            loc0 = self.rm.make_sure_var_in_reg(op.getarg(0))
            loc1 = self.xrm.force_allocate_reg(op)
            self.perform(op, [loc0], loc1)
        else:
            arg0 = op.getarg(0)
            loc0 = self.xrm.make_sure_var_in_reg(arg0)
            loc1 = self.xrm.force_allocate_reg(op, forbidden_vars=[arg0])
            self.perform(op, [loc0], loc1)

    def _consider_llong_binop_xx(self, op):
        # must force both arguments into xmm registers, because we don't
        # know if they will be suitably aligned.  Exception: if the second
        # argument is a constant, we can ask it to be aligned to 16 bytes.
        # xxx some of these operations could be '_symm'.
        args = [op.getarg(1), op.getarg(2)]
        loc1 = self.load_xmm_aligned_16_bytes(args[1])
        loc0 = self.xrm.force_result_in_reg(op, args[0], args)
        self.perform_llong(op, [loc0, loc1], loc0)

    def _consider_llong_eq_ne_xx(self, op):
        # must force both arguments into xmm registers, because we don't
        # know if they will be suitably aligned.  Exception: if they are
        # constants, we can ask them to be aligned to 16 bytes.
        args = [op.getarg(1), op.getarg(2)]
        loc1 = self.load_xmm_aligned_16_bytes(args[0])
        loc2 = self.load_xmm_aligned_16_bytes(args[1], args)
        tmpxvar = TempVar()
        loc3 = self.xrm.force_allocate_reg(tmpxvar, args)
        self.xrm.possibly_free_var(tmpxvar)
        loc0 = self.rm.force_allocate_reg(op, need_lower_byte=True)
        self.perform_llong(op, [loc1, loc2, loc3], loc0)

    def _maybe_consider_llong_lt(self, op):
        # XXX just a special case for now
        box = op.getarg(2)
        if not isinstance(box, ConstFloat):
            return False
        if box.getfloat() != 0.0:    # NaNs are also != 0.0
            return False
        # "x < 0.0" or maybe "x < -0.0" which is the same
        box = op.getarg(1)
        assert box.type == FLOAT
        loc1 = self.xrm.make_sure_var_in_reg(box)
        loc0 = self.rm.force_allocate_reg(op)
        self.perform_llong(op, [loc1], loc0)
        return True

    def _consider_llong_to_int(self, op):
        # accept an argument in a xmm register or in the stack
        loc1 = self.xrm.loc(op.getarg(1))
        loc0 = self.rm.force_allocate_reg(op)
        self.perform_llong(op, [loc1], loc0)

    def _loc_of_const_longlong(self, value64):
        c = ConstFloat(value64)
        return self.xrm.convert_to_imm(c)

    def _consider_llong_from_int(self, op):
        assert IS_X86_32
        loc0 = self.xrm.force_allocate_reg(op)
        box = op.getarg(1)
        if isinstance(box, ConstInt):
            loc1 = self._loc_of_const_longlong(r_longlong(box.value))
            loc2 = None    # unused
        else:
            loc1 = self.rm.make_sure_var_in_reg(box)
            tmpxvar = TempVar()
            loc2 = self.xrm.force_allocate_reg(tmpxvar, [op])
            self.xrm.possibly_free_var(tmpxvar)
        self.perform_llong(op, [loc1, loc2], loc0)

    def _consider_llong_from_uint(self, op):
        assert IS_X86_32
        loc0 = self.xrm.force_allocate_reg(op)
        loc1 = self.rm.make_sure_var_in_reg(op.getarg(1))
        self.perform_llong(op, [loc1], loc0)

    def _consider_math_sqrt(self, op):
        loc0 = self.xrm.force_result_in_reg(op, op.getarg(1))
        self.perform_math(op, [loc0], loc0)

    def _consider_threadlocalref_get(self, op):
        if self.translate_support_code:
            offset = op.getarg(1).getint()   # getarg(0) == 'threadlocalref_get'
            calldescr = op.getdescr()
            size = calldescr.get_result_size()
            sign = calldescr.is_result_signed()
            resloc = self.force_allocate_reg(op)
            self.assembler.threadlocalref_get(offset, resloc, size, sign)
        else:
            self._consider_call(op)

    def _call(self, op, arglocs, gc_level):
        # we need to save registers on the stack:
        #
        #  - at least the non-callee-saved registers
        #    (gc_level == SAVE_DEFAULT_REGS)
        #
        #  - if gc_level == SAVE_GCREF_REGS we save also the callee-saved
        #    registers that contain GC pointers
        #
        #  - gc_level == SAVE_ALL_REGS for CALL_MAY_FORCE or CALL_ASSEMBLER.  We
        #    have to save all regs anyway, in case we need to do
        #    cpu.force().  The issue is that grab_frame_values() would
        #    not be able to locate values in callee-saved registers.
        #
        if gc_level == SAVE_ALL_REGS:
            save_all_regs = SAVE_ALL_REGS
        else:
            save_all_regs = SAVE_DEFAULT_REGS
        self.xrm.before_call(save_all_regs=save_all_regs)
        if gc_level == SAVE_GCREF_REGS:
            gcrootmap = self.assembler.cpu.gc_ll_descr.gcrootmap
            # we save all the GCREF registers for shadowstack and asmgcc for now
            # --- for asmgcc too: we can't say "register x is a gc ref"
            # without distinguishing call sites, which we don't do any
            # more for now.
            if gcrootmap: # and gcrootmap.is_shadow_stack:
                save_all_regs = SAVE_GCREF_REGS
        self.rm.before_call(save_all_regs=save_all_regs)
        if op.type != 'v':
            if op.type == FLOAT:
                resloc = self.xrm.after_call(op)
            else:
                resloc = self.rm.after_call(op)
        else:
            resloc = None
        self.perform(op, arglocs, resloc)

    def _consider_call(self, op, guard_not_forced=False, first_arg_index=1):
        calldescr = op.getdescr()
        assert isinstance(calldescr, CallDescr)
        assert len(calldescr.arg_classes) == op.numargs() - first_arg_index
        size = calldescr.get_result_size()
        sign = calldescr.is_result_signed()
        if sign:
            sign_loc = imm1
        else:
            sign_loc = imm0
        #
        effectinfo = calldescr.get_extra_info()
        if guard_not_forced:
            gc_level = SAVE_ALL_REGS
        elif effectinfo is None or effectinfo.check_can_collect():
            gc_level = SAVE_GCREF_REGS
        else:
            gc_level = SAVE_DEFAULT_REGS
        #
        self._call(op, [imm(size), sign_loc] +
                       [self.loc(op.getarg(i)) for i in range(op.numargs())],
                   gc_level=gc_level)

    def _consider_real_call(self, op):
        effectinfo = op.getdescr().get_extra_info()
        assert effectinfo is not None
        oopspecindex = effectinfo.oopspecindex
        if oopspecindex != EffectInfo.OS_NONE:
            if IS_X86_32:
                # support for some of the llong operations,
                # which only exist on x86-32
                if oopspecindex in (EffectInfo.OS_LLONG_ADD,
                                    EffectInfo.OS_LLONG_SUB,
                                    EffectInfo.OS_LLONG_AND,
                                    EffectInfo.OS_LLONG_OR,
                                    EffectInfo.OS_LLONG_XOR):
                    return self._consider_llong_binop_xx(op)
                if oopspecindex == EffectInfo.OS_LLONG_TO_INT:
                    return self._consider_llong_to_int(op)
                if oopspecindex == EffectInfo.OS_LLONG_FROM_INT:
                    return self._consider_llong_from_int(op)
                if oopspecindex == EffectInfo.OS_LLONG_FROM_UINT:
                    return self._consider_llong_from_uint(op)
                if (oopspecindex == EffectInfo.OS_LLONG_EQ or
                    oopspecindex == EffectInfo.OS_LLONG_NE):
                    return self._consider_llong_eq_ne_xx(op)
                if oopspecindex == EffectInfo.OS_LLONG_LT:
                    if self._maybe_consider_llong_lt(op):
                        return
            if oopspecindex == EffectInfo.OS_MATH_SQRT:
                return self._consider_math_sqrt(op)
            if oopspecindex == EffectInfo.OS_THREADLOCALREF_GET:
                return self._consider_threadlocalref_get(op)
            if oopspecindex == EffectInfo.OS_MATH_READ_TIMESTAMP:
                return self._consider_math_read_timestamp(op)
        self._consider_call(op)
    consider_call_i = _consider_real_call
    consider_call_r = _consider_real_call
    consider_call_f = _consider_real_call
    consider_call_n = _consider_real_call

    def _consider_call_may_force(self, op):
        self._consider_call(op, guard_not_forced=True)
    consider_call_may_force_i = _consider_call_may_force
    consider_call_may_force_r = _consider_call_may_force
    consider_call_may_force_f = _consider_call_may_force
    consider_call_may_force_n = _consider_call_may_force

    def _consider_call_release_gil(self, op):
        # [Const(save_err), func_addr, args...]
        self._consider_call(op, guard_not_forced=True, first_arg_index=2)
    consider_call_release_gil_i = _consider_call_release_gil
    consider_call_release_gil_f = _consider_call_release_gil
    consider_call_release_gil_n = _consider_call_release_gil

    def consider_check_memory_error(self, op):
        x = self.rm.make_sure_var_in_reg(op.getarg(0))
        self.perform_discard(op, [x])

    def _consider_call_assembler(self, op):
        locs = self.locs_for_call_assembler(op)
        self._call(op, locs, gc_level=SAVE_ALL_REGS)
    consider_call_assembler_i = _consider_call_assembler
    consider_call_assembler_r = _consider_call_assembler
    consider_call_assembler_f = _consider_call_assembler
    consider_call_assembler_n = _consider_call_assembler

    def consider_cond_call_gc_wb(self, op):
        assert op.type == 'v'
        args = op.getarglist()
        N = len(args)
        # we force all arguments in a reg (unless they are Consts),
        # because it will be needed anyway by the following gc_load
        # It avoids loading it twice from the memory.
        arglocs = [self.rm.make_sure_var_in_reg(op.getarg(i), args)
                   for i in range(N)]
        self.perform_discard(op, arglocs)

    consider_cond_call_gc_wb_array = consider_cond_call_gc_wb

    def consider_cond_call(self, op):
        # A 32-bit-only, asmgcc-only issue: 'cond_call_register_arguments'
        # contains edi and esi, which are also in asmgcroot.py:ASM_FRAMEDATA.
        # We must make sure that edi and esi do not contain GC pointers.
        if IS_X86_32 and self.assembler._is_asmgcc():
            for box, loc in self.rm.reg_bindings.items():
                if (loc == edi or loc == esi) and box.type == REF:
                    self.rm.force_spill_var(box)
                    assert box not in self.rm.reg_bindings
        #
        args = op.getarglist()
        assert 2 <= len(args) <= 4 + 2     # maximum 4 arguments
        v_func = args[1]
        assert isinstance(v_func, Const)
        imm_func = self.rm.convert_to_imm(v_func)

        # Delicate ordering here.  First get the argument's locations.
        # If this also contains args[0], this returns the current
        # location too.
        arglocs = [self.loc(args[i]) for i in range(2, len(args))]

        if op.type == 'v':
            # a plain COND_CALL.  Calls the function when args[0] is
            # true.  Often used just after a comparison operation.
            gcmap = self.get_gcmap()
            self.load_condition_into_cc(op.getarg(0))
            resloc = None
        else:
            # COND_CALL_VALUE_I/R.  Calls the function when args[0]
            # is equal to 0 or NULL.  Returns the result from the
            # function call if done, or args[0] if it was not 0/NULL.
            # Implemented by forcing the result to live in the same
            # register as args[0], and overwriting it if we really do
            # the call.

            # Load the register for the result.  Possibly reuse 'args[0]'.
            # But the old value of args[0], if it survives, is first
            # spilled away.  We can't overwrite any of op.args[2:] here.
            resloc = self.rm.force_result_in_reg(op, args[0],
                                                 forbidden_vars=args[2:])

            # Get the gcmap here, possibly including the spilled
            # location, and always excluding the 'resloc' register.
            # Some more details: the only interesting case is the case
            # where we're doing the call (if we are not, the gcmap is
            # not used); and in this case, the gcmap must include the
            # spilled location (it contains a valid GC pointer to fix
            # during the call if a GC occurs), and never 'resloc'
            # (it will be overwritten with the result of the call, which
            # is not computed yet if a GC occurs).
            #
            # (Note that the spilled value is always NULL at the moment
            # if the call really occurs, but it's not worth the effort to
            # not list it in the gcmap and get crashes if we tweak
            # COND_CALL_VALUE_R in the future)
            gcmap = self.get_gcmap([resloc])

            # Test the register for the result.
            self.assembler.test_location(resloc)
            self.assembler.guard_success_cc = rx86.Conditions['Z']

        self.assembler.cond_call(gcmap, imm_func, arglocs, resloc)

    consider_cond_call_value_i = consider_cond_call
    consider_cond_call_value_r = consider_cond_call

    def consider_call_malloc_nursery(self, op):
        size_box = op.getarg(0)
        assert isinstance(size_box, ConstInt)
        size = size_box.getint()
        # hint: try to move unrelated registers away from ecx and edx now
        self.rm.spill_or_move_registers_before_call([ecx, edx])
        # the result will be in ecx
        self.rm.force_allocate_reg(op, selected_reg=ecx)
        #
        # We need edx as a temporary, but otherwise don't save any more
        # register.  See comments in _build_malloc_slowpath().
        tmp_box = TempVar()
        self.rm.force_allocate_reg(tmp_box, selected_reg=edx)
        gcmap = self.get_gcmap([ecx, edx]) # allocate the gcmap *before*
        self.rm.possibly_free_var(tmp_box)
        #
        gc_ll_descr = self.assembler.cpu.gc_ll_descr
        self.assembler.malloc_cond(
            gc_ll_descr.get_nursery_free_addr(),
            gc_ll_descr.get_nursery_top_addr(),
            size, gcmap)

    def consider_call_malloc_nursery_varsize_frame(self, op):
        size_box = op.getarg(0)
        assert not isinstance(size_box, Const) # we cannot have a const here!
        # sizeloc must be in a register, but we can free it now
        # (we take care explicitly of conflicts with ecx or edx)
        sizeloc = self.rm.make_sure_var_in_reg(size_box)
        self.rm.spill_or_move_registers_before_call([ecx, edx])  # sizeloc safe
        self.rm.possibly_free_var(size_box)
        # the result will be in ecx
        self.rm.force_allocate_reg(op, selected_reg=ecx)
        # we need edx as a temporary
        tmp_box = TempVar()
        self.rm.force_allocate_reg(tmp_box, selected_reg=edx)
        gcmap = self.get_gcmap([ecx, edx]) # allocate the gcmap *before*
        self.rm.possibly_free_var(tmp_box)
        #
        gc_ll_descr = self.assembler.cpu.gc_ll_descr
        self.assembler.malloc_cond_varsize_frame(
            gc_ll_descr.get_nursery_free_addr(),
            gc_ll_descr.get_nursery_top_addr(),
            sizeloc, gcmap)

    def consider_call_malloc_nursery_varsize(self, op):
        gc_ll_descr = self.assembler.cpu.gc_ll_descr
        if not hasattr(gc_ll_descr, 'max_size_of_young_obj'):
            raise Exception("unreachable code")
            # for boehm, this function should never be called
        arraydescr = op.getdescr()
        length_box = op.getarg(2)
        assert not isinstance(length_box, Const) # we cannot have a const here!
        # can only use spill_or_move_registers_before_call() as a hint if
        # we are sure that length_box stays alive and won't be freed now
        # (it should always be the case, see below, but better safe than sorry)
        if self.rm.stays_alive(length_box):
            self.rm.spill_or_move_registers_before_call([ecx, edx])
        # the result will be in ecx
        self.rm.force_allocate_reg(op, selected_reg=ecx)
        # we need edx as a temporary
        tmp_box = TempVar()
        self.rm.force_allocate_reg(tmp_box, selected_reg=edx)
        gcmap = self.get_gcmap([ecx, edx]) # allocate the gcmap *before*
        self.rm.possibly_free_var(tmp_box)
        # length_box always survives: it's typically also present in the
        # next operation that will copy it inside the new array.  It's
        # fine to load it from the stack too, as long as it is != ecx, edx.
        lengthloc = self.rm.loc(length_box)
        self.rm.possibly_free_var(length_box)
        #
        itemsize = op.getarg(1).getint()
        maxlength = (gc_ll_descr.max_size_of_young_obj - WORD * 2)
        self.assembler.malloc_cond_varsize(
            op.getarg(0).getint(),
            gc_ll_descr.get_nursery_free_addr(),
            gc_ll_descr.get_nursery_top_addr(),
            lengthloc, itemsize, maxlength, gcmap, arraydescr)

    def get_gcmap(self, forbidden_regs=[], noregs=False):
        frame_depth = self.fm.get_frame_depth()
        gcmap = allocate_gcmap(self.assembler, frame_depth, JITFRAME_FIXED_SIZE)
        for box, loc in self.rm.reg_bindings.iteritems():
            if loc in forbidden_regs:
                continue
            if box.type == REF and self.rm.is_still_alive(box):
                assert not noregs
                assert isinstance(loc, RegLoc)
                val = gpr_reg_mgr_cls.all_reg_indexes[loc.value]
                gcmap[val // WORD // 8] |= r_uint(1) << (val % (WORD * 8))
        for box, loc in self.fm.bindings.iteritems():
            if box.type == REF and self.rm.is_still_alive(box):
                assert isinstance(loc, FrameLoc)
                val = loc.position + JITFRAME_FIXED_SIZE
                gcmap[val // WORD // 8] |= r_uint(1) << (val % (WORD * 8))
        return gcmap

    def consider_gc_store(self, op):
        args = op.getarglist()
        base_loc = self.rm.make_sure_var_in_reg(op.getarg(0), args)
        size_box = op.getarg(3)
        assert isinstance(size_box, ConstInt)
        size = size_box.value
        assert size >= 1
        if size == 1:
            need_lower_byte = True
        else:
            need_lower_byte = False
        value_loc = self.make_sure_var_in_reg(op.getarg(2), args,
                                          need_lower_byte=need_lower_byte)
        ofs_loc = self.rm.make_sure_var_in_reg(op.getarg(1), args)
        self.perform_discard(op, [base_loc, ofs_loc, value_loc,
                                 imm(size)])

    def consider_gc_store_indexed(self, op):
        args = op.getarglist()
        base_loc = self.rm.make_sure_var_in_reg(op.getarg(0), args)
        scale_box = op.getarg(3)
        offset_box = op.getarg(4)
        size_box = op.getarg(5)
        assert isinstance(scale_box, ConstInt)
        assert isinstance(offset_box, ConstInt)
        assert isinstance(size_box, ConstInt)
        factor = scale_box.value
        offset = offset_box.value
        size = size_box.value
        assert size >= 1
        if size == 1:
            need_lower_byte = True
        else:
            need_lower_byte = False
        value_loc = self.make_sure_var_in_reg(op.getarg(2), args,
                                          need_lower_byte=need_lower_byte)
        ofs_loc = self.rm.make_sure_var_in_reg(op.getarg(1), args)
        self.perform_discard(op, [base_loc, ofs_loc, value_loc,
                                  imm(factor), imm(offset), imm(size)])

    def consider_increment_debug_counter(self, op):
        base_loc = self.loc(op.getarg(0))
        self.perform_discard(op, [base_loc])

    def _consider_gc_load(self, op):
        args = op.getarglist()
        base_loc = self.rm.make_sure_var_in_reg(op.getarg(0), args)
        ofs_loc = self.rm.make_sure_var_in_reg(op.getarg(1), args)
        result_loc = self.force_allocate_reg(op)
        size_box = op.getarg(2)
        assert isinstance(size_box, ConstInt)
        nsize = size_box.value      # negative for "signed"
        size_loc = imm(abs(nsize))
        if nsize < 0:
            sign_loc = imm1
        else:
            sign_loc = imm0
        self.perform(op, [base_loc, ofs_loc, size_loc, sign_loc], result_loc)

    consider_gc_load_i = _consider_gc_load
    consider_gc_load_r = _consider_gc_load
    consider_gc_load_f = _consider_gc_load

    def _consider_gc_load_indexed(self, op):
        args = op.getarglist()
        base_loc = self.rm.make_sure_var_in_reg(op.getarg(0), args)
        ofs_loc = self.rm.make_sure_var_in_reg(op.getarg(1), args)
        result_loc = self.force_allocate_reg(op)
        scale_box = op.getarg(2)
        offset_box = op.getarg(3)
        size_box = op.getarg(4)
        assert isinstance(scale_box, ConstInt)
        assert isinstance(offset_box, ConstInt)
        assert isinstance(size_box, ConstInt)
        scale = scale_box.value
        offset = offset_box.value
        nsize = size_box.value      # negative for "signed"
        size_loc = imm(abs(nsize))
        if nsize < 0:
            sign_loc = imm1
        else:
            sign_loc = imm0
        locs = [base_loc, ofs_loc, imm(scale), imm(offset), size_loc, sign_loc]
        self.perform(op, locs, result_loc)

    consider_gc_load_indexed_i = _consider_gc_load_indexed
    consider_gc_load_indexed_r = _consider_gc_load_indexed
    consider_gc_load_indexed_f = _consider_gc_load_indexed

    def consider_int_is_true(self, op):
        # doesn't need arg to be in a register
        argloc = self.loc(op.getarg(0))
        resloc = self.force_allocate_reg_or_cc(op)
        self.perform(op, [argloc], resloc)

    consider_int_is_zero = consider_int_is_true

    def _consider_same_as(self, op):
        argloc = self.loc(op.getarg(0))
        resloc = self.force_allocate_reg(op)
        self.perform(op, [argloc], resloc)
    consider_cast_ptr_to_int = _consider_same_as
    consider_cast_int_to_ptr = _consider_same_as
    consider_same_as_i = _consider_same_as
    consider_same_as_r = _consider_same_as
    consider_same_as_f = _consider_same_as

    def consider_load_from_gc_table(self, op):
        resloc = self.rm.force_allocate_reg(op)
        self.perform(op, [], resloc)

    def consider_int_force_ge_zero(self, op):
        argloc = self.make_sure_var_in_reg(op.getarg(0))
        resloc = self.force_allocate_reg(op, [op.getarg(0)])
        self.perform(op, [argloc], resloc)

    def consider_copystrcontent(self, op):
        self._consider_copystrcontent(op, is_unicode=False)

    def consider_copyunicodecontent(self, op):
        self._consider_copystrcontent(op, is_unicode=True)

    def _consider_copystrcontent(self, op, is_unicode):
        # compute the source address
        args = op.getarglist()
        base_loc = self.rm.make_sure_var_in_reg(args[0], args)
        ofs_loc = self.rm.make_sure_var_in_reg(args[2], args)
        assert args[0] is not args[1]    # forbidden case of aliasing
        srcaddr_box = TempVar()
        forbidden_vars = [args[1], args[3], args[4], srcaddr_box]
        srcaddr_loc = self.rm.force_allocate_reg(srcaddr_box, forbidden_vars)
        self._gen_address_inside_string(base_loc, ofs_loc, srcaddr_loc,
                                        is_unicode=is_unicode)
        # compute the destination address
        base_loc = self.rm.make_sure_var_in_reg(args[1], forbidden_vars)
        ofs_loc = self.rm.make_sure_var_in_reg(args[3], forbidden_vars)
        forbidden_vars = [args[4], srcaddr_box]
        dstaddr_box = TempVar()
        dstaddr_loc = self.rm.force_allocate_reg(dstaddr_box, forbidden_vars)
        self._gen_address_inside_string(base_loc, ofs_loc, dstaddr_loc,
                                        is_unicode=is_unicode)
        # compute the length in bytes
        length_box = args[4]
        length_loc = self.loc(length_box)
        if is_unicode:
            forbidden_vars = [srcaddr_box, dstaddr_box]
            bytes_box = TempVar()
            bytes_loc = self.rm.force_allocate_reg(bytes_box, forbidden_vars)
            scale = self._get_unicode_item_scale()
            if not (isinstance(length_loc, ImmedLoc) or
                    isinstance(length_loc, RegLoc)):
                self.assembler.mov(length_loc, bytes_loc)
                length_loc = bytes_loc
            self.assembler.load_effective_addr(length_loc, 0, scale, bytes_loc)
            length_box = bytes_box
            length_loc = bytes_loc
        # call memcpy()
        self.rm.before_call()
        self.xrm.before_call()
        self.assembler.simple_call_no_collect(imm(self.assembler.memcpy_addr),
                                        [dstaddr_loc, srcaddr_loc, length_loc])
        self.rm.possibly_free_var(length_box)
        self.rm.possibly_free_var(dstaddr_box)
        self.rm.possibly_free_var(srcaddr_box)

    def _gen_address_inside_string(self, baseloc, ofsloc, resloc, is_unicode):
        if is_unicode:
            ofs_items, _, _ = symbolic.get_array_token(rstr.UNICODE,
                                                  self.translate_support_code)
            scale = self._get_unicode_item_scale()
        else:
            ofs_items, itemsize, _ = symbolic.get_array_token(rstr.STR,
                                                  self.translate_support_code)
            assert itemsize == 1
            ofs_items -= 1     # for the extra null character
            scale = 0
        self.assembler.load_effective_addr(ofsloc, ofs_items, scale,
                                           resloc, baseloc)

    def _get_unicode_item_scale(self):
        _, itemsize, _ = symbolic.get_array_token(rstr.UNICODE,
                                                  self.translate_support_code)
        if itemsize == 4:
            return 2
        elif itemsize == 2:
            return 1
        else:
            raise AssertionError("bad unicode item size")

    def _consider_math_read_timestamp(self, op):
        # hint: try to move unrelated registers away from eax and edx now
        self.rm.spill_or_move_registers_before_call([eax, edx])
        tmpbox_high = TempVar()
        self.rm.force_allocate_reg(tmpbox_high, selected_reg=eax)
        if longlong.is_64_bit:
            # on 64-bit, use rax as temporary register and returns the
            # result in rdx
            result_loc = self.rm.force_allocate_reg(op,
                                                    selected_reg=edx)
            self.perform_math(op, [], result_loc)
        else:
            # on 32-bit, use both eax and edx as temporary registers,
            # use a temporary xmm register, and returns the result in
            # another xmm register.
            tmpbox_low = TempVar()
            self.rm.force_allocate_reg(tmpbox_low, selected_reg=edx)
            xmmtmpbox = TempVar()
            xmmtmploc = self.xrm.force_allocate_reg(xmmtmpbox)
            result_loc = self.xrm.force_allocate_reg(op)
            self.perform_math(op, [xmmtmploc], result_loc)
            self.xrm.possibly_free_var(xmmtmpbox)
            self.rm.possibly_free_var(tmpbox_low)
        self.rm.possibly_free_var(tmpbox_high)

    def compute_hint_frame_locations(self, operations):
        # optimization only: fill in the 'hint_frame_pos' dictionary
        # of 'fm' based on the JUMP at the end of the loop, by looking
        # at where we would like the boxes to be after the jump.
        op = operations[-1]
        if op.getopnum() != rop.JUMP:
            return
        self.final_jump_op = op
        descr = op.getdescr()
        assert isinstance(descr, TargetToken)
        if descr._ll_loop_code != 0:
            # if the target LABEL was already compiled, i.e. if it belongs
            # to some already-compiled piece of code
            self._compute_hint_frame_locations_from_descr(descr)
        #else:
        #   The loop ends in a JUMP going back to a LABEL in the same loop.
        #   We cannot fill 'hint_frame_pos' immediately, but we can
        #   wait until the corresponding consider_label() to know where the
        #   we would like the boxes to be after the jump.

    def _compute_hint_frame_locations_from_descr(self, descr):
        arglocs = descr._x86_arglocs
        jump_op = self.final_jump_op
        assert len(arglocs) == jump_op.numargs()
        for i in range(jump_op.numargs()):
            box = jump_op.getarg(i)
            if not isinstance(box, Const):
                loc = arglocs[i]
                if isinstance(loc, FrameLoc):
                    self.fm.hint_frame_pos[box] = self.fm.get_loc_index(loc)

    def consider_jump(self, op):
        assembler = self.assembler
        assert self.jump_target_descr is None
        descr = op.getdescr()
        assert isinstance(descr, TargetToken)
        arglocs = descr._x86_arglocs
        self.jump_target_descr = descr
        # Part about non-floats
        src_locations1 = []
        dst_locations1 = []
        # Part about floats
        src_locations2 = []
        dst_locations2 = []
        # Build the four lists
        for i in range(op.numargs()):
            box = op.getarg(i)
            src_loc = self.loc(box)
            dst_loc = arglocs[i]
            if box.type != FLOAT and not box.is_vector():
                src_locations1.append(src_loc)
                dst_locations1.append(dst_loc)
            else:
                src_locations2.append(src_loc)
                dst_locations2.append(dst_loc)
        # Do we have a temp var?
        if IS_X86_64:
            tmpreg = X86_64_SCRATCH_REG
            xmmtmp = X86_64_XMM_SCRATCH_REG
        else:
            tmpreg = None
            xmmtmp = None
        # Do the remapping
        remap_frame_layout_mixed(assembler,
                                 src_locations1, dst_locations1, tmpreg,
                                 src_locations2, dst_locations2, xmmtmp)
        self.possibly_free_vars_for_op(op)
        assembler.closing_jump(self.jump_target_descr)

    def consider_enter_portal_frame(self, op):
        self.assembler.enter_portal_frame(op)

    def consider_leave_portal_frame(self, op):
        self.assembler.leave_portal_frame(op)

    def consider_jit_debug(self, op):
        pass

    def _consider_force_spill(self, op):
        # This operation is used only for testing
        self.force_spill_var(op.getarg(0))

    def consider_force_token(self, op):
        # XXX for now we return a regular reg
        #self.rm.force_allocate_frame_reg(op)
        self.assembler.force_token(self.rm.force_allocate_reg(op))

    def consider_label(self, op):
        descr = op.getdescr()
        assert isinstance(descr, TargetToken)
        inputargs = op.getarglist()
        arglocs = [None] * len(inputargs)
        #
        # we use force_spill() on the boxes that are not going to be really
        # used any more in the loop, but that are kept alive anyway
        # by being in a next LABEL's or a JUMP's argument or fail_args
        # of some guard
        position = self.rm.position
        for arg in inputargs:
            assert not isinstance(arg, Const)
            if self.last_real_usage.get(arg, -1) <= position:
                self.force_spill_var(arg)
        #
        # we need to make sure that no variable is stored in ebp
        for arg in inputargs:
            if self.loc(arg) is ebp:
                loc2 = self.fm.loc(arg)
                self.assembler.mc.MOV(loc2, ebp)
        self.rm.bindings_to_frame_reg.clear()
        #
        for i in range(len(inputargs)):
            arg = inputargs[i]
            assert not isinstance(arg, Const)
            loc = self.loc(arg)
            assert loc is not ebp
            arglocs[i] = loc
            if isinstance(loc, RegLoc):
                self.fm.mark_as_free(arg)
        #
        # if we are too close to the start of the loop, the label's target may
        # get overridden by redirect_call_assembler().  (rare case)
        self.flush_loop()
        #
        descr._x86_arglocs = arglocs
        descr._ll_loop_code = self.assembler.mc.get_relative_pos()
        descr._x86_clt = self.assembler.current_clt
        self.assembler.target_tokens_currently_compiling[descr] = None
        self.possibly_free_vars_for_op(op)
        self.assembler.label()
        #
        # if the LABEL's descr is precisely the target of the JUMP at the
        # end of the same loop, i.e. if what we are compiling is a single
        # loop that ends up jumping to this LABEL, then we can now provide
        # the hints about the expected position of the spilled variables.
        jump_op = self.final_jump_op
        if jump_op is not None and jump_op.getdescr() is descr:
            self._compute_hint_frame_locations_from_descr(descr)

    def consider_guard_not_forced_2(self, op):
        self.rm.before_call(op.getfailargs(), save_all_regs=True)
        self.xrm.before_call(op.getfailargs(), save_all_regs=True)
        fail_locs = [self.loc(v) for v in op.getfailargs()]
        self.assembler.store_force_descr(op, fail_locs,
                                         self.fm.get_frame_depth())
        self.possibly_free_vars(op.getfailargs())

    def consider_keepalive(self, op):
        pass

    def _scaled_addr(self, index_loc, itemsize_loc,
                                base_loc, ofs_loc):
        assert isinstance(itemsize_loc, ImmedLoc)
        itemsize = itemsize_loc.value
        if isinstance(index_loc, ImmedLoc):
            temp_loc = imm(index_loc.value * itemsize)
            shift = 0
        else:
            assert valid_addressing_size(itemsize), "rewrite did not correctly handle shift/mul!"
            temp_loc = index_loc
            shift = get_scale(itemsize)
        assert isinstance(ofs_loc, ImmedLoc)
        return AddressLoc(base_loc, temp_loc, shift, ofs_loc.value)

    def consider_zero_array(self, op):
        _, baseofs, _ = unpack_arraydescr(op.getdescr())
        length_box = op.getarg(2)

        scale_box = op.getarg(3)
        assert isinstance(scale_box, ConstInt)
        start_itemsize = scale_box.value

        len_scale_box = op.getarg(4)
        assert isinstance(len_scale_box, ConstInt)
        len_itemsize = len_scale_box.value
        # rewrite handles the mul of a constant length box
        constbytes = -1
        if isinstance(length_box, ConstInt):
            constbytes = length_box.getint()
        args = op.getarglist()
        base_loc = self.rm.make_sure_var_in_reg(args[0], args)
        startindex_loc = self.rm.make_sure_var_in_reg(args[1], args)
        if 0 <= constbytes <= 16 * 8:
            if IS_X86_64:
                null_loc = X86_64_XMM_SCRATCH_REG
            else:
                null_box = TempVar()
                null_loc = self.xrm.force_allocate_reg(null_box)
                self.xrm.possibly_free_var(null_box)
            self.perform_discard(op, [base_loc, startindex_loc,
                                      imm(constbytes), imm(start_itemsize),
                                      imm(baseofs), null_loc])
        else:
            # base_loc and startindex_loc are in two regs here (or they are
            # immediates).  Compute the dstaddr_loc, which is the raw
            # address that we will pass as first argument to memset().
            # It can be in the same register as either one, but not in
            # args[2], because we're still needing the latter.
            dstaddr_box = TempVar()
            dstaddr_loc = self.rm.force_allocate_reg(dstaddr_box, [args[2]])
            itemsize_loc = imm(start_itemsize)
            dst_addr = self._scaled_addr(startindex_loc, itemsize_loc,
                                         base_loc, imm(baseofs))
            self.assembler.mc.LEA(dstaddr_loc, dst_addr)
            #
            if constbytes >= 0:
                length_loc = imm(constbytes)
            else:
                # load length_loc in a register different than dstaddr_loc
                length_loc = self.rm.make_sure_var_in_reg(length_box,
                                                          [dstaddr_box])
                if len_itemsize > 1:
                    # we need a register that is different from dstaddr_loc,
                    # but which can be identical to length_loc (as usual,
                    # only if the length_box is not used by future operations)
                    bytes_box = TempVar()
                    bytes_loc = self.rm.force_allocate_reg(bytes_box,
                                                           [dstaddr_box])
                    len_itemsize_loc = imm(len_itemsize)
                    b_adr = self._scaled_addr(length_loc, len_itemsize_loc, imm0, imm0)
                    self.assembler.mc.LEA(bytes_loc, b_adr)
                    length_box = bytes_box
                    length_loc = bytes_loc
            #
            # call memset()
            self.rm.before_call()
            self.xrm.before_call()
            self.assembler.simple_call_no_collect(
                imm(self.assembler.memset_addr),
                [dstaddr_loc, imm0, length_loc])
            self.rm.possibly_free_var(length_box)
            self.rm.possibly_free_var(dstaddr_box)

    def not_implemented_op(self, op):
        not_implemented("not implemented operation: %s" % op.getopname())

oplist = [RegAlloc.not_implemented_op] * rop._LAST

import itertools
iterate = itertools.chain(RegAlloc.__dict__.iteritems(),
                          VectorRegallocMixin.__dict__.iteritems())
for name, value in iterate:
    if name.startswith('consider_'):
        name = name[len('consider_'):]
        num = getattr(rop, name.upper())
        oplist[num] = value

def get_ebp_ofs(base_ofs, position):
    # Argument is a frame position (0, 1, 2...).
    # Returns (ebp+20), (ebp+24), (ebp+28)...
    # i.e. the n'th word beyond the fixed frame size.
    return base_ofs + WORD * (position + JITFRAME_FIXED_SIZE)

def not_implemented(msg):
    msg = '[x86/regalloc] %s\n' % msg
    if we_are_translated():
        llop.debug_print(lltype.Void, msg)
    raise NotImplementedError(msg)