1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
|
""" Register allocation scheme.
"""
from rpython.jit.backend.llsupport import symbolic
from rpython.jit.backend.llsupport.descr import CallDescr, unpack_arraydescr
from rpython.jit.backend.llsupport.gcmap import allocate_gcmap
from rpython.jit.backend.llsupport.regalloc import (FrameManager, BaseRegalloc,
RegisterManager, TempVar, compute_vars_longevity, is_comparison_or_ovf_op,
valid_addressing_size, get_scale, SAVE_DEFAULT_REGS, SAVE_GCREF_REGS,
SAVE_ALL_REGS)
from rpython.jit.backend.x86 import rx86
from rpython.jit.backend.x86.arch import (WORD, JITFRAME_FIXED_SIZE, IS_X86_32,
IS_X86_64, DEFAULT_FRAME_BYTES)
from rpython.jit.backend.x86.jump import remap_frame_layout_mixed
from rpython.jit.backend.x86.regloc import (FrameLoc, RegLoc, ConstFloatLoc,
FloatImmedLoc, ImmedLoc, imm, imm0, imm1, ecx, eax, edx, ebx, esi, edi,
ebp, r8, r9, r10, r11, r12, r13, r14, r15, xmm0, xmm1, xmm2, xmm3, xmm4,
xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14,
X86_64_SCRATCH_REG, X86_64_XMM_SCRATCH_REG)
from rpython.jit.backend.x86.vector_ext import VectorRegallocMixin
from rpython.jit.codewriter import longlong
from rpython.jit.codewriter.effectinfo import EffectInfo
from rpython.jit.metainterp.history import (Const, ConstInt, ConstPtr,
ConstFloat, INT, REF, FLOAT, VECTOR, TargetToken, AbstractFailDescr)
from rpython.jit.metainterp.resoperation import rop
from rpython.jit.metainterp.resume import AccumInfo
from rpython.rlib import rgc
from rpython.rlib.objectmodel import we_are_translated
from rpython.rlib.rarithmetic import r_longlong, r_uint
from rpython.rtyper.lltypesystem import lltype, rffi, rstr
from rpython.rtyper.lltypesystem.lloperation import llop
from rpython.jit.backend.x86.regloc import AddressLoc
class X86RegisterManager(RegisterManager):
box_types = [INT, REF]
all_regs = [ecx, eax, edx, ebx, esi, edi]
no_lower_byte_regs = [esi, edi]
save_around_call_regs = [eax, edx, ecx]
frame_reg = ebp
def call_result_location(self, v):
return eax
def convert_to_imm(self, c):
if isinstance(c, ConstInt):
return imm(c.value)
elif isinstance(c, ConstPtr):
if we_are_translated() and c.value and rgc.can_move(c.value):
not_implemented("convert_to_imm: ConstPtr needs special care")
return imm(rffi.cast(lltype.Signed, c.value))
else:
not_implemented("convert_to_imm: got a %s" % c)
class X86_64_RegisterManager(X86RegisterManager):
# r11 omitted because it's used as scratch
all_regs = [ecx, eax, edx, ebx, esi, edi, r8, r9, r10, r12, r13, r14, r15]
no_lower_byte_regs = []
save_around_call_regs = [eax, ecx, edx, esi, edi, r8, r9, r10]
class X86XMMRegisterManager(RegisterManager):
box_types = [FLOAT, INT] # yes INT!
all_regs = [xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7]
# we never need lower byte I hope
save_around_call_regs = all_regs
def convert_to_imm(self, c):
adr = self.assembler.datablockwrapper.malloc_aligned(8, 8)
x = c.getfloatstorage()
rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[0] = x
return ConstFloatLoc(adr)
def convert_to_imm_16bytes_align(self, c):
adr = self.assembler.datablockwrapper.malloc_aligned(16, 16)
x = c.getfloatstorage()
y = longlong.ZEROF
rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[0] = x
rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[1] = y
return ConstFloatLoc(adr)
def expand_float(self, size, const):
if size == 4:
loc = self.expand_single_float(const)
else:
loc = self.expand_double_float(const)
return loc
def expand_double_float(self, f):
adr = self.assembler.datablockwrapper.malloc_aligned(16, 16)
fs = f.getfloatstorage()
rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[0] = fs
rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[1] = fs
return ConstFloatLoc(adr)
def expand_single_float(self, f):
adr = self.assembler.datablockwrapper.malloc_aligned(16, 16)
fs = rffi.cast(lltype.SingleFloat, f.getfloatstorage())
rffi.cast(rffi.CArrayPtr(lltype.SingleFloat), adr)[0] = fs
rffi.cast(rffi.CArrayPtr(lltype.SingleFloat), adr)[1] = fs
rffi.cast(rffi.CArrayPtr(lltype.SingleFloat), adr)[2] = fs
rffi.cast(rffi.CArrayPtr(lltype.SingleFloat), adr)[3] = fs
return ConstFloatLoc(adr)
def call_result_location(self, v):
return xmm0
class X86_64_XMMRegisterManager(X86XMMRegisterManager):
# xmm15 reserved for scratch use
all_regs = [xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14]
save_around_call_regs = all_regs
class X86FrameManager(FrameManager):
def __init__(self, base_ofs):
FrameManager.__init__(self)
self.base_ofs = base_ofs
def frame_pos(self, i, box_type):
return FrameLoc(i, get_ebp_ofs(self.base_ofs, i), box_type)
@staticmethod
def frame_size(box_type):
if IS_X86_32 and box_type == FLOAT:
return 2
else:
return 1
@staticmethod
def get_loc_index(loc):
assert isinstance(loc, FrameLoc)
return loc.position
if WORD == 4:
gpr_reg_mgr_cls = X86RegisterManager
xmm_reg_mgr_cls = X86XMMRegisterManager
elif WORD == 8:
gpr_reg_mgr_cls = X86_64_RegisterManager
xmm_reg_mgr_cls = X86_64_XMMRegisterManager
else:
raise AssertionError("Word size should be 4 or 8")
gpr_reg_mgr_cls.all_reg_indexes = [-1] * WORD * 2 # eh, happens to be true
for _i, _reg in enumerate(gpr_reg_mgr_cls.all_regs):
gpr_reg_mgr_cls.all_reg_indexes[_reg.value] = _i
class RegAlloc(BaseRegalloc, VectorRegallocMixin):
def __init__(self, assembler, translate_support_code=False):
assert isinstance(translate_support_code, bool)
# variables that have place in register
self.assembler = assembler
self.translate_support_code = translate_support_code
# to be read/used by the assembler too
self.jump_target_descr = None
self.final_jump_op = None
def _prepare(self, inputargs, operations, allgcrefs):
for box in inputargs:
assert box.get_forwarded() is None
cpu = self.assembler.cpu
self.fm = X86FrameManager(cpu.get_baseofs_of_frame_field())
operations = cpu.gc_ll_descr.rewrite_assembler(cpu, operations,
allgcrefs)
# compute longevity of variables
longevity, last_real_usage = compute_vars_longevity(
inputargs, operations)
self.longevity = longevity
self.last_real_usage = last_real_usage
self.rm = gpr_reg_mgr_cls(self.longevity,
frame_manager = self.fm,
assembler = self.assembler)
self.xrm = xmm_reg_mgr_cls(self.longevity, frame_manager = self.fm,
assembler = self.assembler)
return operations
def prepare_loop(self, inputargs, operations, looptoken, allgcrefs):
operations = self._prepare(inputargs, operations, allgcrefs)
self._set_initial_bindings(inputargs, looptoken)
# note: we need to make a copy of inputargs because possibly_free_vars
# is also used on op args, which is a non-resizable list
self.possibly_free_vars(list(inputargs))
if WORD == 4: # see redirect_call_assembler()
self.min_bytes_before_label = 5
else:
self.min_bytes_before_label = 13
return operations
def prepare_bridge(self, inputargs, arglocs, operations, allgcrefs,
frame_info):
operations = self._prepare(inputargs, operations, allgcrefs)
self._update_bindings(arglocs, inputargs)
self.min_bytes_before_label = 0
return operations
def ensure_next_label_is_at_least_at_position(self, at_least_position):
self.min_bytes_before_label = max(self.min_bytes_before_label,
at_least_position)
def get_final_frame_depth(self):
return self.fm.get_frame_depth()
def possibly_free_var(self, var):
if var.type == FLOAT or var.is_vector():
self.xrm.possibly_free_var(var)
else:
self.rm.possibly_free_var(var)
def possibly_free_vars_for_op(self, op):
for i in range(op.numargs()):
var = op.getarg(i)
if var is not None: # xxx kludgy
self.possibly_free_var(var)
if op.type != 'v':
self.possibly_free_var(op)
def possibly_free_vars(self, vars):
for var in vars:
if var is not None: # xxx kludgy
self.possibly_free_var(var)
def make_sure_var_in_reg(self, var, forbidden_vars=[],
selected_reg=None, need_lower_byte=False):
if var.type == FLOAT or var.is_vector():
if isinstance(var, ConstFloat):
return FloatImmedLoc(var.getfloatstorage())
return self.xrm.make_sure_var_in_reg(var, forbidden_vars,
selected_reg, need_lower_byte)
else:
return self.rm.make_sure_var_in_reg(var, forbidden_vars,
selected_reg, need_lower_byte)
def force_allocate_reg(self, var, forbidden_vars=[], selected_reg=None,
need_lower_byte=False):
if var.type == FLOAT or var.is_vector():
return self.xrm.force_allocate_reg(var, forbidden_vars,
selected_reg, need_lower_byte)
else:
return self.rm.force_allocate_reg(var, forbidden_vars,
selected_reg, need_lower_byte)
def force_allocate_reg_or_cc(self, var):
assert var.type == INT
if self.next_op_can_accept_cc(self.operations, self.rm.position):
# hack: return the ebp location to mean "lives in CC". This
# ebp will not actually be used, and the location will be freed
# after the next op as usual.
self.rm.force_allocate_frame_reg(var)
return ebp
else:
# else, return a regular register (not ebp).
return self.rm.force_allocate_reg(var, need_lower_byte=True)
def force_spill_var(self, var):
if var.type == FLOAT:
return self.xrm.force_spill_var(var)
else:
return self.rm.force_spill_var(var)
def load_xmm_aligned_16_bytes(self, var, forbidden_vars=[]):
# Load 'var' in a register; but if it is a constant, we can return
# a 16-bytes-aligned ConstFloatLoc.
if isinstance(var, Const):
return self.xrm.convert_to_imm_16bytes_align(var)
else:
return self.xrm.make_sure_var_in_reg(var, forbidden_vars)
def _update_bindings(self, locs, inputargs):
# XXX this should probably go to llsupport/regalloc.py
used = {}
i = 0
for loc in locs:
if loc is None: # xxx bit kludgy
loc = ebp
arg = inputargs[i]
i += 1
if isinstance(loc, RegLoc):
if arg.type == FLOAT:
self.xrm.reg_bindings[arg] = loc
used[loc] = None
else:
if loc is ebp:
self.rm.bindings_to_frame_reg[arg] = None
else:
self.rm.reg_bindings[arg] = loc
used[loc] = None
else:
self.fm.bind(arg, loc)
self.rm.free_regs = []
for reg in self.rm.all_regs:
if reg not in used:
self.rm.free_regs.append(reg)
self.xrm.free_regs = []
for reg in self.xrm.all_regs:
if reg not in used:
self.xrm.free_regs.append(reg)
self.possibly_free_vars(list(inputargs))
self.fm.finish_binding()
self.rm._check_invariants()
self.xrm._check_invariants()
def perform(self, op, arglocs, result_loc):
if not we_are_translated():
self.assembler.dump('%s <- %s(%s)' % (result_loc, op, arglocs))
self.assembler.regalloc_perform(op, arglocs, result_loc)
def perform_llong(self, op, arglocs, result_loc):
if not we_are_translated():
self.assembler.dump('%s <- %s(%s)' % (result_loc, op, arglocs))
self.assembler.regalloc_perform_llong(op, arglocs, result_loc)
def perform_math(self, op, arglocs, result_loc):
if not we_are_translated():
self.assembler.dump('%s <- %s(%s)' % (result_loc, op, arglocs))
self.assembler.regalloc_perform_math(op, arglocs, result_loc)
def locs_for_fail(self, guard_op):
faillocs = [self.loc(arg) for arg in guard_op.getfailargs()]
descr = guard_op.getdescr()
if not descr:
return faillocs
assert isinstance(descr, AbstractFailDescr)
if descr.rd_vector_info:
accuminfo = descr.rd_vector_info
while accuminfo:
accuminfo.location = faillocs[accuminfo.getpos_in_failargs()]
loc = self.loc(accuminfo.getoriginal())
faillocs[accuminfo.getpos_in_failargs()] = loc
accuminfo = accuminfo.next()
return faillocs
def perform_guard(self, guard_op, arglocs, result_loc):
faillocs = self.locs_for_fail(guard_op)
if not we_are_translated():
if result_loc is not None:
self.assembler.dump('%s <- %s(%s)' % (result_loc, guard_op,
arglocs))
else:
self.assembler.dump('%s(%s)' % (guard_op, arglocs))
self.assembler.regalloc_perform_guard(guard_op, faillocs, arglocs,
result_loc,
self.fm.get_frame_depth())
self.possibly_free_vars(guard_op.getfailargs())
def perform_discard(self, op, arglocs):
if not we_are_translated():
self.assembler.dump('%s(%s)' % (op, arglocs))
self.assembler.regalloc_perform_discard(op, arglocs)
def walk_operations(self, inputargs, operations):
i = 0
self.operations = operations
while i < len(operations):
op = operations[i]
self.assembler.mc.mark_op(op)
assert self.assembler.mc._frame_size == DEFAULT_FRAME_BYTES
self.rm.position = i
self.xrm.position = i
if rop.has_no_side_effect(op.opnum) and op not in self.longevity:
i += 1
self.possibly_free_vars_for_op(op)
continue
if not we_are_translated() and op.getopnum() == rop.FORCE_SPILL:
self._consider_force_spill(op)
else:
oplist[op.getopnum()](self, op)
self.possibly_free_vars_for_op(op)
self.rm._check_invariants()
self.xrm._check_invariants()
i += 1
assert not self.rm.reg_bindings
assert not self.xrm.reg_bindings
if not we_are_translated():
self.assembler.mc.UD2()
self.flush_loop()
self.assembler.mc.mark_op(None) # end of the loop
self.operations = None
for arg in inputargs:
self.possibly_free_var(arg)
def flush_loop(self):
# Force the code to be aligned to a multiple of 16. Also,
# rare case: if the loop is too short, or if we are just after
# a GUARD_NOT_INVALIDATED, we need to make sure we insert enough
# NOPs. This is important to ensure that there are enough bytes
# produced, because GUARD_NOT_INVALIDATED or
# redirect_call_assembler() will maybe overwrite them. (In that
# rare case we don't worry too much about alignment.)
mc = self.assembler.mc
current_pos = mc.get_relative_pos()
target_pos = (current_pos + 15) & ~15
target_pos = max(target_pos, self.min_bytes_before_label)
insert_nops = target_pos - current_pos
assert 0 <= insert_nops <= 15
for c in mc.MULTIBYTE_NOPs[insert_nops]:
mc.writechar(c)
def loc(self, v):
if v is None: # xxx kludgy
return None
if v.type == FLOAT or v.is_vector():
return self.xrm.loc(v)
return self.rm.loc(v)
def load_condition_into_cc(self, box):
if self.assembler.guard_success_cc == rx86.cond_none:
self.assembler.test_location(self.loc(box))
self.assembler.guard_success_cc = rx86.Conditions['NZ']
def _consider_guard_cc(self, op):
arg = op.getarg(0)
self.load_condition_into_cc(arg)
self.perform_guard(op, [], None)
consider_guard_true = _consider_guard_cc
consider_guard_false = _consider_guard_cc
consider_guard_nonnull = _consider_guard_cc
consider_guard_isnull = _consider_guard_cc
def consider_finish(self, op):
# the frame is in ebp, but we have to point where in the frame is
# the potential argument to FINISH
if op.numargs() == 1:
loc = self.make_sure_var_in_reg(op.getarg(0))
locs = [loc]
else:
locs = []
self.perform(op, locs, None)
def consider_guard_no_exception(self, op):
self.perform_guard(op, [], None)
def consider_guard_not_invalidated(self, op):
mc = self.assembler.mc
n = mc.get_relative_pos(break_basic_block=False)
self.perform_guard(op, [], None)
assert n == mc.get_relative_pos(break_basic_block=False)
# ensure that the next label is at least 5 bytes farther than
# the current position. Otherwise, when invalidating the guard,
# we would overwrite randomly the next label's position.
self.ensure_next_label_is_at_least_at_position(n + 5)
def consider_guard_exception(self, op):
loc = self.rm.make_sure_var_in_reg(op.getarg(0))
box = TempVar()
args = op.getarglist()
loc1 = self.rm.force_allocate_reg(box, args)
if op in self.longevity:
# this means, is it ever used
resloc = self.rm.force_allocate_reg(op, args + [box])
else:
resloc = None
self.perform_guard(op, [loc, loc1], resloc)
self.rm.possibly_free_var(box)
def consider_save_exception(self, op):
resloc = self.rm.force_allocate_reg(op)
self.perform(op, [], resloc)
consider_save_exc_class = consider_save_exception
def consider_restore_exception(self, op):
args = op.getarglist()
loc0 = self.rm.make_sure_var_in_reg(op.getarg(0), args) # exc class
loc1 = self.rm.make_sure_var_in_reg(op.getarg(1), args) # exc instance
self.perform_discard(op, [loc0, loc1])
consider_guard_no_overflow = consider_guard_no_exception
consider_guard_overflow = consider_guard_no_exception
consider_guard_not_forced = consider_guard_no_exception
def consider_guard_value(self, op):
x = self.make_sure_var_in_reg(op.getarg(0))
loc = self.assembler.cpu.all_reg_indexes[x.value]
op.getdescr().make_a_counter_per_value(op, loc)
y = self.loc(op.getarg(1))
self.perform_guard(op, [x, y], None)
def consider_guard_class(self, op):
assert not isinstance(op.getarg(0), Const)
x = self.rm.make_sure_var_in_reg(op.getarg(0))
y = self.loc(op.getarg(1))
self.perform_guard(op, [x, y], None)
consider_guard_nonnull_class = consider_guard_class
consider_guard_gc_type = consider_guard_class
def consider_guard_is_object(self, op):
x = self.make_sure_var_in_reg(op.getarg(0))
tmp_box = TempVar()
y = self.rm.force_allocate_reg(tmp_box, [op.getarg(0)])
self.rm.possibly_free_var(tmp_box)
self.perform_guard(op, [x, y], None)
def consider_guard_subclass(self, op):
x = self.make_sure_var_in_reg(op.getarg(0))
tmp_box = TempVar()
z = self.rm.force_allocate_reg(tmp_box, [op.getarg(0)])
y = self.loc(op.getarg(1))
self.rm.possibly_free_var(tmp_box)
self.perform_guard(op, [x, y, z], None)
def _consider_binop_part(self, op, symm=False):
x = op.getarg(0)
y = op.getarg(1)
argloc = self.loc(y)
#
# For symmetrical operations, if 'y' is already in a register
# and won't be used after the current operation finishes,
# then swap the role of 'x' and 'y'
if (symm and isinstance(argloc, RegLoc) and
self.rm.longevity[y][1] == self.rm.position):
x, y = y, x
argloc = self.loc(y)
#
args = op.getarglist()
loc = self.rm.force_result_in_reg(op, x, args)
return loc, argloc
def _consider_binop(self, op):
loc, argloc = self._consider_binop_part(op)
self.perform(op, [loc, argloc], loc)
def _consider_binop_symm(self, op):
loc, argloc = self._consider_binop_part(op, symm=True)
self.perform(op, [loc, argloc], loc)
def _consider_lea(self, op, loc):
argloc = self.loc(op.getarg(1))
resloc = self.force_allocate_reg(op)
self.perform(op, [loc, argloc], resloc)
def consider_int_add(self, op):
loc = self.loc(op.getarg(0))
y = op.getarg(1)
if (isinstance(loc, RegLoc) and
isinstance(y, ConstInt) and rx86.fits_in_32bits(y.value)):
self._consider_lea(op, loc)
else:
self._consider_binop_symm(op)
consider_nursery_ptr_increment = consider_int_add
def consider_int_sub(self, op):
loc = self.loc(op.getarg(0))
y = op.getarg(1)
if (isinstance(loc, RegLoc) and
isinstance(y, ConstInt) and rx86.fits_in_32bits(-y.value)):
self._consider_lea(op, loc)
else:
self._consider_binop(op)
consider_int_mul = _consider_binop_symm
consider_int_and = _consider_binop_symm
consider_int_or = _consider_binop_symm
consider_int_xor = _consider_binop_symm
consider_int_mul_ovf = _consider_binop_symm
consider_int_sub_ovf = _consider_binop
consider_int_add_ovf = _consider_binop_symm
def consider_uint_mul_high(self, op):
arg1, arg2 = op.getarglist()
# should support all cases, but is optimized for (box, const)
if isinstance(arg1, Const):
arg1, arg2 = arg2, arg1
self.rm.make_sure_var_in_reg(arg2, selected_reg=eax)
l1 = self.loc(arg1)
# l1 is a register != eax, or stack_bp; or, just possibly, it
# can be == eax if arg1 is arg2
assert not isinstance(l1, ImmedLoc)
assert l1 is not eax or arg1 is arg2
#
# eax will be trash after the operation
self.rm.possibly_free_var(arg2)
tmpvar = TempVar()
self.rm.force_allocate_reg(tmpvar, selected_reg=eax)
self.rm.possibly_free_var(tmpvar)
#
self.rm.force_allocate_reg(op, selected_reg=edx)
self.perform(op, [l1], edx)
def consider_int_neg(self, op):
res = self.rm.force_result_in_reg(op, op.getarg(0))
self.perform(op, [res], res)
consider_int_invert = consider_int_neg
def consider_int_signext(self, op):
argloc = self.loc(op.getarg(0))
numbytesloc = self.loc(op.getarg(1))
resloc = self.force_allocate_reg(op)
self.perform(op, [argloc, numbytesloc], resloc)
def consider_int_lshift(self, op):
if isinstance(op.getarg(1), Const):
loc2 = self.rm.convert_to_imm(op.getarg(1))
else:
loc2 = self.rm.make_sure_var_in_reg(op.getarg(1), selected_reg=ecx)
args = op.getarglist()
loc1 = self.rm.force_result_in_reg(op, op.getarg(0), args)
self.perform(op, [loc1, loc2], loc1)
consider_int_rshift = consider_int_lshift
consider_uint_rshift = consider_int_lshift
def _consider_compop(self, op):
vx = op.getarg(0)
vy = op.getarg(1)
arglocs = [self.loc(vx), self.loc(vy)]
args = op.getarglist()
if (vx in self.rm.reg_bindings or vy in self.rm.reg_bindings or
isinstance(vx, Const) or isinstance(vy, Const)):
pass
else:
arglocs[0] = self.rm.make_sure_var_in_reg(vx)
loc = self.force_allocate_reg_or_cc(op)
self.perform(op, arglocs, loc)
consider_int_lt = _consider_compop
consider_int_gt = _consider_compop
consider_int_ge = _consider_compop
consider_int_le = _consider_compop
consider_int_ne = _consider_compop
consider_int_eq = _consider_compop
consider_uint_gt = _consider_compop
consider_uint_lt = _consider_compop
consider_uint_le = _consider_compop
consider_uint_ge = _consider_compop
consider_ptr_eq = consider_instance_ptr_eq = _consider_compop
consider_ptr_ne = consider_instance_ptr_ne = _consider_compop
def _consider_float_op(self, op):
loc1 = self.xrm.loc(op.getarg(1))
args = op.getarglist()
loc0 = self.xrm.force_result_in_reg(op, op.getarg(0), args)
self.perform(op, [loc0, loc1], loc0)
consider_float_add = _consider_float_op # xxx could be _symm
consider_float_sub = _consider_float_op
consider_float_mul = _consider_float_op # xxx could be _symm
consider_float_truediv = _consider_float_op
def _consider_float_cmp(self, op):
vx = op.getarg(0)
vy = op.getarg(1)
arglocs = [self.loc(vx), self.loc(vy)]
if not (isinstance(arglocs[0], RegLoc) or
isinstance(arglocs[1], RegLoc)):
if isinstance(vx, Const):
arglocs[1] = self.xrm.make_sure_var_in_reg(vy)
else:
arglocs[0] = self.xrm.make_sure_var_in_reg(vx)
loc = self.force_allocate_reg_or_cc(op)
self.perform(op, arglocs, loc)
consider_float_lt = _consider_float_cmp
consider_float_le = _consider_float_cmp
consider_float_eq = _consider_float_cmp
consider_float_ne = _consider_float_cmp
consider_float_gt = _consider_float_cmp
consider_float_ge = _consider_float_cmp
def _consider_float_unary_op(self, op):
loc0 = self.xrm.force_result_in_reg(op, op.getarg(0))
self.perform(op, [loc0], loc0)
consider_float_neg = _consider_float_unary_op
consider_float_abs = _consider_float_unary_op
def consider_cast_float_to_int(self, op):
loc0 = self.xrm.make_sure_var_in_reg(op.getarg(0))
loc1 = self.rm.force_allocate_reg(op)
self.perform(op, [loc0], loc1)
def consider_cast_int_to_float(self, op):
loc0 = self.rm.make_sure_var_in_reg(op.getarg(0))
loc1 = self.xrm.force_allocate_reg(op)
self.perform(op, [loc0], loc1)
def consider_cast_float_to_singlefloat(self, op):
loc0 = self.xrm.make_sure_var_in_reg(op.getarg(0))
loc1 = self.rm.force_allocate_reg(op)
tmpxvar = TempVar()
loctmp = self.xrm.force_allocate_reg(tmpxvar) # may be equal to loc0
self.xrm.possibly_free_var(tmpxvar)
self.perform(op, [loc0, loctmp], loc1)
consider_cast_singlefloat_to_float = consider_cast_int_to_float
def consider_convert_float_bytes_to_longlong(self, op):
if longlong.is_64_bit:
loc0 = self.xrm.make_sure_var_in_reg(op.getarg(0))
loc1 = self.rm.force_allocate_reg(op)
self.perform(op, [loc0], loc1)
else:
arg0 = op.getarg(0)
loc0 = self.xrm.loc(arg0)
loc1 = self.xrm.force_allocate_reg(op, forbidden_vars=[arg0])
self.perform(op, [loc0], loc1)
def consider_convert_longlong_bytes_to_float(self, op):
if longlong.is_64_bit:
loc0 = self.rm.make_sure_var_in_reg(op.getarg(0))
loc1 = self.xrm.force_allocate_reg(op)
self.perform(op, [loc0], loc1)
else:
arg0 = op.getarg(0)
loc0 = self.xrm.make_sure_var_in_reg(arg0)
loc1 = self.xrm.force_allocate_reg(op, forbidden_vars=[arg0])
self.perform(op, [loc0], loc1)
def _consider_llong_binop_xx(self, op):
# must force both arguments into xmm registers, because we don't
# know if they will be suitably aligned. Exception: if the second
# argument is a constant, we can ask it to be aligned to 16 bytes.
# xxx some of these operations could be '_symm'.
args = [op.getarg(1), op.getarg(2)]
loc1 = self.load_xmm_aligned_16_bytes(args[1])
loc0 = self.xrm.force_result_in_reg(op, args[0], args)
self.perform_llong(op, [loc0, loc1], loc0)
def _consider_llong_eq_ne_xx(self, op):
# must force both arguments into xmm registers, because we don't
# know if they will be suitably aligned. Exception: if they are
# constants, we can ask them to be aligned to 16 bytes.
args = [op.getarg(1), op.getarg(2)]
loc1 = self.load_xmm_aligned_16_bytes(args[0])
loc2 = self.load_xmm_aligned_16_bytes(args[1], args)
tmpxvar = TempVar()
loc3 = self.xrm.force_allocate_reg(tmpxvar, args)
self.xrm.possibly_free_var(tmpxvar)
loc0 = self.rm.force_allocate_reg(op, need_lower_byte=True)
self.perform_llong(op, [loc1, loc2, loc3], loc0)
def _maybe_consider_llong_lt(self, op):
# XXX just a special case for now
box = op.getarg(2)
if not isinstance(box, ConstFloat):
return False
if box.getfloat() != 0.0: # NaNs are also != 0.0
return False
# "x < 0.0" or maybe "x < -0.0" which is the same
box = op.getarg(1)
assert box.type == FLOAT
loc1 = self.xrm.make_sure_var_in_reg(box)
loc0 = self.rm.force_allocate_reg(op)
self.perform_llong(op, [loc1], loc0)
return True
def _consider_llong_to_int(self, op):
# accept an argument in a xmm register or in the stack
loc1 = self.xrm.loc(op.getarg(1))
loc0 = self.rm.force_allocate_reg(op)
self.perform_llong(op, [loc1], loc0)
def _loc_of_const_longlong(self, value64):
c = ConstFloat(value64)
return self.xrm.convert_to_imm(c)
def _consider_llong_from_int(self, op):
assert IS_X86_32
loc0 = self.xrm.force_allocate_reg(op)
box = op.getarg(1)
if isinstance(box, ConstInt):
loc1 = self._loc_of_const_longlong(r_longlong(box.value))
loc2 = None # unused
else:
loc1 = self.rm.make_sure_var_in_reg(box)
tmpxvar = TempVar()
loc2 = self.xrm.force_allocate_reg(tmpxvar, [op])
self.xrm.possibly_free_var(tmpxvar)
self.perform_llong(op, [loc1, loc2], loc0)
def _consider_llong_from_uint(self, op):
assert IS_X86_32
loc0 = self.xrm.force_allocate_reg(op)
loc1 = self.rm.make_sure_var_in_reg(op.getarg(1))
self.perform_llong(op, [loc1], loc0)
def _consider_math_sqrt(self, op):
loc0 = self.xrm.force_result_in_reg(op, op.getarg(1))
self.perform_math(op, [loc0], loc0)
def _consider_threadlocalref_get(self, op):
if self.translate_support_code:
offset = op.getarg(1).getint() # getarg(0) == 'threadlocalref_get'
calldescr = op.getdescr()
size = calldescr.get_result_size()
sign = calldescr.is_result_signed()
resloc = self.force_allocate_reg(op)
self.assembler.threadlocalref_get(offset, resloc, size, sign)
else:
self._consider_call(op)
def _call(self, op, arglocs, gc_level):
# we need to save registers on the stack:
#
# - at least the non-callee-saved registers
# (gc_level == SAVE_DEFAULT_REGS)
#
# - if gc_level == SAVE_GCREF_REGS we save also the callee-saved
# registers that contain GC pointers
#
# - gc_level == SAVE_ALL_REGS for CALL_MAY_FORCE or CALL_ASSEMBLER. We
# have to save all regs anyway, in case we need to do
# cpu.force(). The issue is that grab_frame_values() would
# not be able to locate values in callee-saved registers.
#
if gc_level == SAVE_ALL_REGS:
save_all_regs = SAVE_ALL_REGS
else:
save_all_regs = SAVE_DEFAULT_REGS
self.xrm.before_call(save_all_regs=save_all_regs)
if gc_level == SAVE_GCREF_REGS:
gcrootmap = self.assembler.cpu.gc_ll_descr.gcrootmap
# we save all the GCREF registers for shadowstack and asmgcc for now
# --- for asmgcc too: we can't say "register x is a gc ref"
# without distinguishing call sites, which we don't do any
# more for now.
if gcrootmap: # and gcrootmap.is_shadow_stack:
save_all_regs = SAVE_GCREF_REGS
self.rm.before_call(save_all_regs=save_all_regs)
if op.type != 'v':
if op.type == FLOAT:
resloc = self.xrm.after_call(op)
else:
resloc = self.rm.after_call(op)
else:
resloc = None
self.perform(op, arglocs, resloc)
def _consider_call(self, op, guard_not_forced=False, first_arg_index=1):
calldescr = op.getdescr()
assert isinstance(calldescr, CallDescr)
assert len(calldescr.arg_classes) == op.numargs() - first_arg_index
size = calldescr.get_result_size()
sign = calldescr.is_result_signed()
if sign:
sign_loc = imm1
else:
sign_loc = imm0
#
effectinfo = calldescr.get_extra_info()
if guard_not_forced:
gc_level = SAVE_ALL_REGS
elif effectinfo is None or effectinfo.check_can_collect():
gc_level = SAVE_GCREF_REGS
else:
gc_level = SAVE_DEFAULT_REGS
#
self._call(op, [imm(size), sign_loc] +
[self.loc(op.getarg(i)) for i in range(op.numargs())],
gc_level=gc_level)
def _consider_real_call(self, op):
effectinfo = op.getdescr().get_extra_info()
assert effectinfo is not None
oopspecindex = effectinfo.oopspecindex
if oopspecindex != EffectInfo.OS_NONE:
if IS_X86_32:
# support for some of the llong operations,
# which only exist on x86-32
if oopspecindex in (EffectInfo.OS_LLONG_ADD,
EffectInfo.OS_LLONG_SUB,
EffectInfo.OS_LLONG_AND,
EffectInfo.OS_LLONG_OR,
EffectInfo.OS_LLONG_XOR):
return self._consider_llong_binop_xx(op)
if oopspecindex == EffectInfo.OS_LLONG_TO_INT:
return self._consider_llong_to_int(op)
if oopspecindex == EffectInfo.OS_LLONG_FROM_INT:
return self._consider_llong_from_int(op)
if oopspecindex == EffectInfo.OS_LLONG_FROM_UINT:
return self._consider_llong_from_uint(op)
if (oopspecindex == EffectInfo.OS_LLONG_EQ or
oopspecindex == EffectInfo.OS_LLONG_NE):
return self._consider_llong_eq_ne_xx(op)
if oopspecindex == EffectInfo.OS_LLONG_LT:
if self._maybe_consider_llong_lt(op):
return
if oopspecindex == EffectInfo.OS_MATH_SQRT:
return self._consider_math_sqrt(op)
if oopspecindex == EffectInfo.OS_THREADLOCALREF_GET:
return self._consider_threadlocalref_get(op)
if oopspecindex == EffectInfo.OS_MATH_READ_TIMESTAMP:
return self._consider_math_read_timestamp(op)
self._consider_call(op)
consider_call_i = _consider_real_call
consider_call_r = _consider_real_call
consider_call_f = _consider_real_call
consider_call_n = _consider_real_call
def _consider_call_may_force(self, op):
self._consider_call(op, guard_not_forced=True)
consider_call_may_force_i = _consider_call_may_force
consider_call_may_force_r = _consider_call_may_force
consider_call_may_force_f = _consider_call_may_force
consider_call_may_force_n = _consider_call_may_force
def _consider_call_release_gil(self, op):
# [Const(save_err), func_addr, args...]
self._consider_call(op, guard_not_forced=True, first_arg_index=2)
consider_call_release_gil_i = _consider_call_release_gil
consider_call_release_gil_f = _consider_call_release_gil
consider_call_release_gil_n = _consider_call_release_gil
def consider_check_memory_error(self, op):
x = self.rm.make_sure_var_in_reg(op.getarg(0))
self.perform_discard(op, [x])
def _consider_call_assembler(self, op):
locs = self.locs_for_call_assembler(op)
self._call(op, locs, gc_level=SAVE_ALL_REGS)
consider_call_assembler_i = _consider_call_assembler
consider_call_assembler_r = _consider_call_assembler
consider_call_assembler_f = _consider_call_assembler
consider_call_assembler_n = _consider_call_assembler
def consider_cond_call_gc_wb(self, op):
assert op.type == 'v'
args = op.getarglist()
N = len(args)
# we force all arguments in a reg (unless they are Consts),
# because it will be needed anyway by the following gc_load
# It avoids loading it twice from the memory.
arglocs = [self.rm.make_sure_var_in_reg(op.getarg(i), args)
for i in range(N)]
self.perform_discard(op, arglocs)
consider_cond_call_gc_wb_array = consider_cond_call_gc_wb
def consider_cond_call(self, op):
# A 32-bit-only, asmgcc-only issue: 'cond_call_register_arguments'
# contains edi and esi, which are also in asmgcroot.py:ASM_FRAMEDATA.
# We must make sure that edi and esi do not contain GC pointers.
if IS_X86_32 and self.assembler._is_asmgcc():
for box, loc in self.rm.reg_bindings.items():
if (loc == edi or loc == esi) and box.type == REF:
self.rm.force_spill_var(box)
assert box not in self.rm.reg_bindings
#
args = op.getarglist()
assert 2 <= len(args) <= 4 + 2 # maximum 4 arguments
v_func = args[1]
assert isinstance(v_func, Const)
imm_func = self.rm.convert_to_imm(v_func)
# Delicate ordering here. First get the argument's locations.
# If this also contains args[0], this returns the current
# location too.
arglocs = [self.loc(args[i]) for i in range(2, len(args))]
if op.type == 'v':
# a plain COND_CALL. Calls the function when args[0] is
# true. Often used just after a comparison operation.
gcmap = self.get_gcmap()
self.load_condition_into_cc(op.getarg(0))
resloc = None
else:
# COND_CALL_VALUE_I/R. Calls the function when args[0]
# is equal to 0 or NULL. Returns the result from the
# function call if done, or args[0] if it was not 0/NULL.
# Implemented by forcing the result to live in the same
# register as args[0], and overwriting it if we really do
# the call.
# Load the register for the result. Possibly reuse 'args[0]'.
# But the old value of args[0], if it survives, is first
# spilled away. We can't overwrite any of op.args[2:] here.
resloc = self.rm.force_result_in_reg(op, args[0],
forbidden_vars=args[2:])
# Get the gcmap here, possibly including the spilled
# location, and always excluding the 'resloc' register.
# Some more details: the only interesting case is the case
# where we're doing the call (if we are not, the gcmap is
# not used); and in this case, the gcmap must include the
# spilled location (it contains a valid GC pointer to fix
# during the call if a GC occurs), and never 'resloc'
# (it will be overwritten with the result of the call, which
# is not computed yet if a GC occurs).
#
# (Note that the spilled value is always NULL at the moment
# if the call really occurs, but it's not worth the effort to
# not list it in the gcmap and get crashes if we tweak
# COND_CALL_VALUE_R in the future)
gcmap = self.get_gcmap([resloc])
# Test the register for the result.
self.assembler.test_location(resloc)
self.assembler.guard_success_cc = rx86.Conditions['Z']
self.assembler.cond_call(gcmap, imm_func, arglocs, resloc)
consider_cond_call_value_i = consider_cond_call
consider_cond_call_value_r = consider_cond_call
def consider_call_malloc_nursery(self, op):
size_box = op.getarg(0)
assert isinstance(size_box, ConstInt)
size = size_box.getint()
# hint: try to move unrelated registers away from ecx and edx now
self.rm.spill_or_move_registers_before_call([ecx, edx])
# the result will be in ecx
self.rm.force_allocate_reg(op, selected_reg=ecx)
#
# We need edx as a temporary, but otherwise don't save any more
# register. See comments in _build_malloc_slowpath().
tmp_box = TempVar()
self.rm.force_allocate_reg(tmp_box, selected_reg=edx)
gcmap = self.get_gcmap([ecx, edx]) # allocate the gcmap *before*
self.rm.possibly_free_var(tmp_box)
#
gc_ll_descr = self.assembler.cpu.gc_ll_descr
self.assembler.malloc_cond(
gc_ll_descr.get_nursery_free_addr(),
gc_ll_descr.get_nursery_top_addr(),
size, gcmap)
def consider_call_malloc_nursery_varsize_frame(self, op):
size_box = op.getarg(0)
assert not isinstance(size_box, Const) # we cannot have a const here!
# sizeloc must be in a register, but we can free it now
# (we take care explicitly of conflicts with ecx or edx)
sizeloc = self.rm.make_sure_var_in_reg(size_box)
self.rm.spill_or_move_registers_before_call([ecx, edx]) # sizeloc safe
self.rm.possibly_free_var(size_box)
# the result will be in ecx
self.rm.force_allocate_reg(op, selected_reg=ecx)
# we need edx as a temporary
tmp_box = TempVar()
self.rm.force_allocate_reg(tmp_box, selected_reg=edx)
gcmap = self.get_gcmap([ecx, edx]) # allocate the gcmap *before*
self.rm.possibly_free_var(tmp_box)
#
gc_ll_descr = self.assembler.cpu.gc_ll_descr
self.assembler.malloc_cond_varsize_frame(
gc_ll_descr.get_nursery_free_addr(),
gc_ll_descr.get_nursery_top_addr(),
sizeloc, gcmap)
def consider_call_malloc_nursery_varsize(self, op):
gc_ll_descr = self.assembler.cpu.gc_ll_descr
if not hasattr(gc_ll_descr, 'max_size_of_young_obj'):
raise Exception("unreachable code")
# for boehm, this function should never be called
arraydescr = op.getdescr()
length_box = op.getarg(2)
assert not isinstance(length_box, Const) # we cannot have a const here!
# can only use spill_or_move_registers_before_call() as a hint if
# we are sure that length_box stays alive and won't be freed now
# (it should always be the case, see below, but better safe than sorry)
if self.rm.stays_alive(length_box):
self.rm.spill_or_move_registers_before_call([ecx, edx])
# the result will be in ecx
self.rm.force_allocate_reg(op, selected_reg=ecx)
# we need edx as a temporary
tmp_box = TempVar()
self.rm.force_allocate_reg(tmp_box, selected_reg=edx)
gcmap = self.get_gcmap([ecx, edx]) # allocate the gcmap *before*
self.rm.possibly_free_var(tmp_box)
# length_box always survives: it's typically also present in the
# next operation that will copy it inside the new array. It's
# fine to load it from the stack too, as long as it is != ecx, edx.
lengthloc = self.rm.loc(length_box)
self.rm.possibly_free_var(length_box)
#
itemsize = op.getarg(1).getint()
maxlength = (gc_ll_descr.max_size_of_young_obj - WORD * 2)
self.assembler.malloc_cond_varsize(
op.getarg(0).getint(),
gc_ll_descr.get_nursery_free_addr(),
gc_ll_descr.get_nursery_top_addr(),
lengthloc, itemsize, maxlength, gcmap, arraydescr)
def get_gcmap(self, forbidden_regs=[], noregs=False):
frame_depth = self.fm.get_frame_depth()
gcmap = allocate_gcmap(self.assembler, frame_depth, JITFRAME_FIXED_SIZE)
for box, loc in self.rm.reg_bindings.iteritems():
if loc in forbidden_regs:
continue
if box.type == REF and self.rm.is_still_alive(box):
assert not noregs
assert isinstance(loc, RegLoc)
val = gpr_reg_mgr_cls.all_reg_indexes[loc.value]
gcmap[val // WORD // 8] |= r_uint(1) << (val % (WORD * 8))
for box, loc in self.fm.bindings.iteritems():
if box.type == REF and self.rm.is_still_alive(box):
assert isinstance(loc, FrameLoc)
val = loc.position + JITFRAME_FIXED_SIZE
gcmap[val // WORD // 8] |= r_uint(1) << (val % (WORD * 8))
return gcmap
def consider_gc_store(self, op):
args = op.getarglist()
base_loc = self.rm.make_sure_var_in_reg(op.getarg(0), args)
size_box = op.getarg(3)
assert isinstance(size_box, ConstInt)
size = size_box.value
assert size >= 1
if size == 1:
need_lower_byte = True
else:
need_lower_byte = False
value_loc = self.make_sure_var_in_reg(op.getarg(2), args,
need_lower_byte=need_lower_byte)
ofs_loc = self.rm.make_sure_var_in_reg(op.getarg(1), args)
self.perform_discard(op, [base_loc, ofs_loc, value_loc,
imm(size)])
def consider_gc_store_indexed(self, op):
args = op.getarglist()
base_loc = self.rm.make_sure_var_in_reg(op.getarg(0), args)
scale_box = op.getarg(3)
offset_box = op.getarg(4)
size_box = op.getarg(5)
assert isinstance(scale_box, ConstInt)
assert isinstance(offset_box, ConstInt)
assert isinstance(size_box, ConstInt)
factor = scale_box.value
offset = offset_box.value
size = size_box.value
assert size >= 1
if size == 1:
need_lower_byte = True
else:
need_lower_byte = False
value_loc = self.make_sure_var_in_reg(op.getarg(2), args,
need_lower_byte=need_lower_byte)
ofs_loc = self.rm.make_sure_var_in_reg(op.getarg(1), args)
self.perform_discard(op, [base_loc, ofs_loc, value_loc,
imm(factor), imm(offset), imm(size)])
def consider_increment_debug_counter(self, op):
base_loc = self.loc(op.getarg(0))
self.perform_discard(op, [base_loc])
def _consider_gc_load(self, op):
args = op.getarglist()
base_loc = self.rm.make_sure_var_in_reg(op.getarg(0), args)
ofs_loc = self.rm.make_sure_var_in_reg(op.getarg(1), args)
result_loc = self.force_allocate_reg(op)
size_box = op.getarg(2)
assert isinstance(size_box, ConstInt)
nsize = size_box.value # negative for "signed"
size_loc = imm(abs(nsize))
if nsize < 0:
sign_loc = imm1
else:
sign_loc = imm0
self.perform(op, [base_loc, ofs_loc, size_loc, sign_loc], result_loc)
consider_gc_load_i = _consider_gc_load
consider_gc_load_r = _consider_gc_load
consider_gc_load_f = _consider_gc_load
def _consider_gc_load_indexed(self, op):
args = op.getarglist()
base_loc = self.rm.make_sure_var_in_reg(op.getarg(0), args)
ofs_loc = self.rm.make_sure_var_in_reg(op.getarg(1), args)
result_loc = self.force_allocate_reg(op)
scale_box = op.getarg(2)
offset_box = op.getarg(3)
size_box = op.getarg(4)
assert isinstance(scale_box, ConstInt)
assert isinstance(offset_box, ConstInt)
assert isinstance(size_box, ConstInt)
scale = scale_box.value
offset = offset_box.value
nsize = size_box.value # negative for "signed"
size_loc = imm(abs(nsize))
if nsize < 0:
sign_loc = imm1
else:
sign_loc = imm0
locs = [base_loc, ofs_loc, imm(scale), imm(offset), size_loc, sign_loc]
self.perform(op, locs, result_loc)
consider_gc_load_indexed_i = _consider_gc_load_indexed
consider_gc_load_indexed_r = _consider_gc_load_indexed
consider_gc_load_indexed_f = _consider_gc_load_indexed
def consider_int_is_true(self, op):
# doesn't need arg to be in a register
argloc = self.loc(op.getarg(0))
resloc = self.force_allocate_reg_or_cc(op)
self.perform(op, [argloc], resloc)
consider_int_is_zero = consider_int_is_true
def _consider_same_as(self, op):
argloc = self.loc(op.getarg(0))
resloc = self.force_allocate_reg(op)
self.perform(op, [argloc], resloc)
consider_cast_ptr_to_int = _consider_same_as
consider_cast_int_to_ptr = _consider_same_as
consider_same_as_i = _consider_same_as
consider_same_as_r = _consider_same_as
consider_same_as_f = _consider_same_as
def consider_load_from_gc_table(self, op):
resloc = self.rm.force_allocate_reg(op)
self.perform(op, [], resloc)
def consider_int_force_ge_zero(self, op):
argloc = self.make_sure_var_in_reg(op.getarg(0))
resloc = self.force_allocate_reg(op, [op.getarg(0)])
self.perform(op, [argloc], resloc)
def consider_copystrcontent(self, op):
self._consider_copystrcontent(op, is_unicode=False)
def consider_copyunicodecontent(self, op):
self._consider_copystrcontent(op, is_unicode=True)
def _consider_copystrcontent(self, op, is_unicode):
# compute the source address
args = op.getarglist()
base_loc = self.rm.make_sure_var_in_reg(args[0], args)
ofs_loc = self.rm.make_sure_var_in_reg(args[2], args)
assert args[0] is not args[1] # forbidden case of aliasing
srcaddr_box = TempVar()
forbidden_vars = [args[1], args[3], args[4], srcaddr_box]
srcaddr_loc = self.rm.force_allocate_reg(srcaddr_box, forbidden_vars)
self._gen_address_inside_string(base_loc, ofs_loc, srcaddr_loc,
is_unicode=is_unicode)
# compute the destination address
base_loc = self.rm.make_sure_var_in_reg(args[1], forbidden_vars)
ofs_loc = self.rm.make_sure_var_in_reg(args[3], forbidden_vars)
forbidden_vars = [args[4], srcaddr_box]
dstaddr_box = TempVar()
dstaddr_loc = self.rm.force_allocate_reg(dstaddr_box, forbidden_vars)
self._gen_address_inside_string(base_loc, ofs_loc, dstaddr_loc,
is_unicode=is_unicode)
# compute the length in bytes
length_box = args[4]
length_loc = self.loc(length_box)
if is_unicode:
forbidden_vars = [srcaddr_box, dstaddr_box]
bytes_box = TempVar()
bytes_loc = self.rm.force_allocate_reg(bytes_box, forbidden_vars)
scale = self._get_unicode_item_scale()
if not (isinstance(length_loc, ImmedLoc) or
isinstance(length_loc, RegLoc)):
self.assembler.mov(length_loc, bytes_loc)
length_loc = bytes_loc
self.assembler.load_effective_addr(length_loc, 0, scale, bytes_loc)
length_box = bytes_box
length_loc = bytes_loc
# call memcpy()
self.rm.before_call()
self.xrm.before_call()
self.assembler.simple_call_no_collect(imm(self.assembler.memcpy_addr),
[dstaddr_loc, srcaddr_loc, length_loc])
self.rm.possibly_free_var(length_box)
self.rm.possibly_free_var(dstaddr_box)
self.rm.possibly_free_var(srcaddr_box)
def _gen_address_inside_string(self, baseloc, ofsloc, resloc, is_unicode):
if is_unicode:
ofs_items, _, _ = symbolic.get_array_token(rstr.UNICODE,
self.translate_support_code)
scale = self._get_unicode_item_scale()
else:
ofs_items, itemsize, _ = symbolic.get_array_token(rstr.STR,
self.translate_support_code)
assert itemsize == 1
ofs_items -= 1 # for the extra null character
scale = 0
self.assembler.load_effective_addr(ofsloc, ofs_items, scale,
resloc, baseloc)
def _get_unicode_item_scale(self):
_, itemsize, _ = symbolic.get_array_token(rstr.UNICODE,
self.translate_support_code)
if itemsize == 4:
return 2
elif itemsize == 2:
return 1
else:
raise AssertionError("bad unicode item size")
def _consider_math_read_timestamp(self, op):
# hint: try to move unrelated registers away from eax and edx now
self.rm.spill_or_move_registers_before_call([eax, edx])
tmpbox_high = TempVar()
self.rm.force_allocate_reg(tmpbox_high, selected_reg=eax)
if longlong.is_64_bit:
# on 64-bit, use rax as temporary register and returns the
# result in rdx
result_loc = self.rm.force_allocate_reg(op,
selected_reg=edx)
self.perform_math(op, [], result_loc)
else:
# on 32-bit, use both eax and edx as temporary registers,
# use a temporary xmm register, and returns the result in
# another xmm register.
tmpbox_low = TempVar()
self.rm.force_allocate_reg(tmpbox_low, selected_reg=edx)
xmmtmpbox = TempVar()
xmmtmploc = self.xrm.force_allocate_reg(xmmtmpbox)
result_loc = self.xrm.force_allocate_reg(op)
self.perform_math(op, [xmmtmploc], result_loc)
self.xrm.possibly_free_var(xmmtmpbox)
self.rm.possibly_free_var(tmpbox_low)
self.rm.possibly_free_var(tmpbox_high)
def compute_hint_frame_locations(self, operations):
# optimization only: fill in the 'hint_frame_pos' dictionary
# of 'fm' based on the JUMP at the end of the loop, by looking
# at where we would like the boxes to be after the jump.
op = operations[-1]
if op.getopnum() != rop.JUMP:
return
self.final_jump_op = op
descr = op.getdescr()
assert isinstance(descr, TargetToken)
if descr._ll_loop_code != 0:
# if the target LABEL was already compiled, i.e. if it belongs
# to some already-compiled piece of code
self._compute_hint_frame_locations_from_descr(descr)
#else:
# The loop ends in a JUMP going back to a LABEL in the same loop.
# We cannot fill 'hint_frame_pos' immediately, but we can
# wait until the corresponding consider_label() to know where the
# we would like the boxes to be after the jump.
def _compute_hint_frame_locations_from_descr(self, descr):
arglocs = descr._x86_arglocs
jump_op = self.final_jump_op
assert len(arglocs) == jump_op.numargs()
for i in range(jump_op.numargs()):
box = jump_op.getarg(i)
if not isinstance(box, Const):
loc = arglocs[i]
if isinstance(loc, FrameLoc):
self.fm.hint_frame_pos[box] = self.fm.get_loc_index(loc)
def consider_jump(self, op):
assembler = self.assembler
assert self.jump_target_descr is None
descr = op.getdescr()
assert isinstance(descr, TargetToken)
arglocs = descr._x86_arglocs
self.jump_target_descr = descr
# Part about non-floats
src_locations1 = []
dst_locations1 = []
# Part about floats
src_locations2 = []
dst_locations2 = []
# Build the four lists
for i in range(op.numargs()):
box = op.getarg(i)
src_loc = self.loc(box)
dst_loc = arglocs[i]
if box.type != FLOAT and not box.is_vector():
src_locations1.append(src_loc)
dst_locations1.append(dst_loc)
else:
src_locations2.append(src_loc)
dst_locations2.append(dst_loc)
# Do we have a temp var?
if IS_X86_64:
tmpreg = X86_64_SCRATCH_REG
xmmtmp = X86_64_XMM_SCRATCH_REG
else:
tmpreg = None
xmmtmp = None
# Do the remapping
remap_frame_layout_mixed(assembler,
src_locations1, dst_locations1, tmpreg,
src_locations2, dst_locations2, xmmtmp)
self.possibly_free_vars_for_op(op)
assembler.closing_jump(self.jump_target_descr)
def consider_enter_portal_frame(self, op):
self.assembler.enter_portal_frame(op)
def consider_leave_portal_frame(self, op):
self.assembler.leave_portal_frame(op)
def consider_jit_debug(self, op):
pass
def _consider_force_spill(self, op):
# This operation is used only for testing
self.force_spill_var(op.getarg(0))
def consider_force_token(self, op):
# XXX for now we return a regular reg
#self.rm.force_allocate_frame_reg(op)
self.assembler.force_token(self.rm.force_allocate_reg(op))
def consider_label(self, op):
descr = op.getdescr()
assert isinstance(descr, TargetToken)
inputargs = op.getarglist()
arglocs = [None] * len(inputargs)
#
# we use force_spill() on the boxes that are not going to be really
# used any more in the loop, but that are kept alive anyway
# by being in a next LABEL's or a JUMP's argument or fail_args
# of some guard
position = self.rm.position
for arg in inputargs:
assert not isinstance(arg, Const)
if self.last_real_usage.get(arg, -1) <= position:
self.force_spill_var(arg)
#
# we need to make sure that no variable is stored in ebp
for arg in inputargs:
if self.loc(arg) is ebp:
loc2 = self.fm.loc(arg)
self.assembler.mc.MOV(loc2, ebp)
self.rm.bindings_to_frame_reg.clear()
#
for i in range(len(inputargs)):
arg = inputargs[i]
assert not isinstance(arg, Const)
loc = self.loc(arg)
assert loc is not ebp
arglocs[i] = loc
if isinstance(loc, RegLoc):
self.fm.mark_as_free(arg)
#
# if we are too close to the start of the loop, the label's target may
# get overridden by redirect_call_assembler(). (rare case)
self.flush_loop()
#
descr._x86_arglocs = arglocs
descr._ll_loop_code = self.assembler.mc.get_relative_pos()
descr._x86_clt = self.assembler.current_clt
self.assembler.target_tokens_currently_compiling[descr] = None
self.possibly_free_vars_for_op(op)
self.assembler.label()
#
# if the LABEL's descr is precisely the target of the JUMP at the
# end of the same loop, i.e. if what we are compiling is a single
# loop that ends up jumping to this LABEL, then we can now provide
# the hints about the expected position of the spilled variables.
jump_op = self.final_jump_op
if jump_op is not None and jump_op.getdescr() is descr:
self._compute_hint_frame_locations_from_descr(descr)
def consider_guard_not_forced_2(self, op):
self.rm.before_call(op.getfailargs(), save_all_regs=True)
self.xrm.before_call(op.getfailargs(), save_all_regs=True)
fail_locs = [self.loc(v) for v in op.getfailargs()]
self.assembler.store_force_descr(op, fail_locs,
self.fm.get_frame_depth())
self.possibly_free_vars(op.getfailargs())
def consider_keepalive(self, op):
pass
def _scaled_addr(self, index_loc, itemsize_loc,
base_loc, ofs_loc):
assert isinstance(itemsize_loc, ImmedLoc)
itemsize = itemsize_loc.value
if isinstance(index_loc, ImmedLoc):
temp_loc = imm(index_loc.value * itemsize)
shift = 0
else:
assert valid_addressing_size(itemsize), "rewrite did not correctly handle shift/mul!"
temp_loc = index_loc
shift = get_scale(itemsize)
assert isinstance(ofs_loc, ImmedLoc)
return AddressLoc(base_loc, temp_loc, shift, ofs_loc.value)
def consider_zero_array(self, op):
_, baseofs, _ = unpack_arraydescr(op.getdescr())
length_box = op.getarg(2)
scale_box = op.getarg(3)
assert isinstance(scale_box, ConstInt)
start_itemsize = scale_box.value
len_scale_box = op.getarg(4)
assert isinstance(len_scale_box, ConstInt)
len_itemsize = len_scale_box.value
# rewrite handles the mul of a constant length box
constbytes = -1
if isinstance(length_box, ConstInt):
constbytes = length_box.getint()
args = op.getarglist()
base_loc = self.rm.make_sure_var_in_reg(args[0], args)
startindex_loc = self.rm.make_sure_var_in_reg(args[1], args)
if 0 <= constbytes <= 16 * 8:
if IS_X86_64:
null_loc = X86_64_XMM_SCRATCH_REG
else:
null_box = TempVar()
null_loc = self.xrm.force_allocate_reg(null_box)
self.xrm.possibly_free_var(null_box)
self.perform_discard(op, [base_loc, startindex_loc,
imm(constbytes), imm(start_itemsize),
imm(baseofs), null_loc])
else:
# base_loc and startindex_loc are in two regs here (or they are
# immediates). Compute the dstaddr_loc, which is the raw
# address that we will pass as first argument to memset().
# It can be in the same register as either one, but not in
# args[2], because we're still needing the latter.
dstaddr_box = TempVar()
dstaddr_loc = self.rm.force_allocate_reg(dstaddr_box, [args[2]])
itemsize_loc = imm(start_itemsize)
dst_addr = self._scaled_addr(startindex_loc, itemsize_loc,
base_loc, imm(baseofs))
self.assembler.mc.LEA(dstaddr_loc, dst_addr)
#
if constbytes >= 0:
length_loc = imm(constbytes)
else:
# load length_loc in a register different than dstaddr_loc
length_loc = self.rm.make_sure_var_in_reg(length_box,
[dstaddr_box])
if len_itemsize > 1:
# we need a register that is different from dstaddr_loc,
# but which can be identical to length_loc (as usual,
# only if the length_box is not used by future operations)
bytes_box = TempVar()
bytes_loc = self.rm.force_allocate_reg(bytes_box,
[dstaddr_box])
len_itemsize_loc = imm(len_itemsize)
b_adr = self._scaled_addr(length_loc, len_itemsize_loc, imm0, imm0)
self.assembler.mc.LEA(bytes_loc, b_adr)
length_box = bytes_box
length_loc = bytes_loc
#
# call memset()
self.rm.before_call()
self.xrm.before_call()
self.assembler.simple_call_no_collect(
imm(self.assembler.memset_addr),
[dstaddr_loc, imm0, length_loc])
self.rm.possibly_free_var(length_box)
self.rm.possibly_free_var(dstaddr_box)
def not_implemented_op(self, op):
not_implemented("not implemented operation: %s" % op.getopname())
oplist = [RegAlloc.not_implemented_op] * rop._LAST
import itertools
iterate = itertools.chain(RegAlloc.__dict__.iteritems(),
VectorRegallocMixin.__dict__.iteritems())
for name, value in iterate:
if name.startswith('consider_'):
name = name[len('consider_'):]
num = getattr(rop, name.upper())
oplist[num] = value
def get_ebp_ofs(base_ofs, position):
# Argument is a frame position (0, 1, 2...).
# Returns (ebp+20), (ebp+24), (ebp+28)...
# i.e. the n'th word beyond the fixed frame size.
return base_ofs + WORD * (position + JITFRAME_FIXED_SIZE)
def not_implemented(msg):
msg = '[x86/regalloc] %s\n' % msg
if we_are_translated():
llop.debug_print(lltype.Void, msg)
raise NotImplementedError(msg)
|