1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
|
import py
from rpython.rlib.objectmodel import ComputedIntSymbolic, we_are_translated
from rpython.rlib.objectmodel import specialize
from rpython.rlib.unroll import unrolling_iterable
from rpython.rlib.rarithmetic import intmask
from rpython.rtyper.lltypesystem import rffi
from rpython.jit.backend.x86.arch import IS_X86_64
BYTE_REG_FLAG = 0x20
NO_BASE_REGISTER = -1
class R(object):
# the following are synonyms for rax, rcx, etc. on 64 bits
eax, ecx, edx, ebx, esp, ebp, esi, edi = range(8)
# 8-bit registers
al, cl, dl, bl, ah, ch, dh, bh = [reg | BYTE_REG_FLAG for reg in range(8)]
# xmm registers
xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 = range(8)
# the following are extra registers available only on 64 bits
r8, r9, r10, r11, r12, r13, r14, r15 = range(8, 16)
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15 = range(8, 16)
# These replace ah, ch, dh, bh when the REX-prefix is used
spl, bpl, sil, dil = ah, ch, dh, bh
# Low-byte of extra registers
r8l, r9l, r10l, r11l, r12l, r13l, r14l, r15l = [reg | BYTE_REG_FLAG for reg in range(8, 16)]
names = ['eax', 'ecx', 'edx', 'ebx', 'esp', 'ebp', 'esi', 'edi',
'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15']
xmmnames = ['xmm%d' % i for i in range(16)]
def low_byte(reg):
# On 32-bit, this only works for 0 <= reg < 4. The caller checks that.
# On 64-bit, it works for any register, but the assembler instruction
# must include a REX prefix (possibly with no modifier flags).
return reg | BYTE_REG_FLAG
def high_byte(reg):
# This probably shouldn't be called in 64-bit mode, since to use the
# high-byte registers you have to make sure that there is no REX-prefix
assert 0 <= reg < 4
return (reg + 4) | BYTE_REG_FLAG
def single_byte(value):
return -128 <= value < 128
def fits_in_32bits(value):
return -2147483648 <= value <= 2147483647
# ____________________________________________________________
# Emit a single char
def encode_char(mc, _, char, orbyte):
mc.writechar(chr(char | orbyte))
return 0
# ____________________________________________________________
# Encode a register number in the orbyte
def reg_number_3bits(mc, reg):
if mc.WORD == 4:
assert 0 <= reg < 8
return reg
else:
assert 0 <= reg < 16
return reg & 7
@specialize.arg(2)
def encode_register(mc, reg, factor, orbyte):
return orbyte | (reg_number_3bits(mc, reg) * factor)
@specialize.arg(2)
def rex_register(mc, reg, factor):
if reg >= 8:
if factor == 1:
return REX_B
elif factor == 8:
return REX_R
else:
raise ValueError(factor)
return 0
def register(argnum, factor=1):
assert factor in (1, 8)
return encode_register, argnum, factor, rex_register
@specialize.arg(2)
def rex_byte_register(mc, reg, factor):
assert reg & BYTE_REG_FLAG
return rex_register(mc, reg & ~BYTE_REG_FLAG, factor)
@specialize.arg(2)
def encode_byte_register(mc, reg, factor, orbyte):
assert reg & BYTE_REG_FLAG
return encode_register(mc, reg & ~BYTE_REG_FLAG, factor, orbyte)
def byte_register(argnum, factor=1):
assert factor in (1, 8)
return encode_byte_register, argnum, factor, rex_byte_register
# ____________________________________________________________
# Encode a constant in the orbyte
def encode_orbyte(mc, _, constant, orbyte):
return orbyte | constant
def orbyte(value):
return encode_orbyte, None, value, None
# ____________________________________________________________
# Emit an immediate value
@specialize.arg(2)
def encode_immediate(mc, immediate, width, orbyte):
assert orbyte == 0
if width == 'b':
mc.writeimm8(immediate)
elif width == 'h':
mc.writeimm16(immediate)
elif width == 'o':
return immediate # in the 'orbyte' for the next command
elif width == 'q' and mc.WORD == 8:
mc.writeimm64(immediate)
else:
mc.writeimm32(immediate)
return 0
def immediate(argnum, width='i'):
return encode_immediate, argnum, width, None
# ____________________________________________________________
# Emit an immediate displacement (relative to the cur insn)
def encode_relative(mc, relative_target, _, orbyte):
assert orbyte == 0
mc.writeimm32(relative_target)
return 0
def relative(argnum):
return encode_relative, argnum, None, None
# ____________________________________________________________
# Emit a mod/rm referencing a stack location [EBP+offset]
@specialize.arg(2)
def encode_stack_bp(mc, offset, force_32bits, orbyte):
if not force_32bits and single_byte(offset):
mc.writechar(chr(0x40 | orbyte | R.ebp))
mc.writeimm8(offset)
else:
mc.writechar(chr(0x80 | orbyte | R.ebp))
mc.writeimm32(offset)
return 0
def stack_bp(argnum, force_32bits=False):
return encode_stack_bp, argnum, force_32bits, None
# ____________________________________________________________
# Emit a mod/rm referencing a stack location [ESP+offset]
def encode_stack_sp(mc, offset, _, orbyte):
SIB = chr((R.esp<<3) | R.esp) # use [esp+(no index)+offset]
if offset == 0:
mc.writechar(chr(0x04 | orbyte))
mc.writechar(SIB)
elif single_byte(offset):
mc.writechar(chr(0x44 | orbyte))
mc.writechar(SIB)
mc.writeimm8(offset)
else:
mc.writechar(chr(0x84 | orbyte))
mc.writechar(SIB)
mc.writeimm32(offset)
return 0
def stack_sp(argnum):
return encode_stack_sp, argnum, None, None
# ____________________________________________________________
# Emit a mod/rm referencing a memory location [reg1+offset]
def encode_mem_reg_plus_const(mc, (reg, offset), _, orbyte):
assert reg != R.esp and reg != R.ebp
#
reg1 = reg_number_3bits(mc, reg)
no_offset = offset == 0
SIB = -1
# 64-bits special cases for reg1 == r12 or r13
# (which look like esp or ebp after being truncated to 3 bits)
if mc.WORD == 8:
if reg1 == R.esp: # forces an SIB byte:
SIB = (R.esp<<3) | R.esp # use [r12+(no index)+offset]
elif reg1 == R.ebp:
no_offset = False
# end of 64-bits special cases
if no_offset:
mc.writechar(chr(0x00 | orbyte | reg1))
if SIB >= 0: mc.writechar(chr(SIB))
elif single_byte(offset):
mc.writechar(chr(0x40 | orbyte | reg1))
if SIB >= 0: mc.writechar(chr(SIB))
mc.writeimm8(offset)
else:
mc.writechar(chr(0x80 | orbyte | reg1))
if SIB >= 0: mc.writechar(chr(SIB))
mc.writeimm32(offset)
return 0
def rex_mem_reg_plus_const(mc, (reg, offset), _):
if reg >= 8:
return REX_B
return 0
def mem_reg_plus_const(argnum):
return encode_mem_reg_plus_const, argnum, None, rex_mem_reg_plus_const
# ____________________________________________________________
# Emit a mod/rm referencing an array memory location [reg1+reg2*scale+offset]
def encode_mem_reg_plus_scaled_reg_plus_const(mc,
(reg1, reg2, scaleshift, offset),
_, orbyte):
# emit "reg1 + (reg2 << scaleshift) + offset"
assert reg1 != R.ebp and reg2 != R.esp
assert 0 <= scaleshift < 4
reg2 = reg_number_3bits(mc, reg2)
# Special case for no base register
if reg1 == NO_BASE_REGISTER:
# modrm
mc.writechar(chr(0x04 | orbyte))
# SIB
mc.writechar(chr((scaleshift<<6) | (reg2<<3) | 5))
# We're forced to output a disp32, even if offset == 0
mc.writeimm32(offset)
return 0
reg1 = reg_number_3bits(mc, reg1)
SIB = chr((scaleshift<<6) | (reg2<<3) | reg1)
#
no_offset = offset == 0
# 64-bits special case for reg1 == r13
# (which look like ebp after being truncated to 3 bits)
if mc.WORD == 8:
if reg1 == R.ebp:
no_offset = False
# end of 64-bits special case
if no_offset:
mc.writechar(chr(0x04 | orbyte))
mc.writechar(SIB)
elif single_byte(offset):
mc.writechar(chr(0x44 | orbyte))
mc.writechar(SIB)
mc.writeimm8(offset)
else:
mc.writechar(chr(0x84 | orbyte))
mc.writechar(SIB)
mc.writeimm32(offset)
return 0
def rex_mem_reg_plus_scaled_reg_plus_const(mc,
(reg1, reg2, scaleshift, offset),
_):
rex = 0
if reg1 >= 8: rex |= REX_B
if reg2 >= 8: rex |= REX_X
return rex
def mem_reg_plus_scaled_reg_plus_const(argnum):
return (encode_mem_reg_plus_scaled_reg_plus_const, argnum, None,
rex_mem_reg_plus_scaled_reg_plus_const)
# ____________________________________________________________
# Emit a mod/rm referencing an immediate address that fits in 32-bit
# (the immediate address itself must be explicitely encoded as well,
# with immediate(argnum)).
@specialize.arg(2)
def encode_abs(mc, immediate, _, orbyte):
# expands to either '\x05' on 32-bit, or '\x04\x25' on 64-bit
if mc.WORD == 8:
mc.writechar(chr(0x04 | orbyte))
mc.writechar(chr(0x25))
else:
mc.writechar(chr(0x05 | orbyte))
# followed by an immediate, always 32 bits
mc.writeimm32(immediate)
return 0
def abs_(argnum):
return encode_abs, argnum, None, None
# ____________________________________________________________
# ***X86_64 only***
# Emit a mod/rm referencing an address "RIP + immediate_offset".
@specialize.arg(2)
def encode_rip_offset(mc, immediate, _, orbyte):
assert mc.WORD == 8
mc.writechar(chr(0x05 | orbyte))
mc.writeimm32(immediate)
return 0
def rip_offset(argnum):
return encode_rip_offset, argnum, None, None
# ____________________________________________________________
# For 64-bits mode: the REX.W, REX.R, REX.X, REG.B prefixes
REX_W = 8
REX_R = 4
REX_X = 2
REX_B = 1
@specialize.arg(2)
def encode_rex(mc, rexbyte, w, orbyte):
if mc.WORD == 8:
assert 0 <= rexbyte < 8
mc.writechar(chr(0x40 | w | rexbyte))
else:
assert rexbyte == 0
return 0
@specialize.arg(2)
def encode_rex_opt(mc, rexbyte, _, orbyte):
if mc.WORD == 8:
assert 0 <= rexbyte < 8
if rexbyte != 0:
mc.writechar(chr(0x40 | rexbyte))
else:
assert rexbyte == 0
return 0
# REX prefixes: 'rex_w' generates a REX_W, forcing the instruction
# to operate on 64-bit. 'rex_nw' doesn't, so the instruction operates
# on 32-bit or less; the complete REX prefix is omitted if unnecessary.
# 'rex_fw' is a special case which doesn't generate a REX_W but forces
# the REX prefix in all cases. It is only useful on instructions which
# have an 8-bit register argument, to force access to the "sil" or "dil"
# registers (as opposed to "ah-dh").
rex_w = encode_rex, 0, REX_W, None # a REX.W prefix
rex_nw = encode_rex_opt, 0, 0, None # an optional REX prefix
rex_fw = encode_rex, 0, 0, None # a forced REX prefix
# ____________________________________________________________
def insn(*encoding):
def encode(mc, *args):
rexbyte = 0
if mc.WORD == 8:
# compute the REX byte, if any
for encode_step, arg, extra, rex_step in encoding_steps:
if rex_step:
if arg is not None:
arg = args[arg-1]
rexbyte |= rex_step(mc, arg, extra)
args = (rexbyte,) + args
# emit the bytes of the instruction
orbyte = 0
for encode_step, arg, extra, rex_step in encoding_steps:
if arg is not None:
arg = args[arg]
orbyte = encode_step(mc, arg, extra, orbyte)
assert orbyte == 0
#
encoding_steps = []
for step in encoding:
if isinstance(step, str):
for c in step:
encoding_steps.append((encode_char, None, ord(c), None))
else:
assert type(step) is tuple and len(step) == 4
encoding_steps.append(step)
encoding_steps = unrolling_iterable(encoding_steps)
return encode
def xmminsn(*encoding):
encode = insn(*encoding)
encode.is_xmm_insn = True
return encode
def common_modes(group):
base = group * 8
char = chr(0xC0 | base)
INSN_ri8 = insn(rex_w, '\x83', register(1), char, immediate(2,'b'))
INSN_ri32= insn(rex_w, '\x81', register(1), char, immediate(2))
INSN_rr = insn(rex_w, chr(base+1), register(2,8), register(1,1), '\xC0')
INSN_br = insn(rex_w, chr(base+1), register(2,8), stack_bp(1))
INSN_rb = insn(rex_w, chr(base+3), register(1,8), stack_bp(2))
INSN_rm = insn(rex_w, chr(base+3), register(1,8), mem_reg_plus_const(2))
INSN_rj = insn(rex_w, chr(base+3), register(1,8), abs_(2))
INSN_ji8 = insn(rex_w, '\x83', orbyte(base), abs_(1), immediate(2,'b'))
INSN_mi8 = insn(rex_w, '\x83', orbyte(base), mem_reg_plus_const(1),
immediate(2,'b'))
INSN_bi8 = insn(rex_w, '\x83', orbyte(base), stack_bp(1), immediate(2,'b'))
INSN_bi32= insn(rex_w, '\x81', orbyte(base), stack_bp(1), immediate(2))
def INSN_ri(mc, reg, immed):
if single_byte(immed):
INSN_ri8(mc, reg, immed)
else:
INSN_ri32(mc, reg, immed)
INSN_ri._always_inline_ = True # try to constant-fold single_byte()
def INSN_bi(mc, offset, immed):
if single_byte(immed):
INSN_bi8(mc, offset, immed)
else:
INSN_bi32(mc, offset, immed)
INSN_bi._always_inline_ = True # try to constant-fold single_byte()
return (INSN_ri, INSN_rr, INSN_rb, INSN_bi, INSN_br, INSN_rm, INSN_rj,
INSN_ji8, INSN_mi8)
def select_8_or_32_bit_immed(insn_8, insn_32):
def INSN(*args):
immed = args[-1]
if single_byte(immed):
insn_8(*args)
else:
assert fits_in_32bits(immed)
insn_32(*args)
return INSN
def shifts(mod_field):
modrm = chr(0xC0 | (mod_field << 3))
shift_once = insn(rex_w, '\xD1', register(1), modrm)
shift_r_by_cl = insn(rex_w, '\xD3', register(1), modrm)
shift_ri8 = insn(rex_w, '\xC1', register(1), modrm, immediate(2, 'b'))
def shift_ri(mc, reg, immed):
if immed == 1:
shift_once(mc, reg)
else:
shift_ri8(mc, reg, immed)
def shift_rr(mc, reg1, reg2):
assert reg2 == R.ecx
shift_r_by_cl(mc, reg1)
return (shift_ri, shift_rr)
# ____________________________________________________________
# Method names take the form of
#
# <instruction name>_<operand type codes>
#
# For example, the method name for "mov reg, immed" is MOV_ri. Operand order
# is Intel-style, with the destination first.
#
# The operand type codes are:
# r - register
# b - ebp/rbp offset
# s - esp/rsp offset
# j - address
# i - immediate
# x - XMM register
# a - 4-tuple: (base_register, scale_register, scale, offset)
# m - 2-tuple: (base_register, offset)
class AbstractX86CodeBuilder(object):
"""Abstract base class."""
def __init__(self):
self.force_frame_size(self.WORD)
def writechar(self, char):
raise NotImplementedError
def writeimm8(self, imm):
self.writechar(chr(imm & 0xFF))
def writeimm16(self, imm):
self.writechar(chr(imm & 0xFF))
self.writechar(chr((imm >> 8) & 0xFF))
def writeimm32(self, imm):
assert fits_in_32bits(imm)
self.writechar(chr(imm & 0xFF))
self.writechar(chr((imm >> 8) & 0xFF))
self.writechar(chr((imm >> 16) & 0xFF))
self.writechar(chr((imm >> 24) & 0xFF))
def force_frame_size(self, frame_size):
self._frame_size = frame_size
def stack_frame_size_delta(self, delta):
"Called when we generate an instruction that changes the value of ESP"
self._frame_size += delta
assert self._frame_size >= self.WORD
def check_stack_size_at_ret(self):
if IS_X86_64:
assert self._frame_size == self.WORD
if not we_are_translated():
self._frame_size = None
# ------------------------------ MOV ------------------------------
MOV_ri = insn(register(1), '\xB8', immediate(2))
MOV8_ri = insn(rex_fw, byte_register(1), '\xB0', immediate(2, 'b'))
# ------------------------------ Arithmetic ------------------------------
INC_m = insn(rex_w, '\xFF', orbyte(0), mem_reg_plus_const(1))
INC_j = insn(rex_w, '\xFF', orbyte(0), abs_(1))
AD1_ri,ADD_rr,ADD_rb,_,_,ADD_rm,ADD_rj,_,_ = common_modes(0)
OR_ri, OR_rr, OR_rb, _,_,OR_rm, OR_rj, _,_ = common_modes(1)
AND_ri,AND_rr,AND_rb,_,_,AND_rm,AND_rj,_,_ = common_modes(4)
SU1_ri,SUB_rr,SUB_rb,_,_,SUB_rm,SUB_rj,SUB_ji8,SUB_mi8 = common_modes(5)
SBB_ri,SBB_rr,SBB_rb,_,_,SBB_rm,SBB_rj,_,_ = common_modes(3)
XOR_ri,XOR_rr,XOR_rb,_,_,XOR_rm,XOR_rj,_,_ = common_modes(6)
CMP_ri,CMP_rr,CMP_rb,CMP_bi,CMP_br,CMP_rm,CMP_rj,_,_ = common_modes(7)
def ADD_ri(self, reg, immed):
self.AD1_ri(reg, immed)
if reg == R.esp:
self.stack_frame_size_delta(-immed)
def SUB_ri(self, reg, immed):
self.SU1_ri(reg, immed)
if reg == R.esp:
self.stack_frame_size_delta(+immed)
CMP_mi8 = insn(rex_w, '\x83', orbyte(7<<3), mem_reg_plus_const(1), immediate(2, 'b'))
CMP_mi32 = insn(rex_w, '\x81', orbyte(7<<3), mem_reg_plus_const(1), immediate(2))
CMP_mi = select_8_or_32_bit_immed(CMP_mi8, CMP_mi32)
CMP_mr = insn(rex_w, '\x39', register(2, 8), mem_reg_plus_const(1))
CMP_ji8 = insn(rex_w, '\x83', orbyte(7<<3), abs_(1), immediate(2, 'b'))
CMP_ji32 = insn(rex_w, '\x81', orbyte(7<<3), abs_(1), immediate(2))
CMP_ji = select_8_or_32_bit_immed(CMP_ji8, CMP_ji32)
CMP_jr = insn(rex_w, '\x39', register(2, 8), abs_(1))
CMP32_mi = insn(rex_nw, '\x81', orbyte(7<<3), mem_reg_plus_const(1), immediate(2))
CMP16_mi = insn('\x66', rex_nw, '\x81', orbyte(7<<3), mem_reg_plus_const(1), immediate(2, 'h'))
CMP8_ri = insn(rex_fw, '\x80', byte_register(1), '\xF8', immediate(2, 'b'))
AND8_rr = insn(rex_fw, '\x20', byte_register(1), byte_register(2,8), '\xC0')
OR8_rr = insn(rex_fw, '\x08', byte_register(1), byte_register(2,8), '\xC0')
OR8_mi = insn(rex_nw, '\x80', orbyte(1<<3), mem_reg_plus_const(1),
immediate(2, 'b'))
OR8_ji = insn(rex_nw, '\x80', orbyte(1<<3), abs_(1),
immediate(2, 'b'))
NEG_r = insn(rex_w, '\xF7', register(1), '\xD8')
DIV_r = insn(rex_w, '\xF7', register(1), '\xF0')
IDIV_r = insn(rex_w, '\xF7', register(1), '\xF8')
MUL_r = insn(rex_w, '\xF7', orbyte(4<<3), register(1), '\xC0')
MUL_b = insn(rex_w, '\xF7', orbyte(4<<3), stack_bp(1))
IMUL_rr = insn(rex_w, '\x0F\xAF', register(1, 8), register(2), '\xC0')
IMUL_rb = insn(rex_w, '\x0F\xAF', register(1, 8), stack_bp(2))
IMUL_rri8 = insn(rex_w, '\x6B', register(1, 8), register(2), '\xC0', immediate(3, 'b'))
IMUL_rri32 = insn(rex_w, '\x69', register(1, 8), register(2), '\xC0', immediate(3))
IMUL_rri = select_8_or_32_bit_immed(IMUL_rri8, IMUL_rri32)
def IMUL_ri(self, reg, immed):
self.IMUL_rri(reg, reg, immed)
SHL_ri, SHL_rr = shifts(4)
SHR_ri, SHR_rr = shifts(5)
SAR_ri, SAR_rr = shifts(7)
NOT_r = insn(rex_w, '\xF7', register(1), '\xD0')
NOT_b = insn(rex_w, '\xF7', orbyte(2<<3), stack_bp(1))
CMOVNS_rr = insn(rex_w, '\x0F\x49', register(1, 8), register(2), '\xC0')
# ------------------------------ Misc stuff ------------------------------
NOP = insn('\x90')
RE1 = insn('\xC3')
RE116_i = insn('\xC2', immediate(1, 'h'))
def RET(self):
self.check_stack_size_at_ret()
self.RE1()
def RET16_i(self, immed):
self.check_stack_size_at_ret()
self.RE116_i(immed)
PUS1_r = insn(rex_nw, register(1), '\x50')
PUS1_b = insn(rex_nw, '\xFF', orbyte(6<<3), stack_bp(1))
PUS1_m = insn(rex_nw, '\xFF', orbyte(6<<3), mem_reg_plus_const(1))
PUS1_j = insn(rex_nw, '\xFF', orbyte(6<<3), abs_(1))
PUS1_p = insn(rex_nw, '\xFF', orbyte(6<<3), rip_offset(1))
PUS1_i8 = insn('\x6A', immediate(1, 'b'))
PUS1_i32 = insn('\x68', immediate(1, 'i'))
def PUSH_r(self, reg):
self.PUS1_r(reg)
self.stack_frame_size_delta(+self.WORD)
def PUSH_b(self, ofs):
self.PUS1_b(ofs)
self.stack_frame_size_delta(+self.WORD)
def PUSH_m(self, ofs):
self.PUS1_m(ofs)
self.stack_frame_size_delta(+self.WORD)
def PUSH_i(self, immed):
if single_byte(immed):
self.PUS1_i8(immed)
else:
self.PUS1_i32(immed)
self.stack_frame_size_delta(+self.WORD)
def PUSH_j(self, abs_addr):
self.PUS1_j(abs_addr)
self.stack_frame_size_delta(+self.WORD)
def PUSH_p(self, rip_offset):
self.PUS1_p(rip_offset)
self.stack_frame_size_delta(+self.WORD)
PO1_r = insn(rex_nw, register(1), '\x58')
PO1_b = insn(rex_nw, '\x8F', orbyte(0<<3), stack_bp(1))
def POP_r(self, reg):
self.PO1_r(reg)
self.stack_frame_size_delta(-self.WORD)
def POP_b(self, ofs):
self.PO1_b(ofs)
self.stack_frame_size_delta(-self.WORD)
LEA_rb = insn(rex_w, '\x8D', register(1,8), stack_bp(2))
LE1_rs = insn(rex_w, '\x8D', register(1,8), stack_sp(2))
LEA32_rb = insn(rex_w, '\x8D', register(1,8),stack_bp(2,force_32bits=True))
LEA_ra = insn(rex_w, '\x8D', register(1, 8), mem_reg_plus_scaled_reg_plus_const(2))
LEA_rm = insn(rex_w, '\x8D', register(1, 8), mem_reg_plus_const(2))
LEA_rj = insn(rex_w, '\x8D', register(1, 8), abs_(2))
def LEA_rs(self, reg, ofs):
self.LE1_rs(reg, ofs)
if reg == R.esp:
self.stack_frame_size_delta(-ofs)
CALL_l = insn('\xE8', relative(1))
CALL_r = insn(rex_nw, '\xFF', register(1), chr(0xC0 | (2<<3)))
CALL_b = insn('\xFF', orbyte(2<<3), stack_bp(1))
CALL_s = insn('\xFF', orbyte(2<<3), stack_sp(1))
# XXX: Only here for testing purposes..."as" happens the encode the
# registers in the opposite order that we would otherwise do in a
# register-register exchange.
XCHG_rr = insn(rex_w, '\x87', register(1), register(2,8), '\xC0')
JM1_l = insn('\xE9', relative(1))
JM1_r = insn(rex_nw, '\xFF', orbyte(4<<3), register(1), '\xC0')
# FIXME: J_il8 and JMP_l8 assume the caller will do the appropriate
# calculation to find the displacement, but J_il does it for the caller.
# We need to be consistent.
JM1_l8 = insn('\xEB', immediate(1, 'b'))
J_il8 = insn(immediate(1, 'o'), '\x70', immediate(2, 'b'))
J_il = insn('\x0F', immediate(1,'o'), '\x80', relative(2))
def JMP_l(self, rel):
self.JM1_l(rel)
if not we_are_translated():
self._frame_size = None
def JMP_r(self, reg):
self.JM1_r(reg)
if not we_are_translated():
self._frame_size = None
def JMP_l8(self, rel):
self.JM1_l8(rel)
if not we_are_translated():
self._frame_size = None
SET_ir = insn(rex_fw, '\x0F', immediate(1,'o'),'\x90', byte_register(2), '\xC0')
# The 64-bit version of this, CQO, is defined in X86_64_CodeBuilder
CDQ = insn(rex_nw, '\x99')
TEST8_mi = insn(rex_nw, '\xF6', orbyte(0<<3), mem_reg_plus_const(1), immediate(2, 'b'))
TEST8_ai = insn(rex_nw, '\xF6', orbyte(0<<3), mem_reg_plus_scaled_reg_plus_const(1), immediate(2, 'b'))
TEST8_bi = insn(rex_nw, '\xF6', orbyte(0<<3), stack_bp(1), immediate(2, 'b'))
TEST8_ji = insn(rex_nw, '\xF6', orbyte(0<<3), abs_(1), immediate(2, 'b'))
TEST_rr = insn(rex_w, '\x85', register(2,8), register(1), '\xC0')
TEST_ai = insn(rex_w, '\xF7', orbyte(0<<3), mem_reg_plus_scaled_reg_plus_const(1), immediate(2))
TEST_mi = insn(rex_w, '\xF7', orbyte(0<<3), mem_reg_plus_const(1), immediate(2))
TEST_ji = insn(rex_w, '\xF7', orbyte(0<<3), abs_(1), immediate(2))
BTS_mr = insn(rex_w, '\x0F\xAB', register(2,8), mem_reg_plus_const(1))
BTS_jr = insn(rex_w, '\x0F\xAB', register(2,8), abs_(1))
# x87 instructions
FSTPL_b = insn('\xDD', orbyte(3<<3), stack_bp(1)) # rffi.DOUBLE ('as' wants L??)
FSTPL_s = insn('\xDD', orbyte(3<<3), stack_sp(1)) # rffi.DOUBLE ('as' wants L??)
FSTPS_s = insn('\xD9', orbyte(3<<3), stack_sp(1)) # lltype.SingleFloat
FLDL_s = insn('\xDD', orbyte(0<<3), stack_sp(1))
FLDS_s = insn('\xD9', orbyte(0<<3), stack_sp(1))
# ------------------------------ Random mess -----------------------
RDTSC = insn('\x0F\x31')
# reserved as an illegal instruction
UD2 = insn('\x0F\x0B')
# a breakpoint
INT3 = insn('\xCC')
# ------------------------------ SSE2 ------------------------------
# Conversion
CVTSI2SD_xr = xmminsn('\xF2', rex_w, '\x0F\x2A', register(1, 8), register(2), '\xC0')
CVTSI2SD_xb = xmminsn('\xF2', rex_w, '\x0F\x2A', register(1, 8), stack_bp(2))
CVTTSD2SI_rx = xmminsn('\xF2', rex_w, '\x0F\x2C', register(1, 8), register(2), '\xC0')
CVTTSD2SI_rb = xmminsn('\xF2', rex_w, '\x0F\x2C', register(1, 8), stack_bp(2))
CVTSD2SS_xx = xmminsn('\xF2', rex_nw, '\x0F\x5A', register(1, 8), register(2), '\xC0')
CVTSD2SS_xb = xmminsn('\xF2', rex_nw, '\x0F\x5A', register(1, 8), stack_bp(2))
CVTSS2SD_xx = xmminsn('\xF3', rex_nw, '\x0F\x5A', register(1, 8), register(2), '\xC0')
CVTSS2SD_xb = xmminsn('\xF3', rex_nw, '\x0F\x5A', register(1, 8), stack_bp(2))
CVTPD2PS_xx = xmminsn('\x66', rex_nw, '\x0F\x5A', register(1, 8), register(2), '\xC0')
CVTPS2PD_xx = xmminsn(rex_nw, '\x0F\x5A', register(1, 8), register(2), '\xC0')
CVTDQ2PD_xx = xmminsn('\xF3', rex_nw, '\x0F\xE6', register(1, 8), register(2), '\xC0')
CVTPD2DQ_xx = xmminsn('\xF2', rex_nw, '\x0F\xE6', register(1, 8), register(2), '\xC0')
# These work on machine sized registers, so "MOVDQ" is MOVD when running
# on 32 bits and MOVQ when running on 64 bits. "MOVD32" is always 32-bit.
# Note a bug in the Intel documentation:
# http://lists.gnu.org/archive/html/bug-binutils/2007-07/msg00095.html
MOVDQ_rx = xmminsn('\x66', rex_w, '\x0F\x7E', register(2, 8), register(1), '\xC0')
MOVDQ_xr = xmminsn('\x66', rex_w, '\x0F\x6E', register(1, 8), register(2), '\xC0')
MOVDQ_xb = xmminsn('\x66', rex_w, '\x0F\x6E', register(1, 8), stack_bp(2))
MOVDQ_xx = xmminsn('\xF3', rex_nw, '\x0F\x7E', register(1, 8), register(2), '\xC0')
MOVD32_rx = xmminsn('\x66', rex_nw, '\x0F\x7E', register(2, 8), register(1), '\xC0')
MOVD32_sx = xmminsn('\x66', rex_nw, '\x0F\x7E', register(2, 8), stack_sp(1))
MOVD32_xr = xmminsn('\x66', rex_nw, '\x0F\x6E', register(1, 8), register(2), '\xC0')
MOVD32_xb = xmminsn('\x66', rex_nw, '\x0F\x6E', register(1, 8), stack_bp(2))
MOVD32_xs = xmminsn('\x66', rex_nw, '\x0F\x6E', register(1, 8), stack_sp(2))
MOVSS_xx = xmminsn('\xF3', rex_nw, '\x0F\x10', register(1,8), register(2), '\xC0')
PSRAD_xi = xmminsn('\x66', rex_nw, '\x0F\x72', register(1), '\xE0', immediate(2, 'b'))
PSRLDQ_xi = xmminsn('\x66', rex_nw, '\x0F\x73', register(1),
orbyte(0x3 << 3), '\xC0', immediate(2, 'b'))
UNPCKLPD_xx = xmminsn('\x66', rex_nw, '\x0F\x14', register(1, 8), register(2), '\xC0')
UNPCKHPD_xx = xmminsn('\x66', rex_nw, '\x0F\x15', register(1, 8), register(2), '\xC0')
UNPCKLPS_xx = xmminsn( rex_nw, '\x0F\x14', register(1, 8), register(2), '\xC0')
UNPCKHPS_xx = xmminsn( rex_nw, '\x0F\x15', register(1, 8), register(2), '\xC0')
MOVDDUP_xx = xmminsn('\xF2', rex_nw, '\x0F\x12', register(1, 8), register(2), '\xC0')
SHUFPS_xxi = xmminsn(rex_nw, '\x0F\xC6', register(1,8), register(2), '\xC0', immediate(3, 'b'))
SHUFPD_xxi = xmminsn('\x66', rex_nw, '\x0F\xC6', register(1,8), register(2), '\xC0', immediate(3, 'b'))
PSHUFD_xxi = xmminsn('\x66', rex_nw, '\x0F\x70', register(1,8), register(2), '\xC0', immediate(3, 'b'))
PSHUFHW_xxi = xmminsn('\xF3', rex_nw, '\x0F\x70', register(1,8), register(2), '\xC0', immediate(3, 'b'))
PSHUFLW_xxi = xmminsn('\xF2', rex_nw, '\x0F\x70', register(1,8), register(2), '\xC0', immediate(3, 'b'))
PSHUFB_xx = xmminsn('\x66', rex_nw, '\x0F\x38\x00', register(1,8), register(2), '\xC0')
PSHUFB_xm = xmminsn('\x66', rex_nw, '\x0F\x38\x00', register(1,8), mem_reg_plus_const(2))
PSHUFB_xj = xmminsn('\x66', rex_nw, '\x0F\x38\x00', register(1,8), abs_(2))
# SSE3
HADDPD_xx = xmminsn('\x66', rex_nw, '\x0F\x7C', register(1,8), register(2), '\xC0')
HADDPS_xx = xmminsn('\xF2', rex_nw, '\x0F\x7C', register(1,8), register(2), '\xC0')
PHADDD_xx = xmminsn('\x66', rex_nw, '\x0F\x38\x02', register(1,8), register(2), '\xC0')
# following require SSE4_1
PEXTRQ_rxi = xmminsn('\x66', rex_w, '\x0F\x3A\x16', register(1), register(2,8), '\xC0', immediate(3, 'b'))
PEXTRD_rxi = xmminsn('\x66', rex_nw, '\x0F\x3A\x16', register(1), register(2,8), '\xC0', immediate(3, 'b'))
PEXTRW_rxi = xmminsn('\x66', rex_nw, '\x0F\xC5', register(1,8), register(2), '\xC0', immediate(3, 'b'))
PEXTRB_rxi = xmminsn('\x66', rex_nw, '\x0F\x3A\x14', register(1), register(2,8), '\xC0', immediate(3, 'b'))
EXTRACTPS_rxi = xmminsn('\x66', rex_nw, '\x0F\x3A\x17', register(1), register(2,8), '\xC0', immediate(3, 'b'))
PINSRQ_xri = xmminsn('\x66', rex_w, '\x0F\x3A\x22', register(1,8), register(2), '\xC0', immediate(3, 'b'))
PINSRD_xri = xmminsn('\x66', rex_nw, '\x0F\x3A\x22', register(1,8), register(2), '\xC0', immediate(3, 'b'))
PINSRW_xri = xmminsn('\x66', rex_nw, '\x0F\xC4', register(1,8), register(2), '\xC0', immediate(3, 'b'))
PINSRB_xri = xmminsn('\x66', rex_nw, '\x0F\x3A\x20', register(1,8), register(2), '\xC0', immediate(3, 'b'))
INSERTPS_xxi = xmminsn('\x66', rex_nw, '\x0F\x3A\x21', register(1,8), register(2), '\xC0', immediate(3, 'b'))
PTEST_xx = xmminsn('\x66', rex_nw, '\x0F\x38\x17', register(1,8), register(2), '\xC0')
PBLENDW_xxi = xmminsn('\x66', rex_nw, '\x0F\x3A\x0E', register(1,8), register(2), '\xC0', immediate(3, 'b'))
PBLENDVB_xx = xmminsn('\x66', rex_nw, '\x0F\x38\x10', register(1,8), register(2), '\xC0')
CMPPD_xxi = xmminsn('\x66', rex_nw, '\x0F\xC2', register(1,8), register(2), '\xC0', immediate(3, 'b'))
CMPPS_xxi = xmminsn( rex_nw, '\x0F\xC2', register(1,8), register(2), '\xC0', immediate(3, 'b'))
# ------------------------------------------------------------
Conditions = {
'O': 0,
'NO': 1,
'C': 2, 'B': 2, 'NAE': 2,
'NC': 3, 'NB': 3, 'AE': 3,
'Z': 4, 'E': 4,
'NZ': 5, 'NE': 5,
'BE': 6, 'NA': 6,
'NBE': 7, 'A': 7,
'S': 8,
'NS': 9,
'P': 10, 'PE': 10,
'NP': 11, 'PO': 11,
'L': 12, 'NGE': 12,
'NL': 13, 'GE': 13,
'LE': 14, 'NG': 14,
'NLE': 15, 'G': 15,
}
cond_none = -1
def invert_condition(cond_num):
return cond_num ^ 1
class X86_32_CodeBuilder(AbstractX86CodeBuilder):
WORD = 4
PMOVMSKB_rx = xmminsn('\x66', rex_nw, '\x0F\xD7', register(1, 8), register(2), '\xC0')
# multibyte nops, from 0 to 15 bytes
MULTIBYTE_NOPs = [
'',
'\x90', # nop
'\x66\x90', # xchg ax, ax
'\x8d\x76\x00', # lea 0x0(%esi),%esi
'\x8d\x74\x26\x00', # lea 0x0(%esi,%eiz,1),%esi
'\x90\x8d\x74\x26\x00', # nop; lea 0x0(%esi,%eiz,1),%esi
'\x8d\xb6\x00\x00\x00\x00', # lea 0x0(%esi),%esi
'\x8d\xb4\x26\x00\x00\x00\x00', # lea 0x0(%esi,%eiz,1),%esi
('\x90' # nop
'\x8d\xb4\x26\x00\x00\x00\x00'),# lea 0x0(%esi,%eiz,1),%esi
('\x89\xf6' # mov %esi,%esi
'\x8d\xbc\x27\x00\x00\x00\x00'),# lea 0x0(%edi,%eiz,1),%edi
('\x8d\x76\x00' # lea 0x0(%esi),%esi
'\x8d\xbc\x27\x00\x00\x00\x00'),# lea 0x0(%edi,%eiz,1),%edi
('\x8d\x74\x26\x00' # lea 0x0(%esi,%eiz,1),%esi
'\x8d\xbc\x27\x00\x00\x00\x00'),# lea 0x0(%edi,%eiz,1),%edi
('\x8d\xb6\x00\x00\x00\x00' # lea 0x0(%esi),%esi
'\x8d\xbf\x00\x00\x00\x00'), # lea 0x0(%edi),%edi
('\x8d\xb6\x00\x00\x00\x00' # lea 0x0(%esi),%esi
'\x8d\xbc\x27\x00\x00\x00\x00'),# lea 0x0(%edi,%eiz,1),%edi
('\x8d\xb4\x26\x00\x00\x00\x00' # lea 0x0(%esi,%eiz,1),%esi
'\x8d\xbc\x27\x00\x00\x00\x00'),# lea 0x0(%edi,%eiz,1),%edi
('\xeb\x0d' + '\x90' * 13)] # jmp +x0d; a bunch of nops
class X86_64_CodeBuilder(AbstractX86CodeBuilder):
WORD = 8
def writeimm64(self, imm):
self.writechar(chr(imm & 0xFF))
self.writechar(chr((imm >> 8) & 0xFF))
self.writechar(chr((imm >> 16) & 0xFF))
self.writechar(chr((imm >> 24) & 0xFF))
self.writechar(chr((imm >> 32) & 0xFF))
self.writechar(chr((imm >> 40) & 0xFF))
self.writechar(chr((imm >> 48) & 0xFF))
self.writechar(chr((imm >> 56) & 0xFF))
CQO = insn(rex_w, '\x99')
# Three different encodings... following what gcc does. From the
# shortest encoding to the longest one.
MOV_riu32 = insn(rex_nw, register(1), '\xB8', immediate(2, 'i'))
MOV_ri32 = insn(rex_w, '\xC7', register(1), '\xC0', immediate(2, 'i'))
MOV_ri64 = insn(rex_w, register(1), '\xB8', immediate(2, 'q'))
def MOV_ri(self, reg, immed):
if 0 <= immed <= 4294967295:
immed = intmask(rffi.cast(rffi.INT, immed))
self.MOV_riu32(reg, immed)
elif fits_in_32bits(immed): # for negative values that fit in 32 bit
self.MOV_ri32(reg, immed)
else:
self.MOV_ri64(reg, immed)
# multibyte nops, from 0 to 15 bytes
MULTIBYTE_NOPs = ([
'',
'\x90', # nop
'\x66\x90', # xchg ax, ax
'\x0f\x1f\x00', # nopl (%rax)
'\x0f\x1f\x40\x00', # nopl 0x0(%rax)
'\x0f\x1f\x44\x00\x00', # nopl 0x0(%rax,%rax,1)
'\x66\x0f\x1f\x44\x00\x00', # nopw 0x0(%rax,%rax,1)
'\x0f\x1f\x80\x00\x00\x00\x00', # nopl 0x0(%rax)
('\x0f\x1f\x84\x00\x00\x00\x00' # nopl 0x0(%rax,%rax,1)
'\x00'),
('\x66\x0f\x1f\x84\x00\x00\x00' # nopw 0x0(%rax,%rax,1)
'\x00\x00')] +
['\x66' * _i + '\x2e\x0f\x1f' # nopw %cs:0x0(%rax,%rax,1)
'\x84\x00\x00\x00\x00\x00' for _i in range(1, 7)])
def define_modrm_modes(insnname_template, before_modrm, after_modrm=[], regtype='GPR'):
def add_insn(code, *modrm):
args = before_modrm + list(modrm)
methname = insnname_template.replace('*', code)
if (methname.endswith('_rr') or methname.endswith('_xx')
or methname.endswith('_ri')):
args.append('\xC0')
args += after_modrm
if regtype == 'XMM':
insn_func = xmminsn(*args)
else:
insn_func = insn(*args)
if not hasattr(AbstractX86CodeBuilder, methname):
setattr(AbstractX86CodeBuilder, methname, insn_func)
modrm_argnum = insnname_template.split('_')[1].index('*')+1
if regtype == 'GPR':
add_insn('r', register(modrm_argnum))
elif regtype == 'BYTE':
add_insn('r', byte_register(modrm_argnum))
elif regtype == 'XMM':
add_insn('x', register(modrm_argnum))
else:
raise AssertionError("Invalid type")
add_insn('b', stack_bp(modrm_argnum))
add_insn('s', stack_sp(modrm_argnum))
add_insn('m', mem_reg_plus_const(modrm_argnum))
add_insn('a', mem_reg_plus_scaled_reg_plus_const(modrm_argnum))
add_insn('j', abs_(modrm_argnum))
add_insn('p', rip_offset(modrm_argnum))
# Define a regular MOV, and a variant MOV32 that only uses the low 4 bytes of a
# register
for insnname, rex_type in [('MOV', rex_w), ('MOV32', rex_nw)]:
define_modrm_modes(insnname + '_*r', [rex_type, '\x89', register(2, 8)])
define_modrm_modes(insnname + '_r*', [rex_type, '\x8B', register(1, 8)])
define_modrm_modes(insnname + '_*i', [rex_type, '\xC7', orbyte(0<<3)], [immediate(2)])
define_modrm_modes('MOV8_*r', [rex_fw, '\x88', byte_register(2, 8)], regtype='BYTE')
define_modrm_modes('MOV8_*i', [rex_fw, '\xC6', orbyte(0<<3)], [immediate(2, 'b')], regtype='BYTE')
define_modrm_modes('MOV16_*r', ['\x66', rex_nw, '\x89', register(2, 8)])
define_modrm_modes('MOV16_*i', ['\x66', rex_nw, '\xC7', orbyte(0<<3)], [immediate(2, 'h')])
define_modrm_modes('MOVZX8_r*', [rex_w, '\x0F\xB6', register(1, 8)], regtype='BYTE')
define_modrm_modes('MOVSX8_r*', [rex_w, '\x0F\xBE', register(1, 8)], regtype='BYTE')
define_modrm_modes('MOVZX16_r*', [rex_w, '\x0F\xB7', register(1, 8)])
define_modrm_modes('MOVSX16_r*', [rex_w, '\x0F\xBF', register(1, 8)])
define_modrm_modes('MOVSX32_r*', [rex_w, '\x63', register(1, 8)])
define_modrm_modes('MOVSD_x*', ['\xF2', rex_nw, '\x0F\x10', register(1,8)], regtype='XMM')
define_modrm_modes('MOVSD_*x', ['\xF2', rex_nw, '\x0F\x11', register(2,8)], regtype='XMM')
define_modrm_modes('MOVSS_x*', ['\xF3', rex_nw, '\x0F\x10', register(1,8)], regtype='XMM')
define_modrm_modes('MOVSS_*x', ['\xF3', rex_nw, '\x0F\x11', register(2,8)], regtype='XMM')
define_modrm_modes('MOVAPD_x*', ['\x66', rex_nw, '\x0F\x28', register(1,8)], regtype='XMM')
define_modrm_modes('MOVAPD_*x', ['\x66', rex_nw, '\x0F\x29', register(2,8)], regtype='XMM')
define_modrm_modes('MOVAPS_x*', [ rex_nw, '\x0F\x28', register(1,8)], regtype='XMM')
define_modrm_modes('MOVAPS_*x', [ rex_nw, '\x0F\x29', register(2,8)], regtype='XMM')
define_modrm_modes('MOVDQA_x*', ['\x66', rex_nw, '\x0F\x6F', register(1, 8)], regtype='XMM')
define_modrm_modes('MOVDQA_*x', ['\x66', rex_nw, '\x0F\x7F', register(2, 8)], regtype='XMM')
define_modrm_modes('MOVDQU_x*', ['\xF3', rex_nw, '\x0F\x6F', register(1, 8)], regtype='XMM')
define_modrm_modes('MOVDQU_*x', ['\xF3', rex_nw, '\x0F\x7F', register(2, 8)], regtype='XMM')
define_modrm_modes('MOVUPS_x*', [ rex_nw, '\x0F\x10', register(1, 8)], regtype='XMM')
define_modrm_modes('MOVUPS_*x', [ rex_nw, '\x0F\x11', register(2, 8)], regtype='XMM')
define_modrm_modes('MOVUPD_x*', ['\x66', rex_nw, '\x0F\x10', register(1, 8)], regtype='XMM')
define_modrm_modes('MOVUPD_*x', ['\x66', rex_nw, '\x0F\x11', register(2, 8)], regtype='XMM')
define_modrm_modes('SQRTSD_x*', ['\xF2', rex_nw, '\x0F\x51', register(1,8)], regtype='XMM')
define_modrm_modes('XCHG_r*', [rex_w, '\x87', register(1, 8)])
define_modrm_modes('ADDSD_x*', ['\xF2', rex_nw, '\x0F\x58', register(1, 8)], regtype='XMM')
define_modrm_modes('ADDPD_x*', ['\x66', rex_nw, '\x0F\x58', register(1, 8)], regtype='XMM')
define_modrm_modes('SUBSD_x*', ['\xF2', rex_nw, '\x0F\x5C', register(1, 8)], regtype='XMM')
define_modrm_modes('MULSD_x*', ['\xF2', rex_nw, '\x0F\x59', register(1, 8)], regtype='XMM')
define_modrm_modes('DIVSD_x*', ['\xF2', rex_nw, '\x0F\x5E', register(1, 8)], regtype='XMM')
define_modrm_modes('UCOMISD_x*', ['\x66', rex_nw, '\x0F\x2E', register(1, 8)], regtype='XMM')
define_modrm_modes('XORPD_x*', ['\x66', rex_nw, '\x0F\x57', register(1, 8)], regtype='XMM')
define_modrm_modes('XORPS_x*', [ rex_nw, '\x0F\x57', register(1, 8)], regtype='XMM')
define_modrm_modes('ANDPD_x*', ['\x66', rex_nw, '\x0F\x54', register(1, 8)], regtype='XMM')
define_modrm_modes('ANDPS_x*', [ rex_nw, '\x0F\x54', register(1, 8)], regtype='XMM')
# floating point operations (single & double)
define_modrm_modes('ADDPD_x*', ['\x66', rex_nw, '\x0F\x58', register(1, 8)], regtype='XMM')
define_modrm_modes('ADDPS_x*', [ rex_nw, '\x0F\x58', register(1, 8)], regtype='XMM')
define_modrm_modes('SUBPD_x*', ['\x66', rex_nw, '\x0F\x5C', register(1, 8)], regtype='XMM')
define_modrm_modes('SUBPS_x*', [ rex_nw, '\x0F\x5C', register(1, 8)], regtype='XMM')
define_modrm_modes('MULPD_x*', ['\x66', rex_nw, '\x0F\x59', register(1, 8)], regtype='XMM')
define_modrm_modes('MULPS_x*', [ rex_nw, '\x0F\x59', register(1, 8)], regtype='XMM')
define_modrm_modes('DIVPD_x*', ['\x66', rex_nw, '\x0F\x5E', register(1, 8)], regtype='XMM')
define_modrm_modes('DIVPS_x*', [ rex_nw, '\x0F\x5E', register(1, 8)], regtype='XMM')
define_modrm_modes('DIVPD_x*', ['\x66', rex_nw, '\x0F\x5E', register(1, 8)], regtype='XMM')
define_modrm_modes('DIVPS_x*', [ rex_nw, '\x0F\x5E', register(1, 8)], regtype='XMM')
def define_pxmm_insn(insnname_template, insn_char):
def add_insn(char, *post):
methname = insnname_template.replace('*', char)
insn_func = xmminsn('\x66', rex_nw, '\x0F' + insn_char,
register(1, 8), *post)
assert not hasattr(AbstractX86CodeBuilder, methname)
setattr(AbstractX86CodeBuilder, methname, insn_func)
#
assert insnname_template.count('*') == 1
add_insn('x', register(2), '\xC0')
add_insn('j', abs_(2))
add_insn('m', mem_reg_plus_const(2))
define_pxmm_insn('PADDQ_x*', '\xD4')
define_pxmm_insn('PADDD_x*', '\xFE')
define_pxmm_insn('PADDW_x*', '\xFD')
define_pxmm_insn('PADDB_x*', '\xFC')
define_pxmm_insn('PSUBQ_x*', '\xFB')
define_pxmm_insn('PSUBD_x*', '\xFA')
define_pxmm_insn('PSUBW_x*', '\xF9')
define_pxmm_insn('PSUBB_x*', '\xF8')
define_pxmm_insn('PMULDQ_x*', '\x38\x28')
define_pxmm_insn('PMULLD_x*', '\x38\x40')
define_pxmm_insn('PMULLW_x*', '\xD5')
define_pxmm_insn('PAND_x*', '\xDB')
define_pxmm_insn('POR_x*', '\xEB')
define_pxmm_insn('PXOR_x*', '\xEF')
define_pxmm_insn('PUNPCKLDQ_x*', '\x62')
define_pxmm_insn('PUNPCKHDQ_x*', '\x6A')
define_pxmm_insn('PUNPCKLQDQ_x*', '\x6C')
define_pxmm_insn('PUNPCKHQDQ_x*', '\x6D')
define_pxmm_insn('PCMPEQQ_x*', '\x38\x29')
define_pxmm_insn('PCMPEQD_x*', '\x76')
define_pxmm_insn('PCMPEQW_x*', '\x75')
define_pxmm_insn('PCMPEQB_x*', '\x74')
# ____________________________________________________________
_classes = (AbstractX86CodeBuilder, X86_64_CodeBuilder, X86_32_CodeBuilder)
# Used to build the MachineCodeBlockWrapper
all_instructions = sorted(name for cls in _classes for name in cls.__dict__
if name.split('_')[0].isupper())
|