1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
|
import sys
from rpython.jit.metainterp.history import ConstInt
from rpython.jit.metainterp.optimize import InvalidLoop
from rpython.jit.metainterp.optimizeopt.intutils import (IntBound,
IntLowerBound, IntUpperBound, ConstIntBound)
from rpython.jit.metainterp.optimizeopt.optimizer import (Optimization, CONST_1,
CONST_0)
from rpython.jit.metainterp.optimizeopt.util import make_dispatcher_method
from rpython.jit.metainterp.resoperation import rop
from rpython.jit.metainterp.optimizeopt import vstring
from rpython.jit.codewriter.effectinfo import EffectInfo
from rpython.rlib.rarithmetic import intmask
def get_integer_min(is_unsigned, byte_size):
if is_unsigned:
return 0
else:
return -(1 << ((byte_size << 3) - 1))
def get_integer_max(is_unsigned, byte_size):
if is_unsigned:
return (1 << (byte_size << 3)) - 1
else:
return (1 << ((byte_size << 3) - 1)) - 1
class OptIntBounds(Optimization):
"""Keeps track of the bounds placed on integers by guards and remove
redundant guards"""
def propagate_forward(self, op):
return dispatch_opt(self, op)
def propagate_postprocess(self, op):
return dispatch_postprocess(self, op)
def propagate_bounds_backward(self, box):
# FIXME: This takes care of the instruction where box is the result
# but the bounds produced by all instructions where box is
# an argument might also be tighten
b = self.getintbound(box)
if b.has_lower and b.has_upper and b.lower == b.upper:
self.make_constant_int(box, b.lower)
box1 = self.optimizer.as_operation(box)
if box1 is not None:
dispatch_bounds_ops(self, box1)
def _optimize_guard_true_false_value(self, op):
return self.emit(op)
def _postprocess_guard_true_false_value(self, op):
if op.getarg(0).type == 'i':
self.propagate_bounds_backward(op.getarg(0))
optimize_GUARD_TRUE = _optimize_guard_true_false_value
optimize_GUARD_FALSE = _optimize_guard_true_false_value
optimize_GUARD_VALUE = _optimize_guard_true_false_value
postprocess_GUARD_TRUE = _postprocess_guard_true_false_value
postprocess_GUARD_FALSE = _postprocess_guard_true_false_value
postprocess_GUARD_VALUE = _postprocess_guard_true_false_value
def optimize_INT_OR_or_XOR(self, op):
v1 = self.get_box_replacement(op.getarg(0))
v2 = self.get_box_replacement(op.getarg(1))
if v1 is v2:
if op.getopnum() == rop.INT_OR:
self.make_equal_to(op, v1)
else:
self.make_constant_int(op, 0)
return None
return self.emit(op)
def postprocess_INT_OR_or_XOR(self, op):
v1 = self.get_box_replacement(op.getarg(0))
b1 = self.getintbound(v1)
v2 = self.get_box_replacement(op.getarg(1))
b2 = self.getintbound(v2)
b = b1.or_bound(b2)
self.getintbound(op).intersect(b)
optimize_INT_OR = optimize_INT_OR_or_XOR
optimize_INT_XOR = optimize_INT_OR_or_XOR
postprocess_INT_OR = postprocess_INT_OR_or_XOR
postprocess_INT_XOR = postprocess_INT_OR_or_XOR
def optimize_INT_AND(self, op):
return self.emit(op)
def postprocess_INT_AND(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
b = b1.and_bound(b2)
self.getintbound(op).intersect(b)
def optimize_INT_SUB(self, op):
return self.emit(op)
def postprocess_INT_SUB(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
b = b1.sub_bound(b2)
if b.bounded():
self.getintbound(op).intersect(b)
def optimize_INT_ADD(self, op):
arg1 = self.get_box_replacement(op.getarg(0))
arg2 = self.get_box_replacement(op.getarg(1))
if self.is_raw_ptr(arg1) or self.is_raw_ptr(arg2):
return self.emit(op)
v1 = self.getintbound(arg1)
v2 = self.getintbound(arg2)
# Optimize for addition chains in code "b = a + 1; c = b + 1" by
# detecting the int_add chain, and swapping with "b = a + 1;
# c = a + 2". If b is not used elsewhere, the backend eliminates
# it.
# either v1 or v2 can be a constant, swap the arguments around if
# v1 is the constant
if v1.is_constant():
arg1, arg2 = arg2, arg1
v1, v2 = v2, v1
# if both are constant, the pure optimization will deal with it
if v2.is_constant() and not v1.is_constant():
arg1 = self.optimizer.as_operation(arg1)
if arg1 is not None:
if arg1.getopnum() == rop.INT_ADD:
prod_arg1 = self.get_box_replacement(arg1.getarg(0))
prod_arg2 = self.get_box_replacement(arg1.getarg(1))
prod_v1 = self.getintbound(prod_arg1)
prod_v2 = self.getintbound(prod_arg2)
# same thing here: prod_v1 or prod_v2 can be a
# constant
if prod_v1.is_constant():
prod_arg1, prod_arg2 = prod_arg2, prod_arg1
prod_v1, prod_v2 = prod_v2, prod_v1
if prod_v2.is_constant():
sum = intmask(arg2.getint() + prod_arg2.getint())
arg1 = prod_arg1
arg2 = ConstInt(sum)
op = self.replace_op_with(op, rop.INT_ADD, args=[arg1, arg2])
return self.emit(op)
def postprocess_INT_ADD(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
r = self.getintbound(op)
b = b1.add_bound(b2)
if b.bounded():
r.intersect(b)
def optimize_INT_MUL(self, op):
return self.emit(op)
def postprocess_INT_MUL(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
r = self.getintbound(op)
b = b1.mul_bound(b2)
if b.bounded():
r.intersect(b)
def optimize_CALL_PURE_I(self, op):
return self.emit(op)
def postprocess_CALL_PURE_I(self, op):
# dispatch based on 'oopspecindex' to a method that handles
# specifically the given oopspec call.
effectinfo = op.getdescr().get_extra_info()
oopspecindex = effectinfo.oopspecindex
if oopspecindex == EffectInfo.OS_INT_PY_DIV:
self.post_call_INT_PY_DIV(op)
elif oopspecindex == EffectInfo.OS_INT_PY_MOD:
self.post_call_INT_PY_MOD(op)
def post_call_INT_PY_DIV(self, op):
b1 = self.getintbound(op.getarg(1))
b2 = self.getintbound(op.getarg(2))
r = self.getintbound(op)
r.intersect(b1.py_div_bound(b2))
def post_call_INT_PY_MOD(self, op):
b1 = self.getintbound(op.getarg(1))
b2 = self.getintbound(op.getarg(2))
r = self.getintbound(op)
r.intersect(b1.mod_bound(b2))
def optimize_INT_LSHIFT(self, op):
return self.emit(op)
def postprocess_INT_LSHIFT(self, op):
arg0 = self.get_box_replacement(op.getarg(0))
b1 = self.getintbound(arg0)
arg1 = self.get_box_replacement(op.getarg(1))
b2 = self.getintbound(arg1)
r = self.getintbound(op)
b = b1.lshift_bound(b2)
r.intersect(b)
# intbound.lshift_bound checks for an overflow and if the
# lshift can be proven not to overflow sets b.has_upper and
# b.has_lower
if b.has_lower and b.has_upper:
# Synthesize the reverse op for optimize_default to reuse
self.pure_from_args(rop.INT_RSHIFT,
[op, arg1], arg0)
def optimize_INT_RSHIFT(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
b = b1.rshift_bound(b2)
if b.has_lower and b.has_upper and b.lower == b.upper:
# constant result (likely 0, for rshifts that kill all bits)
self.make_constant_int(op, b.lower)
return None
return self.emit(op)
def postprocess_INT_RSHIFT(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
b = b1.rshift_bound(b2)
r = self.getintbound(op)
r.intersect(b)
def optimize_GUARD_NO_OVERFLOW(self, op):
lastop = self.last_emitted_operation
if lastop is not None:
opnum = lastop.getopnum()
args = lastop.getarglist()
result = lastop
# If the INT_xxx_OVF was replaced with INT_xxx or removed
# completely, then we can kill the GUARD_NO_OVERFLOW.
if (opnum != rop.INT_ADD_OVF and
opnum != rop.INT_SUB_OVF and
opnum != rop.INT_MUL_OVF):
return
# Else, synthesize the non overflowing op for optimize_default to
# reuse, as well as the reverse op
elif opnum == rop.INT_ADD_OVF:
#self.pure(rop.INT_ADD, args[:], result)
self.pure_from_args(rop.INT_SUB, [result, args[1]], args[0])
self.pure_from_args(rop.INT_SUB, [result, args[0]], args[1])
elif opnum == rop.INT_SUB_OVF:
#self.pure(rop.INT_SUB, args[:], result)
self.pure_from_args(rop.INT_ADD, [result, args[1]], args[0])
self.pure_from_args(rop.INT_SUB, [args[0], result], args[1])
#elif opnum == rop.INT_MUL_OVF:
# self.pure(rop.INT_MUL, args[:], result)
return self.emit(op)
def optimize_GUARD_OVERFLOW(self, op):
# If INT_xxx_OVF was replaced by INT_xxx, *but* we still see
# GUARD_OVERFLOW, then the loop is invalid.
lastop = self.last_emitted_operation
if lastop is None:
return # e.g. beginning of the loop
opnum = lastop.getopnum()
if opnum not in (rop.INT_ADD_OVF, rop.INT_SUB_OVF, rop.INT_MUL_OVF):
raise InvalidLoop('An INT_xxx_OVF was proven not to overflow but' +
'guarded with GUARD_OVERFLOW')
return self.emit(op)
def optimize_INT_ADD_OVF(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
resbound = b1.add_bound(b2)
if resbound.bounded():
# Transform into INT_ADD. The following guard will be killed
# by optimize_GUARD_NO_OVERFLOW; if we see instead an
# optimize_GUARD_OVERFLOW, then InvalidLoop.
# NB: this case also takes care of int_add_ovf with 0 as on of the
# arguments: the result will be bounded, and then the optimization
# for int_add with 0 as argument will remove the op.
op = self.replace_op_with(op, rop.INT_ADD)
return self.emit(op)
def postprocess_INT_ADD_OVF(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
resbound = b1.add_bound(b2)
r = self.getintbound(op)
r.intersect(resbound)
def optimize_INT_SUB_OVF(self, op):
arg0 = self.get_box_replacement(op.getarg(0))
arg1 = self.get_box_replacement(op.getarg(1))
b0 = self.getintbound(arg0)
b1 = self.getintbound(arg1)
if arg0.same_box(arg1):
self.make_constant_int(op, 0)
return None
resbound = b0.sub_bound(b1)
if resbound.bounded():
# this case takes care of int_sub_ovf(x, 0) as well
op = self.replace_op_with(op, rop.INT_SUB)
return self.emit(op)
def postprocess_INT_SUB_OVF(self, op):
arg0 = self.get_box_replacement(op.getarg(0))
arg1 = self.get_box_replacement(op.getarg(1))
b0 = self.getintbound(arg0)
b1 = self.getintbound(arg1)
resbound = b0.sub_bound(b1)
r = self.getintbound(op)
r.intersect(resbound)
def optimize_INT_MUL_OVF(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
resbound = b1.mul_bound(b2)
if resbound.bounded():
# this case also takes care of multiplication with 0 and 1
op = self.replace_op_with(op, rop.INT_MUL)
return self.emit(op)
def postprocess_INT_MUL_OVF(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
resbound = b1.mul_bound(b2)
r = self.getintbound(op)
r.intersect(resbound)
def optimize_INT_LT(self, op):
arg1 = self.get_box_replacement(op.getarg(0))
arg2 = self.get_box_replacement(op.getarg(1))
b1 = self.getintbound(arg1)
b2 = self.getintbound(arg2)
if b1.known_lt(b2):
self.make_constant_int(op, 1)
elif b1.known_ge(b2) or arg1 is arg2:
self.make_constant_int(op, 0)
else:
return self.emit(op)
def optimize_INT_GT(self, op):
arg1 = self.get_box_replacement(op.getarg(0))
arg2 = self.get_box_replacement(op.getarg(1))
b1 = self.getintbound(arg1)
b2 = self.getintbound(arg2)
if b1.known_gt(b2):
self.make_constant_int(op, 1)
elif b1.known_le(b2) or arg1 is arg2:
self.make_constant_int(op, 0)
else:
return self.emit(op)
def optimize_INT_LE(self, op):
arg1 = self.get_box_replacement(op.getarg(0))
arg2 = self.get_box_replacement(op.getarg(1))
b1 = self.getintbound(arg1)
b2 = self.getintbound(arg2)
if b1.known_le(b2) or arg1 is arg2:
self.make_constant_int(op, 1)
elif b1.known_gt(b2):
self.make_constant_int(op, 0)
else:
return self.emit(op)
def optimize_INT_GE(self, op):
arg1 = self.get_box_replacement(op.getarg(0))
arg2 = self.get_box_replacement(op.getarg(1))
b1 = self.getintbound(arg1)
b2 = self.getintbound(arg2)
if b1.known_ge(b2) or arg1 is arg2:
self.make_constant_int(op, 1)
elif b1.known_lt(b2):
self.make_constant_int(op, 0)
else:
return self.emit(op)
def optimize_INT_EQ(self, op):
arg0 = self.get_box_replacement(op.getarg(0))
b1 = self.getintbound(arg0)
arg1 = self.get_box_replacement(op.getarg(1))
b2 = self.getintbound(arg1)
if b1.known_gt(b2):
self.make_constant_int(op, 0)
elif b1.known_lt(b2):
self.make_constant_int(op, 0)
elif arg0.same_box(arg1):
self.make_constant_int(op, 1)
else:
return self.emit(op)
def optimize_INT_NE(self, op):
arg0 = self.get_box_replacement(op.getarg(0))
b1 = self.getintbound(arg0)
arg1 = self.get_box_replacement(op.getarg(1))
b2 = self.getintbound(arg1)
if b1.known_gt(b2):
self.make_constant_int(op, 1)
elif b1.known_lt(b2):
self.make_constant_int(op, 1)
elif arg0 is arg1:
self.make_constant_int(op, 0)
else:
return self.emit(op)
def optimize_INT_FORCE_GE_ZERO(self, op):
b = self.getintbound(op.getarg(0))
if b.known_nonnegative():
self.make_equal_to(op, op.getarg(0))
else:
return self.emit(op)
def optimize_INT_SIGNEXT(self, op):
b = self.getintbound(op.getarg(0))
numbits = op.getarg(1).getint() * 8
start = -(1 << (numbits - 1))
stop = 1 << (numbits - 1)
bounds = IntBound(start, stop - 1)
if bounds.contains_bound(b):
self.make_equal_to(op, op.getarg(0))
else:
return self.emit(op)
def postprocess_INT_SIGNEXT(self, op):
numbits = op.getarg(1).getint() * 8
start = -(1 << (numbits - 1))
stop = 1 << (numbits - 1)
bounds = IntBound(start, stop - 1)
bres = self.getintbound(op)
bres.intersect(bounds)
def optimize_ARRAYLEN_GC(self, op):
return self.emit(op)
def postprocess_ARRAYLEN_GC(self, op):
array = self.ensure_ptr_info_arg0(op)
self.optimizer.setintbound(op, array.getlenbound(None))
def optimize_STRLEN(self, op):
return self.emit(op)
def postprocess_STRLEN(self, op):
self.make_nonnull_str(op.getarg(0), vstring.mode_string)
array = self.getptrinfo(op.getarg(0))
self.optimizer.setintbound(op, array.getlenbound(vstring.mode_string))
def optimize_UNICODELEN(self, op):
return self.emit(op)
def postprocess_UNICODELEN(self, op):
self.make_nonnull_str(op.getarg(0), vstring.mode_unicode)
array = self.getptrinfo(op.getarg(0))
self.optimizer.setintbound(op, array.getlenbound(vstring.mode_unicode))
def optimize_STRGETITEM(self, op):
return self.emit(op)
def postprocess_STRGETITEM(self, op):
v1 = self.getintbound(op)
v2 = self.getptrinfo(op.getarg(0))
intbound = self.getintbound(op.getarg(1))
if (intbound.has_lower and v2 is not None and
v2.getlenbound(vstring.mode_string) is not None):
lb = IntLowerBound(intbound.lower + 1)
v2.getlenbound(vstring.mode_string).make_ge(lb)
v1.make_ge(IntLowerBound(0))
v1.make_lt(IntUpperBound(256))
def optimize_GETFIELD_RAW_I(self, op):
return self.emit(op)
def postprocess_GETFIELD_RAW_I(self, op):
descr = op.getdescr()
if descr.is_integer_bounded():
b1 = self.getintbound(op)
b1.make_ge(IntLowerBound(descr.get_integer_min()))
b1.make_le(IntUpperBound(descr.get_integer_max()))
optimize_GETFIELD_RAW_F = optimize_GETFIELD_RAW_I
optimize_GETFIELD_RAW_R = optimize_GETFIELD_RAW_I
optimize_GETFIELD_GC_I = optimize_GETFIELD_RAW_I
optimize_GETFIELD_GC_R = optimize_GETFIELD_RAW_I
optimize_GETFIELD_GC_F = optimize_GETFIELD_RAW_I
postprocess_GETFIELD_RAW_F = postprocess_GETFIELD_RAW_I
postprocess_GETFIELD_RAW_R = postprocess_GETFIELD_RAW_I
postprocess_GETFIELD_GC_I = postprocess_GETFIELD_RAW_I
postprocess_GETFIELD_GC_R = postprocess_GETFIELD_RAW_I
postprocess_GETFIELD_GC_F = postprocess_GETFIELD_RAW_I
optimize_GETINTERIORFIELD_GC_I = optimize_GETFIELD_RAW_I
optimize_GETINTERIORFIELD_GC_R = optimize_GETFIELD_RAW_I
optimize_GETINTERIORFIELD_GC_F = optimize_GETFIELD_RAW_I
postprocess_GETINTERIORFIELD_GC_I = postprocess_GETFIELD_RAW_I
postprocess_GETINTERIORFIELD_GC_R = postprocess_GETFIELD_RAW_I
postprocess_GETINTERIORFIELD_GC_F = postprocess_GETFIELD_RAW_I
def optimize_GETARRAYITEM_RAW_I(self, op):
return self.emit(op)
def postprocess_GETARRAYITEM_RAW_I(self, op):
descr = op.getdescr()
if descr and descr.is_item_integer_bounded():
intbound = self.getintbound(op)
intbound.make_ge(IntLowerBound(descr.get_item_integer_min()))
intbound.make_le(IntUpperBound(descr.get_item_integer_max()))
optimize_GETARRAYITEM_RAW_F = optimize_GETARRAYITEM_RAW_I
optimize_GETARRAYITEM_GC_I = optimize_GETARRAYITEM_RAW_I
optimize_GETARRAYITEM_GC_F = optimize_GETARRAYITEM_RAW_I
optimize_GETARRAYITEM_GC_R = optimize_GETARRAYITEM_RAW_I
postprocess_GETARRAYITEM_RAW_F = postprocess_GETARRAYITEM_RAW_I
postprocess_GETARRAYITEM_GC_I = postprocess_GETARRAYITEM_RAW_I
postprocess_GETARRAYITEM_GC_F = postprocess_GETARRAYITEM_RAW_I
postprocess_GETARRAYITEM_GC_R = postprocess_GETARRAYITEM_RAW_I
def optimize_UNICODEGETITEM(self, op):
return self.emit(op)
def postprocess_UNICODEGETITEM(self, op):
b1 = self.getintbound(op)
b1.make_ge(IntLowerBound(0))
v2 = self.getptrinfo(op.getarg(0))
intbound = self.getintbound(op.getarg(1))
if (intbound.has_lower and v2 is not None and
v2.getlenbound(vstring.mode_unicode) is not None):
lb = IntLowerBound(intbound.lower + 1)
v2.getlenbound(vstring.mode_unicode).make_ge(lb)
def make_int_lt(self, box1, box2):
b1 = self.getintbound(box1)
b2 = self.getintbound(box2)
if b1.make_lt(b2):
self.propagate_bounds_backward(box1)
if b2.make_gt(b1):
self.propagate_bounds_backward(box2)
def make_int_le(self, box1, box2):
b1 = self.getintbound(box1)
b2 = self.getintbound(box2)
if b1.make_le(b2):
self.propagate_bounds_backward(box1)
if b2.make_ge(b1):
self.propagate_bounds_backward(box2)
def make_int_gt(self, box1, box2):
self.make_int_lt(box2, box1)
def make_int_ge(self, box1, box2):
self.make_int_le(box2, box1)
def propagate_bounds_INT_LT(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.getint() == 1:
self.make_int_lt(op.getarg(0), op.getarg(1))
else:
assert r.getint() == 0
self.make_int_ge(op.getarg(0), op.getarg(1))
def propagate_bounds_INT_GT(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.getint() == 1:
self.make_int_gt(op.getarg(0), op.getarg(1))
else:
assert r.getint() == 0
self.make_int_le(op.getarg(0), op.getarg(1))
def propagate_bounds_INT_LE(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.getint() == 1:
self.make_int_le(op.getarg(0), op.getarg(1))
else:
assert r.getint() == 0
self.make_int_gt(op.getarg(0), op.getarg(1))
def propagate_bounds_INT_GE(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.getint() == 1:
self.make_int_ge(op.getarg(0), op.getarg(1))
else:
assert r.getint() == 0
self.make_int_lt(op.getarg(0), op.getarg(1))
def propagate_bounds_INT_EQ(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.equal(1):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
if b1.intersect(b2):
self.propagate_bounds_backward(op.getarg(0))
if b2.intersect(b1):
self.propagate_bounds_backward(op.getarg(1))
def propagate_bounds_INT_NE(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.equal(0):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
if b1.intersect(b2):
self.propagate_bounds_backward(op.getarg(0))
if b2.intersect(b1):
self.propagate_bounds_backward(op.getarg(1))
def _propagate_int_is_true_or_zero(self, op, valnonzero, valzero):
if self.is_raw_ptr(op.getarg(0)):
return
r = self.getintbound(op)
if r.is_constant():
if r.getint() == valnonzero:
b1 = self.getintbound(op.getarg(0))
if b1.known_nonnegative():
b1.make_gt(IntBound(0, 0))
self.propagate_bounds_backward(op.getarg(0))
elif r.getint() == valzero:
b1 = self.getintbound(op.getarg(0))
# XXX remove this hack maybe?
# Clever hack, we can't use self.make_constant_int yet because
# the args aren't in the values dictionary yet so it runs into
# an assert, this is a clever way of expressing the same thing.
b1.make_ge(IntBound(0, 0))
b1.make_lt(IntBound(1, 1))
self.propagate_bounds_backward(op.getarg(0))
def propagate_bounds_INT_IS_TRUE(self, op):
self._propagate_int_is_true_or_zero(op, 1, 0)
def propagate_bounds_INT_IS_ZERO(self, op):
self._propagate_int_is_true_or_zero(op, 0, 1)
def propagate_bounds_INT_ADD(self, op):
if self.is_raw_ptr(op.getarg(0)) or self.is_raw_ptr(op.getarg(1)):
return
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
r = self.getintbound(op)
b = r.sub_bound(b2)
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
b = r.sub_bound(b1)
if b2.intersect(b):
self.propagate_bounds_backward(op.getarg(1))
def propagate_bounds_INT_SUB(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
r = self.getintbound(op)
b = r.add_bound(b2)
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
b = r.sub_bound(b1).mul(-1)
if b2.intersect(b):
self.propagate_bounds_backward(op.getarg(1))
def propagate_bounds_INT_MUL(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
r = self.getintbound(op)
b = r.py_div_bound(b2)
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
b = r.py_div_bound(b1)
if b2.intersect(b):
self.propagate_bounds_backward(op.getarg(1))
def propagate_bounds_INT_LSHIFT(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
r = self.getintbound(op)
b = r.rshift_bound(b2)
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
propagate_bounds_INT_ADD_OVF = propagate_bounds_INT_ADD
propagate_bounds_INT_SUB_OVF = propagate_bounds_INT_SUB
propagate_bounds_INT_MUL_OVF = propagate_bounds_INT_MUL
dispatch_opt = make_dispatcher_method(OptIntBounds, 'optimize_',
default=OptIntBounds.emit)
dispatch_bounds_ops = make_dispatcher_method(OptIntBounds, 'propagate_bounds_')
dispatch_postprocess = make_dispatcher_method(OptIntBounds, 'postprocess_')
|