1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
import sys
from rpython.rlib.rarithmetic import ovfcheck, LONG_BIT, maxint, is_valid_int
from rpython.rlib.objectmodel import we_are_translated
from rpython.rtyper.lltypesystem import lltype
from rpython.rtyper.lltypesystem.lloperation import llop
from rpython.jit.metainterp.resoperation import rop, ResOperation
from rpython.jit.metainterp.optimizeopt.info import AbstractInfo, INFO_NONNULL,\
INFO_UNKNOWN, INFO_NULL
from rpython.jit.metainterp.history import ConstInt
MAXINT = maxint
MININT = -maxint - 1
IS_64_BIT = sys.maxint > 2**32
def next_pow2_m1(n):
"""Calculate next power of 2 greater than n minus one."""
n |= n >> 1
n |= n >> 2
n |= n >> 4
n |= n >> 8
n |= n >> 16
if IS_64_BIT:
n |= n >> 32
return n
class IntBound(AbstractInfo):
_attrs_ = ('has_upper', 'has_lower', 'upper', 'lower')
def __init__(self, lower, upper):
self.has_upper = True
self.has_lower = True
self.upper = upper
self.lower = lower
# check for unexpected overflows:
if not we_are_translated():
assert type(upper) is not long or is_valid_int(upper)
assert type(lower) is not long or is_valid_int(lower)
# Returns True if the bound was updated
def make_le(self, other):
if other.has_upper:
if not self.has_upper or other.upper < self.upper:
self.has_upper = True
self.upper = other.upper
return True
return False
def make_lt(self, other):
return self.make_le(other.add(-1))
def make_ge(self, other):
if other.has_lower:
if not self.has_lower or other.lower > self.lower:
self.has_lower = True
self.lower = other.lower
return True
return False
def make_ge_const(self, other):
return self.make_ge(ConstIntBound(other))
def make_gt_const(self, other):
return self.make_gt(ConstIntBound(other))
def make_eq_const(self, intval):
self.has_upper = True
self.has_lower = True
self.upper = intval
self.lower = intval
def make_gt(self, other):
return self.make_ge(other.add(1))
def is_constant(self):
return self.has_upper and self.has_lower and self.lower == self.upper
def getint(self):
assert self.is_constant()
return self.lower
def equal(self, value):
if not self.is_constant():
return False
return self.lower == value
def bounded(self):
return self.has_lower and self.has_upper
def known_lt(self, other):
if self.has_upper and other.has_lower and self.upper < other.lower:
return True
return False
def known_le(self, other):
if self.has_upper and other.has_lower and self.upper <= other.lower:
return True
return False
def known_gt(self, other):
return other.known_lt(self)
def known_ge(self, other):
return other.known_le(self)
def known_nonnegative(self):
return self.has_lower and 0 <= self.lower
def intersect(self, other):
r = False
if other.has_lower:
if other.lower > self.lower or not self.has_lower:
self.lower = other.lower
self.has_lower = True
r = True
if other.has_upper:
if other.upper < self.upper or not self.has_upper:
self.upper = other.upper
self.has_upper = True
r = True
return r
def add(self, offset):
res = self.clone()
try:
res.lower = ovfcheck(res.lower + offset)
except OverflowError:
res.has_lower = False
try:
res.upper = ovfcheck(res.upper + offset)
except OverflowError:
res.has_upper = False
return res
def mul(self, value):
return self.mul_bound(IntBound(value, value))
def add_bound(self, other):
res = self.clone()
if other.has_upper:
try:
res.upper = ovfcheck(res.upper + other.upper)
except OverflowError:
res.has_upper = False
else:
res.has_upper = False
if other.has_lower:
try:
res.lower = ovfcheck(res.lower + other.lower)
except OverflowError:
res.has_lower = False
else:
res.has_lower = False
return res
def sub_bound(self, other):
res = self.clone()
if other.has_lower:
try:
res.upper = ovfcheck(res.upper - other.lower)
except OverflowError:
res.has_upper = False
else:
res.has_upper = False
if other.has_upper:
try:
res.lower = ovfcheck(res.lower - other.upper)
except OverflowError:
res.has_lower = False
else:
res.has_lower = False
return res
def mul_bound(self, other):
if self.has_upper and self.has_lower and \
other.has_upper and other.has_lower:
try:
vals = (ovfcheck(self.upper * other.upper),
ovfcheck(self.upper * other.lower),
ovfcheck(self.lower * other.upper),
ovfcheck(self.lower * other.lower))
return IntBound(min4(vals), max4(vals))
except OverflowError:
return IntUnbounded()
else:
return IntUnbounded()
def py_div_bound(self, other):
if self.has_upper and self.has_lower and \
other.has_upper and other.has_lower and \
not other.contains(0):
try:
# this gives the bounds for 'int_py_div', so use the
# Python-style handling of negative numbers and not
# the C-style one
vals = (ovfcheck(self.upper / other.upper),
ovfcheck(self.upper / other.lower),
ovfcheck(self.lower / other.upper),
ovfcheck(self.lower / other.lower))
return IntBound(min4(vals), max4(vals))
except OverflowError:
return IntUnbounded()
else:
return IntUnbounded()
def mod_bound(self, other):
r = IntUnbounded()
if other.is_constant():
val = other.getint()
if val >= 0: # with Python's modulo: 0 <= (x % pos) < pos
r.make_ge(IntBound(0, 0))
r.make_lt(IntBound(val, val))
else: # with Python's modulo: neg < (x % neg) <= 0
r.make_gt(IntBound(val, val))
r.make_le(IntBound(0, 0))
return r
def lshift_bound(self, other):
if self.has_upper and self.has_lower and \
other.has_upper and other.has_lower and \
other.known_nonnegative() and \
other.known_lt(IntBound(LONG_BIT, LONG_BIT)):
try:
vals = (ovfcheck(self.upper << other.upper),
ovfcheck(self.upper << other.lower),
ovfcheck(self.lower << other.upper),
ovfcheck(self.lower << other.lower))
return IntBound(min4(vals), max4(vals))
except (OverflowError, ValueError):
return IntUnbounded()
else:
return IntUnbounded()
def rshift_bound(self, other):
if self.has_upper and self.has_lower and \
other.has_upper and other.has_lower and \
other.known_nonnegative() and \
other.known_lt(IntBound(LONG_BIT, LONG_BIT)):
vals = (self.upper >> other.upper,
self.upper >> other.lower,
self.lower >> other.upper,
self.lower >> other.lower)
return IntBound(min4(vals), max4(vals))
else:
return IntUnbounded()
def and_bound(self, other):
pos1 = self.known_nonnegative()
pos2 = other.known_nonnegative()
r = IntUnbounded()
if pos1 or pos2:
r.make_ge(IntBound(0, 0))
if pos1:
r.make_le(self)
if pos2:
r.make_le(other)
return r
def or_bound(self, other):
r = IntUnbounded()
if self.known_nonnegative() and \
other.known_nonnegative():
if self.has_upper and other.has_upper:
mostsignificant = self.upper | other.upper
r.intersect(IntBound(0, next_pow2_m1(mostsignificant)))
else:
r.make_ge(IntBound(0, 0))
return r
def contains(self, val):
if not we_are_translated():
assert not isinstance(val, long)
if not isinstance(val, int):
if ((not self.has_lower or self.lower == MININT) and
not self.has_upper or self.upper == MAXINT):
return True # workaround for address as int
if self.has_lower and val < self.lower:
return False
if self.has_upper and val > self.upper:
return False
return True
def contains_bound(self, other):
assert isinstance(other, IntBound)
if other.has_lower:
if not self.contains(other.lower):
return False
elif self.has_lower:
return False
if other.has_upper:
if not self.contains(other.upper):
return False
elif self.has_upper:
return False
return True
def __repr__(self):
if self.has_lower:
l = '%d' % self.lower
else:
l = '-Inf'
if self.has_upper:
u = '%d' % self.upper
else:
u = 'Inf'
return '%s <= x <= %s' % (l, u)
def clone(self):
res = IntBound(self.lower, self.upper)
res.has_lower = self.has_lower
res.has_upper = self.has_upper
return res
def make_guards(self, box, guards, optimizer):
if self.is_constant():
guards.append(ResOperation(rop.GUARD_VALUE,
[box, ConstInt(self.upper)]))
return
if self.has_lower and self.lower > MININT:
bound = self.lower
op = ResOperation(rop.INT_GE, [box, ConstInt(bound)])
guards.append(op)
op = ResOperation(rop.GUARD_TRUE, [op])
guards.append(op)
if self.has_upper and self.upper < MAXINT:
bound = self.upper
op = ResOperation(rop.INT_LE, [box, ConstInt(bound)])
guards.append(op)
op = ResOperation(rop.GUARD_TRUE, [op])
guards.append(op)
def is_bool(self):
return (self.bounded() and self.known_nonnegative() and
self.known_le(ConstIntBound(1)))
def make_bool(self):
self.intersect(IntBound(0, 1))
def getconst(self):
if not self.is_constant():
raise Exception("not a constant")
return ConstInt(self.getint())
def getnullness(self):
if self.known_gt(IntBound(0, 0)) or \
self.known_lt(IntBound(0, 0)):
return INFO_NONNULL
if self.known_nonnegative() and \
self.known_le(IntBound(0, 0)):
return INFO_NULL
return INFO_UNKNOWN
def IntUpperBound(upper):
b = IntBound(lower=0, upper=upper)
b.has_lower = False
return b
def IntLowerBound(lower):
b = IntBound(upper=0, lower=lower)
b.has_upper = False
return b
def IntUnbounded():
b = IntBound(upper=0, lower=0)
b.has_lower = False
b.has_upper = False
return b
def ConstIntBound(value):
return IntBound(value, value)
def min4(t):
return min(min(t[0], t[1]), min(t[2], t[3]))
def max4(t):
return max(max(t[0], t[1]), max(t[2], t[3]))
|