1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
|
"""Incremental version of the MiniMark GC.
Environment variables can be used to fine-tune the following parameters:
PYPY_GC_NURSERY The nursery size. Defaults to 1/2 of your cache or
'4M'. Small values
(like 1 or 1KB) are useful for debugging.
PYPY_GC_NURSERY_DEBUG If set to non-zero, will fill nursery with garbage,
to help debugging.
PYPY_GC_INCREMENT_STEP The size of memory marked during the marking step.
Default is size of nursery * 2. If you mark it too high
your GC is not incremental at all. The minimum is set
to size that survives minor collection * 1.5 so we
reclaim anything all the time.
PYPY_GC_MAJOR_COLLECT Major collection memory factor. Default is '1.82',
which means trigger a major collection when the
memory consumed equals 1.82 times the memory
really used at the end of the previous major
collection.
PYPY_GC_GROWTH Major collection threshold's max growth rate.
Default is '1.4'. Useful to collect more often
than normally on sudden memory growth, e.g. when
there is a temporary peak in memory usage.
PYPY_GC_MAX The max heap size. If coming near this limit, it
will first collect more often, then raise an
RPython MemoryError, and if that is not enough,
crash the program with a fatal error. Try values
like '1.6GB'.
PYPY_GC_MAX_DELTA The major collection threshold will never be set
to more than PYPY_GC_MAX_DELTA the amount really
used after a collection. Defaults to 1/8th of the
total RAM size (which is constrained to be at most
2/3/4GB on 32-bit systems). Try values like '200MB'.
PYPY_GC_MIN Don't collect while the memory size is below this
limit. Useful to avoid spending all the time in
the GC in very small programs. Defaults to 8
times the nursery.
PYPY_GC_DEBUG Enable extra checks around collections that are
too slow for normal use. Values are 0 (off),
1 (on major collections) or 2 (also on minor
collections).
PYPY_GC_MAX_PINNED The maximal number of pinned objects at any point
in time. Defaults to a conservative value depending
on nursery size and maximum object size inside the
nursery. Useful for debugging by setting it to 0.
"""
# XXX Should find a way to bound the major collection threshold by the
# XXX total addressable size. Maybe by keeping some minimarkpage arenas
# XXX pre-reserved, enough for a few nursery collections? What about
# XXX raw-malloced memory?
# XXX try merging old_objects_pointing_to_pinned into
# XXX old_objects_pointing_to_young (IRC 2014-10-22, fijal and gregor_w)
import sys
import os
import time
from rpython.rtyper.lltypesystem import lltype, llmemory, llarena, llgroup
from rpython.rtyper.lltypesystem.lloperation import llop
from rpython.rtyper.lltypesystem.llmemory import raw_malloc_usage
from rpython.memory.gc.base import GCBase, MovingGCBase
from rpython.memory.gc import env
from rpython.memory.support import mangle_hash
from rpython.rlib.rarithmetic import ovfcheck, LONG_BIT, intmask, r_uint
from rpython.rlib.rarithmetic import LONG_BIT_SHIFT
from rpython.rlib.debug import ll_assert, debug_print, debug_start, debug_stop
from rpython.rlib.objectmodel import specialize
from rpython.rlib import rgc
from rpython.memory.gc.minimarkpage import out_of_memory
#
# Handles the objects in 2 generations:
#
# * young objects: allocated in the nursery if they are not too large, or
# raw-malloced otherwise. The nursery is a fixed-size memory buffer of
# 4MB by default. When full, we do a minor collection;
# - surviving objects from the nursery are moved outside and become old,
# - non-surviving raw-malloced objects are freed,
# - and pinned objects are kept at their place inside the nursery and stay
# young.
#
# * old objects: never move again. These objects are either allocated by
# minimarkpage.py (if they are small), or raw-malloced (if they are not
# small). Collected by regular mark-n-sweep during major collections.
#
WORD = LONG_BIT // 8
first_gcflag = 1 << (LONG_BIT//2)
# The following flag is set on objects if we need to do something to
# track the young pointers that it might contain. The flag is not set
# on young objects (unless they are large arrays, see below), and we
# simply assume that any young object can point to any other young object.
# For old and prebuilt objects, the flag is usually set, and is cleared
# when we write any pointer to it. For large arrays with
# GCFLAG_HAS_CARDS, we rely on card marking to track where the
# young pointers are; the flag GCFLAG_TRACK_YOUNG_PTRS is set in this
# case too, to speed up the write barrier.
GCFLAG_TRACK_YOUNG_PTRS = first_gcflag << 0
# The following flag is set on some prebuilt objects. The flag is set
# unless the object is already listed in 'prebuilt_root_objects'.
# When a pointer is written inside an object with GCFLAG_NO_HEAP_PTRS
# set, the write_barrier clears the flag and adds the object to
# 'prebuilt_root_objects'.
GCFLAG_NO_HEAP_PTRS = first_gcflag << 1
# The following flag is set on surviving objects during a major collection.
GCFLAG_VISITED = first_gcflag << 2
# The following flag is set on nursery objects of which we asked the id
# or the identityhash. It means that a space of the size of the object
# has already been allocated in the nonmovable part.
GCFLAG_HAS_SHADOW = first_gcflag << 3
# The following flag is set temporarily on some objects during a major
# collection. See pypy/doc/discussion/finalizer-order.txt
GCFLAG_FINALIZATION_ORDERING = first_gcflag << 4
# This flag is reserved for RPython.
GCFLAG_EXTRA = first_gcflag << 5
# The following flag is set on externally raw_malloc'ed arrays of pointers.
# They are allocated with some extra space in front of them for a bitfield,
# one bit per 'card_page_indices' indices.
GCFLAG_HAS_CARDS = first_gcflag << 6
GCFLAG_CARDS_SET = first_gcflag << 7 # <- at least one card bit is set
# note that GCFLAG_CARDS_SET is the most significant bit of a byte:
# this is required for the JIT (x86)
# The following flag is set on surviving raw-malloced young objects during
# a minor collection.
GCFLAG_VISITED_RMY = first_gcflag << 8
# The following flag is set on nursery objects to keep them in the nursery.
# This means that a young object with this flag is not moved out
# of the nursery during a minor collection. See pin()/unpin() for further
# details.
GCFLAG_PINNED = first_gcflag << 9
# The following flag is set only on objects outside the nursery
# (i.e. old objects). Therefore we can reuse GCFLAG_PINNED as it is used for
# the same feature (object pinning) and GCFLAG_PINNED is only used on nursery
# objects.
# If this flag is set, the flagged object is already an element of
# 'old_objects_pointing_to_pinned' and doesn't have to be added again.
GCFLAG_PINNED_OBJECT_PARENT_KNOWN = GCFLAG_PINNED
# record that ignore_finalizer() has been called
GCFLAG_IGNORE_FINALIZER = first_gcflag << 10
# shadow objects can have its memory initialized when it is created.
# It does not need an additional copy in trace out
GCFLAG_SHADOW_INITIALIZED = first_gcflag << 11
_GCFLAG_FIRST_UNUSED = first_gcflag << 12 # the first unused bit
# States for the incremental GC
# The scanning phase, next step call will scan the current roots
# This state must complete in a single step
STATE_SCANNING = 0
# The marking phase. We walk the list 'objects_to_trace' of all gray objects
# and mark all of the things they point to gray. This step lasts until there
# are no more gray objects. ('objects_to_trace' never contains pinned objs.)
STATE_MARKING = 1
# here we kill all the unvisited objects
STATE_SWEEPING = 2
# here we call all the finalizers
STATE_FINALIZING = 3
GC_STATES = ['SCANNING', 'MARKING', 'SWEEPING', 'FINALIZING']
FORWARDSTUB = lltype.GcStruct('forwarding_stub',
('forw', llmemory.Address))
FORWARDSTUBPTR = lltype.Ptr(FORWARDSTUB)
NURSARRAY = lltype.Array(llmemory.Address)
# ____________________________________________________________
class IncrementalMiniMarkGC(MovingGCBase):
_alloc_flavor_ = "raw"
inline_simple_malloc = True
inline_simple_malloc_varsize = True
needs_write_barrier = True
prebuilt_gc_objects_are_static_roots = False
can_usually_pin_objects = True
malloc_zero_filled = False
gcflag_extra = GCFLAG_EXTRA
# All objects start with a HDR, i.e. with a field 'tid' which contains
# a word. This word is divided in two halves: the lower half contains
# the typeid, and the upper half contains various flags, as defined
# by GCFLAG_xxx above.
HDR = lltype.Struct('header', ('tid', lltype.Signed))
typeid_is_in_field = 'tid'
# During a minor collection, the objects in the nursery that are
# moved outside are changed in-place: their header is replaced with
# the value -42, and the following word is set to the address of
# where the object was moved. This means that all objects in the
# nursery need to be at least 2 words long, but objects outside the
# nursery don't need to.
minimal_size_in_nursery = (
llmemory.sizeof(HDR) + llmemory.sizeof(llmemory.Address))
TRANSLATION_PARAMS = {
# Automatically adjust the size of the nursery and the
# 'major_collection_threshold' from the environment.
# See docstring at the start of the file.
"read_from_env": True,
# The size of the nursery. Note that this is only used as a
# fall-back number.
"nursery_size": 896*1024,
# The system page size. Like malloc, we assume that it is 4K
# for 32-bit systems; unlike malloc, we assume that it is 8K
# for 64-bit systems, for consistent results.
"page_size": 1024*WORD,
# The size of an arena. Arenas are groups of pages allocated
# together.
"arena_size": 65536*WORD,
# The maximum size of an object allocated compactly. All objects
# that are larger are just allocated with raw_malloc(). Note that
# the size limit for being first allocated in the nursery is much
# larger; see below.
"small_request_threshold": 35*WORD,
# Full collection threshold: after a major collection, we record
# the total size consumed; and after every minor collection, if the
# total size is now more than 'major_collection_threshold' times,
# we trigger the next major collection.
"major_collection_threshold": 1.82,
# Threshold to avoid that the total heap size grows by a factor of
# major_collection_threshold at every collection: it can only
# grow at most by the following factor from one collection to the
# next. Used e.g. when there is a sudden, temporary peak in memory
# usage; this avoids that the upper bound grows too fast.
"growth_rate_max": 1.4,
# The number of array indices that are mapped to a single bit in
# write_barrier_from_array(). Must be a power of two. The default
# value of 128 means that card pages are 512 bytes (1024 on 64-bits)
# in regular arrays of pointers; more in arrays whose items are
# larger. A value of 0 disables card marking.
"card_page_indices": 128,
# Objects whose total size is at least 'large_object' bytes are
# allocated out of the nursery immediately, as old objects. The
# minimal allocated size of the nursery is 2x the following
# number (by default, at least 132KB on 32-bit and 264KB on 64-bit).
"large_object": (16384+512)*WORD,
}
def __init__(self, config,
read_from_env=False,
nursery_size=32*WORD,
nursery_cleanup=9*WORD,
page_size=16*WORD,
arena_size=64*WORD,
small_request_threshold=5*WORD,
major_collection_threshold=2.5,
growth_rate_max=2.5, # for tests
card_page_indices=0,
large_object=8*WORD,
ArenaCollectionClass=None,
**kwds):
"NOT_RPYTHON"
MovingGCBase.__init__(self, config, **kwds)
assert small_request_threshold % WORD == 0
self.read_from_env = read_from_env
self.nursery_size = nursery_size
self.small_request_threshold = small_request_threshold
self.major_collection_threshold = major_collection_threshold
self.growth_rate_max = growth_rate_max
self.num_major_collects = 0
self.min_heap_size = 0.0
self.max_heap_size = 0.0
self.max_heap_size_already_raised = False
self.max_delta = float(r_uint(-1))
self.max_number_of_pinned_objects = 0 # computed later
#
self.card_page_indices = card_page_indices
if self.card_page_indices > 0:
self.card_page_shift = 0
while (1 << self.card_page_shift) < self.card_page_indices:
self.card_page_shift += 1
#
# 'large_object' limit how big objects can be in the nursery, so
# it gives a lower bound on the allowed size of the nursery.
self.nonlarge_max = large_object - 1
#
self.nursery = llmemory.NULL
self.nursery_free = llmemory.NULL
self.nursery_top = llmemory.NULL
self.debug_tiny_nursery = -1
self.debug_rotating_nurseries = lltype.nullptr(NURSARRAY)
self.extra_threshold = 0
#
# The ArenaCollection() handles the nonmovable objects allocation.
if ArenaCollectionClass is None:
from rpython.memory.gc import minimarkpage
ArenaCollectionClass = minimarkpage.ArenaCollection
self.ac = ArenaCollectionClass(arena_size, page_size,
small_request_threshold)
#
# Used by minor collection: a list of (mostly non-young) objects that
# (may) contain a pointer to a young object. Populated by
# the write barrier: when we clear GCFLAG_TRACK_YOUNG_PTRS, we
# add it to this list.
# Note that young array objects may (by temporary "mistake") be added
# to this list, but will be removed again at the start of the next
# minor collection.
self.old_objects_pointing_to_young = self.AddressStack()
#
# Similar to 'old_objects_pointing_to_young', but lists objects
# that have the GCFLAG_CARDS_SET bit. For large arrays. Note
# that it is possible for an object to be listed both in here
# and in 'old_objects_pointing_to_young', in which case we
# should just clear the cards and trace it fully, as usual.
# Note also that young array objects are never listed here.
self.old_objects_with_cards_set = self.AddressStack()
#
# A list of all prebuilt GC objects that contain pointers to the heap
self.prebuilt_root_objects = self.AddressStack()
#
self._init_writebarrier_logic()
#
# The size of all the objects turned from 'young' to 'old'
# since we started the last major collection cycle. This is
# used to track progress of the incremental GC: normally, we
# run one major GC step after each minor collection, but if a
# lot of objects are made old, we need run two or more steps.
# Otherwise the risk is that we create old objects faster than
# we're collecting them. The 'threshold' is incremented after
# each major GC step at a fixed rate; the idea is that as long
# as 'size_objects_made_old > threshold_objects_made_old' then
# we must do more major GC steps. See major_collection_step()
# for more details.
self.size_objects_made_old = r_uint(0)
self.threshold_objects_made_old = r_uint(0)
def setup(self):
"""Called at run-time to initialize the GC."""
#
# Hack: MovingGCBase.setup() sets up stuff related to id(), which
# we implement differently anyway. So directly call GCBase.setup().
GCBase.setup(self)
#
# Two lists of all raw_malloced objects (the objects too large)
self.young_rawmalloced_objects = self.null_address_dict()
self.old_rawmalloced_objects = self.AddressStack()
self.raw_malloc_might_sweep = self.AddressStack()
self.rawmalloced_total_size = r_uint(0)
self.rawmalloced_peak_size = r_uint(0)
self.total_gc_time = 0.0
self.gc_state = STATE_SCANNING
# if the GC is disabled, it runs only minor collections; major
# collections need to be manually triggered by explicitly calling
# collect()
self.enabled = True
#
# Two lists of all objects with finalizers. Actually they are lists
# of pairs (finalization_queue_nr, object). "probably young objects"
# are all traced and moved to the "old" list by the next minor
# collection.
self.probably_young_objects_with_finalizers = self.AddressDeque()
self.old_objects_with_finalizers = self.AddressDeque()
p = lltype.malloc(self._ADDRARRAY, 1, flavor='raw',
track_allocation=False)
self.singleaddr = llmemory.cast_ptr_to_adr(p)
#
# Two lists of all objects with destructors.
self.young_objects_with_destructors = self.AddressStack()
self.old_objects_with_destructors = self.AddressStack()
#
# Two lists of the objects with weakrefs. No weakref can be an
# old object weakly pointing to a young object: indeed, weakrefs
# are immutable so they cannot point to an object that was
# created after it.
self.young_objects_with_weakrefs = self.AddressStack()
self.old_objects_with_weakrefs = self.AddressStack()
#
# Support for id and identityhash: map nursery objects with
# GCFLAG_HAS_SHADOW to their future location at the next
# minor collection.
self.nursery_objects_shadows = self.AddressDict()
#
# A sorted deque containing addresses of pinned objects.
# This collection is used to make sure we don't overwrite pinned objects.
# Each minor collection creates a new deque containing the active pinned
# objects. The addresses are used to set the next 'nursery_top'.
self.nursery_barriers = self.AddressDeque()
#
# Counter tracking how many pinned objects currently reside inside
# the nursery.
self.pinned_objects_in_nursery = 0
#
# This flag is set if the previous minor collection found at least
# one pinned object alive.
self.any_pinned_object_kept = False
#
# Keeps track of old objects pointing to pinned objects. These objects
# must be traced every minor collection. Without tracing them the
# referenced pinned object wouldn't be visited and therefore collected.
self.old_objects_pointing_to_pinned = self.AddressStack()
self.updated_old_objects_pointing_to_pinned = False
#
# Allocate a nursery. In case of auto_nursery_size, start by
# allocating a very small nursery, enough to do things like look
# up the env var, which requires the GC; and then really
# allocate the nursery of the final size.
if not self.read_from_env:
self.allocate_nursery()
self.gc_increment_step = self.nursery_size * 4
self.gc_nursery_debug = False
else:
#
defaultsize = self.nursery_size
minsize = 2 * (self.nonlarge_max + 1)
self.nursery_size = minsize
self.allocate_nursery()
#
# From there on, the GC is fully initialized and the code
# below can use it
newsize = env.read_from_env('PYPY_GC_NURSERY')
# PYPY_GC_NURSERY=smallvalue means that minor collects occur
# very frequently; the extreme case is PYPY_GC_NURSERY=1, which
# forces a minor collect for every malloc. Useful to debug
# external factors, like trackgcroot or the handling of the write
# barrier. Implemented by still using 'minsize' for the nursery
# size (needed to handle mallocs just below 'large_objects') but
# hacking at the current nursery position in collect_and_reserve().
if newsize <= 0:
newsize = env.estimate_best_nursery_size()
if newsize <= 0:
newsize = defaultsize
if newsize < minsize:
self.debug_tiny_nursery = newsize & ~(WORD-1)
newsize = minsize
#
major_coll = env.read_float_from_env('PYPY_GC_MAJOR_COLLECT')
if major_coll > 1.0:
self.major_collection_threshold = major_coll
#
growth = env.read_float_from_env('PYPY_GC_GROWTH')
if growth > 1.0:
self.growth_rate_max = growth
#
min_heap_size = env.read_uint_from_env('PYPY_GC_MIN')
if min_heap_size > 0:
self.min_heap_size = float(min_heap_size)
else:
# defaults to 8 times the nursery
self.min_heap_size = newsize * 8
#
max_heap_size = env.read_uint_from_env('PYPY_GC_MAX')
if max_heap_size > 0:
self.max_heap_size = float(max_heap_size)
#
max_delta = env.read_uint_from_env('PYPY_GC_MAX_DELTA')
if max_delta > 0:
self.max_delta = float(max_delta)
else:
self.max_delta = 0.125 * env.get_total_memory()
gc_increment_step = env.read_uint_from_env('PYPY_GC_INCREMENT_STEP')
if gc_increment_step > 0:
self.gc_increment_step = gc_increment_step
else:
self.gc_increment_step = newsize * 4
#
nursery_debug = env.read_uint_from_env('PYPY_GC_NURSERY_DEBUG')
if nursery_debug > 0:
self.gc_nursery_debug = True
else:
self.gc_nursery_debug = False
self._minor_collection() # to empty the nursery
llarena.arena_free(self.nursery)
self.nursery_size = newsize
self.allocate_nursery()
#
env_max_number_of_pinned_objects = os.environ.get('PYPY_GC_MAX_PINNED')
if env_max_number_of_pinned_objects:
try:
env_max_number_of_pinned_objects = int(env_max_number_of_pinned_objects)
except ValueError:
env_max_number_of_pinned_objects = 0
#
if env_max_number_of_pinned_objects >= 0: # 0 allows to disable pinning completely
self.max_number_of_pinned_objects = env_max_number_of_pinned_objects
else:
# Estimate this number conservatively
bigobj = self.nonlarge_max + 1
self.max_number_of_pinned_objects = self.nursery_size / (bigobj * 2)
def enable(self):
self.enabled = True
def disable(self):
self.enabled = False
def isenabled(self):
return self.enabled
def _nursery_memory_size(self):
extra = self.nonlarge_max + 1
return self.nursery_size + extra
def _alloc_nursery(self):
# the start of the nursery: we actually allocate a bit more for
# the nursery than really needed, to simplify pointer arithmetic
# in malloc_fixedsize(). The few extra pages are never used
# anyway so it doesn't even count.
nursery = llarena.arena_malloc(self._nursery_memory_size(), 0)
if not nursery:
out_of_memory("cannot allocate nursery")
return nursery
def allocate_nursery(self):
debug_start("gc-set-nursery-size")
debug_print("nursery size:", self.nursery_size)
self.nursery = self._alloc_nursery()
# the current position in the nursery:
self.nursery_free = self.nursery
# the end of the nursery:
self.nursery_top = self.nursery + self.nursery_size
# initialize the threshold
self.min_heap_size = max(self.min_heap_size, self.nursery_size *
self.major_collection_threshold)
# the following two values are usually equal, but during raw mallocs
# with memory pressure accounting, next_major_collection_threshold
# is decremented to make the next major collection arrive earlier.
# See translator/c/test/test_newgc, test_nongc_attached_to_gc
self.next_major_collection_initial = self.min_heap_size
self.next_major_collection_threshold = self.min_heap_size
self.set_major_threshold_from(0.0)
ll_assert(self.extra_threshold == 0, "extra_threshold set too early")
debug_stop("gc-set-nursery-size")
def set_major_threshold_from(self, threshold, reserving_size=0):
# Set the next_major_collection_threshold.
threshold_max = (self.next_major_collection_initial *
self.growth_rate_max)
if threshold > threshold_max:
threshold = threshold_max
#
threshold += reserving_size
if threshold < self.min_heap_size:
threshold = self.min_heap_size
#
if self.max_heap_size > 0.0 and threshold > self.max_heap_size:
threshold = self.max_heap_size
bounded = True
else:
bounded = False
#
self.next_major_collection_initial = threshold
self.next_major_collection_threshold = threshold
return bounded
def post_setup(self):
# set up extra stuff for PYPY_GC_DEBUG.
MovingGCBase.post_setup(self)
if self.DEBUG and llarena.has_protect:
# gc debug mode: allocate 7 nurseries instead of just 1,
# and use them alternatively, while mprotect()ing the unused
# ones to detect invalid access.
debug_start("gc-debug")
self.debug_rotating_nurseries = lltype.malloc(
NURSARRAY, 6, flavor='raw', track_allocation=False)
i = 0
while i < 6:
nurs = self._alloc_nursery()
llarena.arena_protect(nurs, self._nursery_memory_size(), True)
self.debug_rotating_nurseries[i] = nurs
i += 1
debug_print("allocated", len(self.debug_rotating_nurseries),
"extra nurseries")
debug_stop("gc-debug")
def debug_rotate_nursery(self):
if self.debug_rotating_nurseries:
debug_start("gc-debug")
oldnurs = self.nursery
llarena.arena_protect(oldnurs, self._nursery_memory_size(), True)
#
newnurs = self.debug_rotating_nurseries[0]
i = 0
while i < len(self.debug_rotating_nurseries) - 1:
self.debug_rotating_nurseries[i] = (
self.debug_rotating_nurseries[i + 1])
i += 1
self.debug_rotating_nurseries[i] = oldnurs
#
llarena.arena_protect(newnurs, self._nursery_memory_size(), False)
self.nursery = newnurs
self.nursery_top = self.nursery + self.nursery_size
debug_print("switching from nursery", oldnurs,
"to nursery", self.nursery,
"size", self.nursery_size)
debug_stop("gc-debug")
def malloc_fixedsize(self, typeid, size,
needs_finalizer=False,
is_finalizer_light=False,
contains_weakptr=False):
size_gc_header = self.gcheaderbuilder.size_gc_header
totalsize = size_gc_header + size
rawtotalsize = raw_malloc_usage(totalsize)
#
# If the object needs a finalizer, ask for a rawmalloc.
# The following check should be constant-folded.
if needs_finalizer and not is_finalizer_light:
# old-style finalizers only!
ll_assert(not contains_weakptr,
"'needs_finalizer' and 'contains_weakptr' both specified")
obj = self.external_malloc(typeid, 0, alloc_young=False)
res = llmemory.cast_adr_to_ptr(obj, llmemory.GCREF)
self.register_finalizer(-1, res)
return res
#
# If totalsize is greater than nonlarge_max (which should never be
# the case in practice), ask for a rawmalloc. The following check
# should be constant-folded.
if rawtotalsize > self.nonlarge_max:
ll_assert(not contains_weakptr,
"'contains_weakptr' specified for a large object")
obj = self.external_malloc(typeid, 0, alloc_young=True)
#
else:
# If totalsize is smaller than minimal_size_in_nursery, round it
# up. The following check should also be constant-folded.
min_size = raw_malloc_usage(self.minimal_size_in_nursery)
if rawtotalsize < min_size:
totalsize = rawtotalsize = min_size
#
# Get the memory from the nursery. If there is not enough space
# there, do a collect first.
result = self.nursery_free
ll_assert(result != llmemory.NULL, "uninitialized nursery")
self.nursery_free = new_free = result + totalsize
if new_free > self.nursery_top:
result = self.collect_and_reserve(totalsize)
#
# Build the object.
llarena.arena_reserve(result, totalsize)
obj = result + size_gc_header
self.init_gc_object(result, typeid, flags=0)
#
# If it is a weakref or has a lightweight destructor, record it
# (checks constant-folded).
if needs_finalizer:
self.young_objects_with_destructors.append(obj)
if contains_weakptr:
self.young_objects_with_weakrefs.append(obj)
return llmemory.cast_adr_to_ptr(obj, llmemory.GCREF)
def malloc_varsize(self, typeid, length, size, itemsize,
offset_to_length):
size_gc_header = self.gcheaderbuilder.size_gc_header
nonvarsize = size_gc_header + size
#
# Compute the maximal length that makes the object still
# below 'nonlarge_max'. All the following logic is usually
# constant-folded because self.nonlarge_max, size and itemsize
# are all constants (the arguments are constant due to
# inlining).
maxsize = self.nonlarge_max - raw_malloc_usage(nonvarsize)
if maxsize < 0:
toobig = r_uint(0) # the nonvarsize alone is too big
elif raw_malloc_usage(itemsize):
toobig = r_uint(maxsize // raw_malloc_usage(itemsize)) + 1
else:
toobig = r_uint(sys.maxint) + 1
if r_uint(length) >= r_uint(toobig):
#
# If the total size of the object would be larger than
# 'nonlarge_max', then allocate it externally. We also
# go there if 'length' is actually negative.
obj = self.external_malloc(typeid, length, alloc_young=True)
#
else:
# With the above checks we know now that totalsize cannot be more
# than 'nonlarge_max'; in particular, the + and * cannot overflow.
totalsize = nonvarsize + itemsize * length
totalsize = llarena.round_up_for_allocation(totalsize)
#
# 'totalsize' should contain at least the GC header and
# the length word, so it should never be smaller than
# 'minimal_size_in_nursery'
ll_assert(raw_malloc_usage(totalsize) >=
raw_malloc_usage(self.minimal_size_in_nursery),
"malloc_varsize(): totalsize < minimalsize")
#
# Get the memory from the nursery. If there is not enough space
# there, do a collect first.
result = self.nursery_free
ll_assert(result != llmemory.NULL, "uninitialized nursery")
self.nursery_free = new_free = result + totalsize
if new_free > self.nursery_top:
result = self.collect_and_reserve(totalsize)
#
# Build the object.
llarena.arena_reserve(result, totalsize)
self.init_gc_object(result, typeid, flags=0)
#
# Set the length and return the object.
obj = result + size_gc_header
(obj + offset_to_length).signed[0] = length
#
return llmemory.cast_adr_to_ptr(obj, llmemory.GCREF)
def malloc_fixed_or_varsize_nonmovable(self, typeid, length):
# length==0 for fixedsize
obj = self.external_malloc(typeid, length, alloc_young=True)
return llmemory.cast_adr_to_ptr(obj, llmemory.GCREF)
def move_out_of_nursery(self, obj):
# called twice, it should return the same shadow object,
# and not creating another shadow object. As a safety feature,
# when called on a non-nursery object, do nothing.
if not self.is_in_nursery(obj):
return obj
shadow = self._find_shadow(obj)
if (self.header(obj).tid & GCFLAG_SHADOW_INITIALIZED) == 0:
self.header(obj).tid |= GCFLAG_SHADOW_INITIALIZED
totalsize = self.get_size(obj)
llmemory.raw_memcopy(obj, shadow, totalsize)
return shadow
def collect(self, gen=2):
"""Do a minor (gen=0), start a major (gen=1), or do a full
major (gen>=2) collection."""
if gen < 0:
# Dangerous! this makes no progress on the major GC cycle.
# If called too often, the memory usage will keep increasing,
# because we'll never completely fill the nursery (and so
# never run anything about the major collection).
self._minor_collection()
elif gen == 0:
# This runs a minor collection. This is basically what occurs
# when the nursery is full. If a major collection is in
# progress, it also runs one more step of it. It might also
# decide to start a major collection just now, depending on
# current memory pressure.
self.minor_collection_with_major_progress(force_enabled=True)
elif gen == 1:
# This is like gen == 0, but if no major collection is running,
# then it forces one to start now.
self.minor_collection_with_major_progress(force_enabled=True)
if self.gc_state == STATE_SCANNING:
self.major_collection_step()
else:
# This does a complete minor and major collection.
self.minor_and_major_collection()
self.rrc_invoke_callback()
def collect_step(self):
"""
Do a single major collection step. Return True when the major collection
is completed.
This is meant to be used together with gc.disable(), to have a
fine-grained control on when the GC runs.
"""
old_state = self.gc_state
self._minor_collection()
self.major_collection_step()
self.rrc_invoke_callback()
return rgc._encode_states(old_state, self.gc_state)
def minor_collection_with_major_progress(self, extrasize=0,
force_enabled=False):
"""Do a minor collection. Then, if the GC is enabled and there
is already a major GC in progress, run at least one major collection
step. If there is no major GC but the threshold is reached, start a
major GC.
"""
self._minor_collection()
if not self.enabled and not force_enabled:
return
# If the gc_state is STATE_SCANNING, we're not in the middle
# of an incremental major collection. In that case, wait
# until there is too much garbage before starting the next
# major collection. But if we are in the middle of an
# incremental major collection, then always do (at least) one
# step now.
#
# Within a major collection cycle, every call to
# major_collection_step() increments
# 'threshold_objects_made_old' by nursery_size/2.
if self.gc_state != STATE_SCANNING or self.threshold_reached(extrasize):
self.major_collection_step(extrasize)
# See documentation in major_collection_step() for target invariants
while self.gc_state != STATE_SCANNING: # target (A1)
threshold = self.threshold_objects_made_old
if threshold >= r_uint(extrasize):
threshold -= r_uint(extrasize) # (*)
if self.size_objects_made_old <= threshold: # target (A2)
break
# Note that target (A2) is tweaked by (*); see
# test_gc_set_max_heap_size in translator/c, test_newgc.py
self._minor_collection()
self.major_collection_step(extrasize)
self.rrc_invoke_callback()
def collect_and_reserve(self, totalsize):
"""To call when nursery_free overflows nursery_top.
First check if pinned objects are in front of nursery_top. If so,
jump over the pinned object and try again to reserve totalsize.
Otherwise do a minor collection, and possibly some steps of a
major collection, and finally reserve totalsize bytes.
"""
minor_collection_count = 0
while True:
self.nursery_free = llmemory.NULL # debug: don't use me
# note: no "raise MemoryError" between here and the next time
# we initialize nursery_free!
if self.nursery_barriers.non_empty():
# Pinned object in front of nursery_top. Try reserving totalsize
# by jumping into the next, yet unused, area inside the
# nursery. "Next area" in this case is the space between the
# pinned object in front of nusery_top and the pinned object
# after that. Graphically explained:
#
# |- allocating totalsize failed in this area
# | |- nursery_top
# | | |- pinned object in front of nursery_top,
# v v v jump over this
# +---------+--------+--------+--------+-----------+ }
# | used | pinned | empty | pinned | empty | }- nursery
# +---------+--------+--------+--------+-----------+ }
# ^- try reserving totalsize in here next
#
# All pinned objects are represented by entries in
# nursery_barriers (see minor_collection). The last entry is
# always the end of the nursery. Therefore if nursery_barriers
# contains only one element, we jump over a pinned object and
# the "next area" (the space where we will try to allocate
# totalsize) starts at the end of the pinned object and ends at
# nursery's end.
#
# find the size of the pinned object after nursery_top
size_gc_header = self.gcheaderbuilder.size_gc_header
pinned_obj_size = size_gc_header + self.get_size(
self.nursery_top + size_gc_header)
#
# update used nursery space to allocate objects
self.nursery_free = self.nursery_top + pinned_obj_size
self.nursery_top = self.nursery_barriers.popleft()
else:
minor_collection_count += 1
if minor_collection_count == 1:
self.minor_collection_with_major_progress()
else:
# Nursery too full again. This is likely because of
# execute_finalizers() or rrc_invoke_callback().
# we need to fix it with another call to minor_collection()
# ---this time only the minor part so that we are sure that
# the nursery is empty (apart from pinned objects).
#
# Note that this still works with the counters:
# 'size_objects_made_old' will be increased by
# the _minor_collection() below. We don't
# immediately restore the target invariant that
# 'size_objects_made_old <= threshold_objects_made_old'.
# But we will do it in the next call to
# minor_collection_with_major_progress().
#
ll_assert(minor_collection_count == 2,
"Calling minor_collection() twice is not "
"enough. Too many pinned objects?")
self._minor_collection()
#
# Tried to do something about nursery_free overflowing
# nursery_top before this point. Try to reserve totalsize now.
# If this succeeds break out of loop.
result = self.nursery_free
if self.nursery_free + totalsize <= self.nursery_top:
self.nursery_free = result + totalsize
ll_assert(self.nursery_free <= self.nursery_top, "nursery overflow")
break
#
#
if self.debug_tiny_nursery >= 0: # for debugging
if self.nursery_top - self.nursery_free > self.debug_tiny_nursery:
self.nursery_free = self.nursery_top - self.debug_tiny_nursery
#
return result
collect_and_reserve._dont_inline_ = True
# XXX kill alloc_young and make it always True
def external_malloc(self, typeid, length, alloc_young):
"""Allocate a large object using the ArenaCollection or
raw_malloc(), possibly as an object with card marking enabled,
if it has gc pointers in its var-sized part. 'length' should be
specified as 0 if the object is not varsized. The returned
object is fully initialized, but not zero-filled."""
#
# Here we really need a valid 'typeid', not 0 (as the JIT might
# try to send us if there is still a bug).
ll_assert(bool(self.combine(typeid, 0)),
"external_malloc: typeid == 0")
#
# Compute the total size, carefully checking for overflows.
size_gc_header = self.gcheaderbuilder.size_gc_header
nonvarsize = size_gc_header + self.fixed_size(typeid)
if length == 0:
# this includes the case of fixed-size objects, for which we
# should not even ask for the varsize_item_sizes().
totalsize = nonvarsize
elif length > 0:
# var-sized allocation with at least one item
itemsize = self.varsize_item_sizes(typeid)
try:
varsize = ovfcheck(itemsize * length)
totalsize = ovfcheck(nonvarsize + varsize)
except OverflowError:
raise MemoryError
else:
# negative length! This likely comes from an overflow
# earlier. We will just raise MemoryError here.
raise MemoryError
#
# If somebody calls this function a lot, we must eventually
# force a collection. We use threshold_reached(), which might
# be true now but become false at some point after a few calls
# to major_collection_step(). If there is really no memory,
# then when the major collection finishes it will raise
# MemoryError.
if self.threshold_reached(raw_malloc_usage(totalsize)):
self.minor_collection_with_major_progress(
raw_malloc_usage(totalsize) + self.nursery_size // 2)
#
# Check if the object would fit in the ArenaCollection.
# Also, an object allocated from ArenaCollection must be old.
if (raw_malloc_usage(totalsize) <= self.small_request_threshold
and not alloc_young):
#
# Yes. Round up 'totalsize' (it cannot overflow and it
# must remain <= self.small_request_threshold.)
totalsize = llarena.round_up_for_allocation(totalsize)
ll_assert(raw_malloc_usage(totalsize) <=
self.small_request_threshold,
"rounding up made totalsize > small_request_threshold")
#
# Allocate from the ArenaCollection. Don't clear it.
result = self.ac.malloc(totalsize)
#
extra_flags = GCFLAG_TRACK_YOUNG_PTRS
#
else:
# No, so proceed to allocate it externally with raw_malloc().
# Check if we need to introduce the card marker bits area.
if (self.card_page_indices <= 0 # <- this check is constant-folded
or not self.has_gcptr_in_varsize(typeid) or
raw_malloc_usage(totalsize) <= self.nonlarge_max):
#
# In these cases, we don't want a card marker bits area.
# This case also includes all fixed-size objects.
cardheadersize = 0
extra_flags = 0
#
else:
# Reserve N extra words containing card bits before the object.
extra_words = self.card_marking_words_for_length(length)
cardheadersize = WORD * extra_words
extra_flags = GCFLAG_HAS_CARDS | GCFLAG_TRACK_YOUNG_PTRS
# if 'alloc_young', then we also immediately set
# GCFLAG_CARDS_SET, but without adding the object to
# 'old_objects_with_cards_set'. In this way it should
# never be added to that list as long as it is young.
if alloc_young:
extra_flags |= GCFLAG_CARDS_SET
#
# Detect very rare cases of overflows
if raw_malloc_usage(totalsize) > (sys.maxint - (WORD-1)
- cardheadersize):
raise MemoryError("rare case of overflow")
#
# Now we know that the following computations cannot overflow.
# Note that round_up_for_allocation() is also needed to get the
# correct number added to 'rawmalloced_total_size'.
allocsize = (cardheadersize + raw_malloc_usage(
llarena.round_up_for_allocation(totalsize)))
#
# Allocate the object using arena_malloc(), which we assume here
# is just the same as raw_malloc(), but allows the extra
# flexibility of saying that we have extra words in the header.
# The memory returned is not cleared.
arena = llarena.arena_malloc(allocsize, 0)
if not arena:
raise MemoryError("cannot allocate large object")
#
# Reserve the card mark bits as a list of single bytes,
# and clear these bytes.
i = 0
while i < cardheadersize:
p = arena + i
llarena.arena_reserve(p, llmemory.sizeof(lltype.Char))
p.char[0] = '\x00'
i += 1
#
# Reserve the actual object. (This is a no-op in C).
result = arena + cardheadersize
llarena.arena_reserve(result, totalsize)
#
# Record the newly allocated object and its full malloced size.
# The object is young or old depending on the argument.
self.rawmalloced_total_size += r_uint(allocsize)
self.rawmalloced_peak_size = max(self.rawmalloced_total_size,
self.rawmalloced_peak_size)
if alloc_young:
if not self.young_rawmalloced_objects:
self.young_rawmalloced_objects = self.AddressDict()
self.young_rawmalloced_objects.add(result + size_gc_header)
else:
self.old_rawmalloced_objects.append(result + size_gc_header)
extra_flags |= GCFLAG_TRACK_YOUNG_PTRS
#
# Common code to fill the header and length of the object.
self.init_gc_object(result, typeid, extra_flags)
if self.is_varsize(typeid):
offset_to_length = self.varsize_offset_to_length(typeid)
(result + size_gc_header + offset_to_length).signed[0] = length
return result + size_gc_header
# ----------
# Other functions in the GC API
def set_max_heap_size(self, size):
self.max_heap_size = float(size)
if self.max_heap_size > 0.0:
if self.max_heap_size < self.next_major_collection_initial:
self.next_major_collection_initial = self.max_heap_size
if self.max_heap_size < self.next_major_collection_threshold:
self.next_major_collection_threshold = self.max_heap_size
def raw_malloc_memory_pressure(self, sizehint, adr):
# Decrement by 'sizehint' plus a very little bit extra. This
# is needed e.g. for _rawffi, which may allocate a lot of tiny
# arrays.
self.next_major_collection_threshold -= (sizehint + 2 * WORD)
if self.next_major_collection_threshold < 0:
# cannot trigger a full collection now, but we can ensure
# that one will occur very soon
self.nursery_free = self.nursery_top
def can_optimize_clean_setarrayitems(self):
if self.card_page_indices > 0:
return False
return MovingGCBase.can_optimize_clean_setarrayitems(self)
def can_move(self, obj):
"""Overrides the parent can_move()."""
return self.is_in_nursery(obj)
def pin(self, obj):
if self.pinned_objects_in_nursery >= self.max_number_of_pinned_objects:
return False
if not self.is_in_nursery(obj):
# old objects are already non-moving, therefore pinning
# makes no sense. If you run into this case, you may forgot
# to check can_move(obj).
return False
if self._is_pinned(obj):
# already pinned, we do not allow to pin it again.
# Reason: It would be possible that the first caller unpins
# while the second caller thinks it's still pinned.
return False
#
obj_type_id = self.get_type_id(obj)
if self.cannot_pin(obj_type_id):
# objects containing GC pointers can't be pinned. If we would add
# it, we would have to track all pinned objects and trace them
# every minor collection to make sure the referenced object are
# kept alive. Right now this is not a use case that's needed.
# The check above also tests for being a less common kind of
# object: a weakref, or one with any kind of finalizer.
return False
#
self.header(obj).tid |= GCFLAG_PINNED
self.pinned_objects_in_nursery += 1
return True
def unpin(self, obj):
ll_assert(self._is_pinned(obj),
"unpin: object is already not pinned")
#
self.header(obj).tid &= ~GCFLAG_PINNED
self.pinned_objects_in_nursery -= 1
def _is_pinned(self, obj):
return (self.header(obj).tid & GCFLAG_PINNED) != 0
def shrink_array(self, obj, smallerlength):
#
# Only objects in the nursery can be "resized". Resizing them
# means recording that they have a smaller size, so that when
# moved out of the nursery, they will consume less memory.
# In particular, an array with GCFLAG_HAS_CARDS is never resized.
# Also, a nursery object with GCFLAG_HAS_SHADOW is not resized
# either, as this would potentially loose part of the memory in
# the already-allocated shadow.
if not self.is_in_nursery(obj):
return False
if self.header(obj).tid & GCFLAG_HAS_SHADOW:
return False
#
size_gc_header = self.gcheaderbuilder.size_gc_header
typeid = self.get_type_id(obj)
totalsmallersize = (
size_gc_header + self.fixed_size(typeid) +
self.varsize_item_sizes(typeid) * smallerlength)
llarena.arena_shrink_obj(obj - size_gc_header, totalsmallersize)
#
offset_to_length = self.varsize_offset_to_length(typeid)
(obj + offset_to_length).signed[0] = smallerlength
return True
# ----------
# Simple helpers
def get_type_id(self, obj):
tid = self.header(obj).tid
return llop.extract_ushort(llgroup.HALFWORD, tid)
def combine(self, typeid16, flags):
return llop.combine_ushort(lltype.Signed, typeid16, flags)
def init_gc_object(self, addr, typeid16, flags=0):
# The default 'flags' is zero. The flags GCFLAG_NO_xxx_PTRS
# have been chosen to allow 'flags' to be zero in the common
# case (hence the 'NO' in their name).
hdr = llmemory.cast_adr_to_ptr(addr, lltype.Ptr(self.HDR))
hdr.tid = self.combine(typeid16, flags)
def init_gc_object_immortal(self, addr, typeid16, flags=0):
# For prebuilt GC objects, the flags must contain
# GCFLAG_NO_xxx_PTRS, at least initially.
flags |= GCFLAG_NO_HEAP_PTRS | GCFLAG_TRACK_YOUNG_PTRS
self.init_gc_object(addr, typeid16, flags)
def is_in_nursery(self, addr):
ll_assert(llmemory.cast_adr_to_int(addr) & 1 == 0,
"odd-valued (i.e. tagged) pointer unexpected here")
return self.nursery <= addr < self.nursery + self.nursery_size
def is_young_object(self, addr):
# Check if the object at 'addr' is young.
if not self.is_valid_gc_object(addr):
return False # filter out tagged pointers explicitly.
if self.is_in_nursery(addr):
return True # addr is in the nursery
# Else, it may be in the set 'young_rawmalloced_objects'
return (bool(self.young_rawmalloced_objects) and
self.young_rawmalloced_objects.contains(addr))
def debug_is_old_object(self, addr):
return (self.is_valid_gc_object(addr)
and not self.is_young_object(addr))
def is_forwarded(self, obj):
"""Returns True if the nursery obj is marked as forwarded.
Implemented a bit obscurely by checking an unrelated flag
that can never be set on a young object -- except if tid == -42.
"""
ll_assert(self.is_in_nursery(obj),
"Can't forward an object outside the nursery.")
tid = self.header(obj).tid
result = (tid & GCFLAG_FINALIZATION_ORDERING != 0)
if result:
ll_assert(tid == -42, "bogus header for young obj")
else:
ll_assert(bool(tid), "bogus header (1)")
ll_assert(tid & -_GCFLAG_FIRST_UNUSED == 0, "bogus header (2)")
return result
def get_forwarding_address(self, obj):
return llmemory.cast_adr_to_ptr(obj, FORWARDSTUBPTR).forw
def get_possibly_forwarded_type_id(self, obj):
if self.is_in_nursery(obj) and self.is_forwarded(obj):
obj = self.get_forwarding_address(obj)
return self.get_type_id(obj)
def get_possibly_forwarded_tid(self, obj):
if self.is_in_nursery(obj) and self.is_forwarded(obj):
obj = self.get_forwarding_address(obj)
return self.header(obj).tid
def get_total_memory_used(self):
"""Return the total memory used, not counting any object in the
nursery: only objects in the ArenaCollection or raw-malloced.
"""
return self.ac.total_memory_used + self.rawmalloced_total_size
def get_total_memory_alloced(self):
""" Return the total memory allocated
"""
return self.ac.total_memory_alloced + self.rawmalloced_total_size
def get_peak_memory_alloced(self):
""" Return the peak memory ever allocated. The peaks
can be at different times, but we just don't worry for now
"""
return self.ac.peak_memory_alloced + self.rawmalloced_peak_size
def get_peak_memory_used(self):
""" Return the peak memory GC felt ever responsible for
"""
mem_allocated = max(self.ac.peak_memory_used,
self.ac.total_memory_used)
return mem_allocated + self.rawmalloced_peak_size
def threshold_reached(self, extra=0):
return (self.next_major_collection_threshold -
float(self.get_total_memory_used())) < float(extra)
def card_marking_words_for_length(self, length):
# --- Unoptimized version:
#num_bits = ((length-1) >> self.card_page_shift) + 1
#return (num_bits + (LONG_BIT - 1)) >> LONG_BIT_SHIFT
# --- Optimized version:
return intmask(
((r_uint(length) + r_uint((LONG_BIT << self.card_page_shift) - 1)) >>
(self.card_page_shift + LONG_BIT_SHIFT)))
def card_marking_bytes_for_length(self, length):
# --- Unoptimized version:
#num_bits = ((length-1) >> self.card_page_shift) + 1
#return (num_bits + 7) >> 3
# --- Optimized version:
return intmask(
((r_uint(length) + r_uint((8 << self.card_page_shift) - 1)) >>
(self.card_page_shift + 3)))
def debug_check_consistency(self):
if self.DEBUG:
ll_assert(not self.young_rawmalloced_objects,
"young raw-malloced objects in a major collection")
ll_assert(not self.young_objects_with_weakrefs.non_empty(),
"young objects with weakrefs in a major collection")
if self.raw_malloc_might_sweep.non_empty():
ll_assert(self.gc_state == STATE_SWEEPING,
"raw_malloc_might_sweep must be empty outside SWEEPING")
if self.gc_state == STATE_MARKING:
self.objects_to_trace.foreach(self._check_not_in_nursery, None)
self.more_objects_to_trace.foreach(self._check_not_in_nursery,
None)
self._debug_objects_to_trace_dict1 = \
self.objects_to_trace.stack2dict()
self._debug_objects_to_trace_dict2 = \
self.more_objects_to_trace.stack2dict()
MovingGCBase.debug_check_consistency(self)
self._debug_objects_to_trace_dict2.delete()
self._debug_objects_to_trace_dict1.delete()
else:
MovingGCBase.debug_check_consistency(self)
def _check_not_in_nursery(self, obj, ignore):
ll_assert(not self.is_in_nursery(obj),
"'objects_to_trace' contains a nursery object")
def debug_check_object(self, obj):
# We are after a minor collection, and possibly after a major
# collection step. No object should be in the nursery (except
# pinned ones)
if not self._is_pinned(obj):
ll_assert(not self.is_in_nursery(obj),
"object in nursery after collection")
ll_assert(self.header(obj).tid & GCFLAG_VISITED_RMY == 0,
"GCFLAG_VISITED_RMY after collection")
ll_assert(self.header(obj).tid & GCFLAG_PINNED == 0,
"GCFLAG_PINNED outside the nursery after collection")
else:
ll_assert(self.is_in_nursery(obj),
"pinned object not in nursery")
if self.gc_state == STATE_SCANNING:
self._debug_check_object_scanning(obj)
elif self.gc_state == STATE_MARKING:
self._debug_check_object_marking(obj)
elif self.gc_state == STATE_SWEEPING:
self._debug_check_object_sweeping(obj)
elif self.gc_state == STATE_FINALIZING:
self._debug_check_object_finalizing(obj)
else:
ll_assert(False, "unknown gc_state value")
def _debug_check_object_marking(self, obj):
if self.header(obj).tid & GCFLAG_VISITED != 0:
# A black object. Should NEVER point to a white object.
self.trace(obj, self._debug_check_not_white, None)
# During marking, all visited (black) objects should always have
# the GCFLAG_TRACK_YOUNG_PTRS flag set, for the write barrier to
# trigger --- at least if they contain any gc ptr. We are just
# after a minor or major collection here, so we can't see the
# object state VISITED & ~WRITE_BARRIER.
typeid = self.get_type_id(obj)
if self.has_gcptr(typeid):
ll_assert(self.header(obj).tid & GCFLAG_TRACK_YOUNG_PTRS != 0,
"black object without GCFLAG_TRACK_YOUNG_PTRS")
def _debug_check_not_white(self, root, ignored):
obj = root.address[0]
if self.header(obj).tid & GCFLAG_VISITED != 0:
pass # black -> black
elif (self._debug_objects_to_trace_dict1.contains(obj) or
self._debug_objects_to_trace_dict2.contains(obj)):
pass # black -> gray
elif self.header(obj).tid & GCFLAG_NO_HEAP_PTRS != 0:
pass # black -> white-but-prebuilt-so-dont-care
elif self._is_pinned(obj):
# black -> pinned: the pinned object is a white one as
# every minor collection visits them and takes care of
# visiting pinned objects.
# XXX (groggi) double check with fijal/armin
pass # black -> pinned
else:
ll_assert(False, "black -> white pointer found")
def _debug_check_object_sweeping(self, obj):
# We see only reachable objects here. They all start as VISITED
# but this flag is progressively removed in the sweeping phase.
# All objects should have this flag, except if they
# don't have any GC pointer or are pinned objects
typeid = self.get_type_id(obj)
if self.has_gcptr(typeid) and not self._is_pinned(obj):
ll_assert(self.header(obj).tid & GCFLAG_TRACK_YOUNG_PTRS != 0,
"missing GCFLAG_TRACK_YOUNG_PTRS")
# the GCFLAG_FINALIZATION_ORDERING should not be set between coll.
ll_assert(self.header(obj).tid & GCFLAG_FINALIZATION_ORDERING == 0,
"unexpected GCFLAG_FINALIZATION_ORDERING")
# the GCFLAG_CARDS_SET should not be set between collections
ll_assert(self.header(obj).tid & GCFLAG_CARDS_SET == 0,
"unexpected GCFLAG_CARDS_SET")
# if the GCFLAG_HAS_CARDS is set, check that all bits are zero now
if self.header(obj).tid & GCFLAG_HAS_CARDS:
if self.card_page_indices <= 0:
ll_assert(False, "GCFLAG_HAS_CARDS but not using card marking")
return
typeid = self.get_type_id(obj)
ll_assert(self.has_gcptr_in_varsize(typeid),
"GCFLAG_HAS_CARDS but not has_gcptr_in_varsize")
ll_assert(self.header(obj).tid & GCFLAG_NO_HEAP_PTRS == 0,
"GCFLAG_HAS_CARDS && GCFLAG_NO_HEAP_PTRS")
offset_to_length = self.varsize_offset_to_length(typeid)
length = (obj + offset_to_length).signed[0]
extra_words = self.card_marking_words_for_length(length)
#
size_gc_header = self.gcheaderbuilder.size_gc_header
p = llarena.getfakearenaaddress(obj - size_gc_header)
i = extra_words * WORD
while i > 0:
p -= 1
ll_assert(p.char[0] == '\x00',
"the card marker bits are not cleared")
i -= 1
def _debug_check_object_finalizing(self, obj):
# Same invariants as STATE_SCANNING.
self._debug_check_object_scanning(obj)
def _debug_check_object_scanning(self, obj):
# This check is called before scanning starts.
# Scanning is done in a single step.
# the GCFLAG_VISITED should not be set between collections
ll_assert(self.header(obj).tid & GCFLAG_VISITED == 0,
"unexpected GCFLAG_VISITED")
# All other invariants from the sweeping phase should still be
# satisfied.
self._debug_check_object_sweeping(obj)
# ----------
# Write barrier
# for the JIT: a minimal description of the write_barrier() method
# (the JIT assumes it is of the shape
# "if addr_struct.int0 & JIT_WB_IF_FLAG: remember_young_pointer()")
JIT_WB_IF_FLAG = GCFLAG_TRACK_YOUNG_PTRS
# for the JIT to generate custom code corresponding to the array
# write barrier for the simplest case of cards. If JIT_CARDS_SET
# is already set on an object, it will execute code like this:
# MOV eax, index
# SHR eax, JIT_WB_CARD_PAGE_SHIFT
# XOR eax, -8
# BTS [object], eax
if TRANSLATION_PARAMS['card_page_indices'] > 0:
JIT_WB_CARDS_SET = GCFLAG_CARDS_SET
JIT_WB_CARD_PAGE_SHIFT = 1
while ((1 << JIT_WB_CARD_PAGE_SHIFT) !=
TRANSLATION_PARAMS['card_page_indices']):
JIT_WB_CARD_PAGE_SHIFT += 1
@classmethod
def JIT_max_size_of_young_obj(cls):
return cls.TRANSLATION_PARAMS['large_object']
@classmethod
def JIT_minimal_size_in_nursery(cls):
return cls.minimal_size_in_nursery
def write_barrier(self, addr_struct):
# see OP_GC_BIT in translator/c/gc.py
if llop.gc_bit(lltype.Signed, self.header(addr_struct),
GCFLAG_TRACK_YOUNG_PTRS):
self.remember_young_pointer(addr_struct)
def write_barrier_from_array(self, addr_array, index):
if llop.gc_bit(lltype.Signed, self.header(addr_array),
GCFLAG_TRACK_YOUNG_PTRS):
if self.card_page_indices > 0:
self.remember_young_pointer_from_array2(addr_array, index)
else:
self.remember_young_pointer(addr_array)
def _init_writebarrier_logic(self):
DEBUG = self.DEBUG
# The purpose of attaching remember_young_pointer to the instance
# instead of keeping it as a regular method is to
# make the code in write_barrier() marginally smaller
# (which is important because it is inlined *everywhere*).
def remember_young_pointer(addr_struct):
# 'addr_struct' is the address of the object in which we write.
# We know that 'addr_struct' has GCFLAG_TRACK_YOUNG_PTRS so far.
#
if DEBUG: # note: PYPY_GC_DEBUG=1 does not enable this
ll_assert(self.debug_is_old_object(addr_struct) or
self.header(addr_struct).tid & GCFLAG_HAS_CARDS != 0,
"young object with GCFLAG_TRACK_YOUNG_PTRS and no cards")
#
# We need to remove the flag GCFLAG_TRACK_YOUNG_PTRS and add
# the object to the list 'old_objects_pointing_to_young'.
# We know that 'addr_struct' cannot be in the nursery,
# because nursery objects never have the flag
# GCFLAG_TRACK_YOUNG_PTRS to start with. Note that in
# theory we don't need to do that if the pointer that we're
# writing into the object isn't pointing to a young object.
# However, it isn't really a win, because then sometimes
# we're going to call this function a lot of times for the
# same object; moreover we'd need to pass the 'newvalue' as
# an argument here. The JIT has always called a
# 'newvalue'-less version, too. Moreover, the incremental
# GC nowadays relies on this fact.
self.old_objects_pointing_to_young.append(addr_struct)
objhdr = self.header(addr_struct)
objhdr.tid &= ~GCFLAG_TRACK_YOUNG_PTRS
#
# Second part: if 'addr_struct' is actually a prebuilt GC
# object and it's the first time we see a write to it, we
# add it to the list 'prebuilt_root_objects'.
if objhdr.tid & GCFLAG_NO_HEAP_PTRS:
objhdr.tid &= ~GCFLAG_NO_HEAP_PTRS
self.prebuilt_root_objects.append(addr_struct)
remember_young_pointer._dont_inline_ = True
self.remember_young_pointer = remember_young_pointer
#
if self.card_page_indices > 0:
self._init_writebarrier_with_card_marker()
def _init_writebarrier_with_card_marker(self):
DEBUG = self.DEBUG
def remember_young_pointer_from_array2(addr_array, index):
# 'addr_array' is the address of the object in which we write,
# which must have an array part; 'index' is the index of the
# item that is (or contains) the pointer that we write.
# We know that 'addr_array' has GCFLAG_TRACK_YOUNG_PTRS so far.
#
objhdr = self.header(addr_array)
if objhdr.tid & GCFLAG_HAS_CARDS == 0:
#
if DEBUG: # note: PYPY_GC_DEBUG=1 does not enable this
ll_assert(self.debug_is_old_object(addr_array),
"young array with no card but GCFLAG_TRACK_YOUNG_PTRS")
#
# no cards, use default logic. Mostly copied from above.
self.old_objects_pointing_to_young.append(addr_array)
objhdr.tid &= ~GCFLAG_TRACK_YOUNG_PTRS
if objhdr.tid & GCFLAG_NO_HEAP_PTRS:
objhdr.tid &= ~GCFLAG_NO_HEAP_PTRS
self.prebuilt_root_objects.append(addr_array)
return
#
# 'addr_array' is a raw_malloc'ed array with card markers
# in front. Compute the index of the bit to set:
bitindex = index >> self.card_page_shift
byteindex = bitindex >> 3
bitmask = 1 << (bitindex & 7)
#
# If the bit is already set, leave now.
addr_byte = self.get_card(addr_array, byteindex)
byte = ord(addr_byte.char[0])
if byte & bitmask:
return
#
# We set the flag (even if the newly written address does not
# actually point to the nursery, which seems to be ok -- actually
# it seems more important that remember_young_pointer_from_array2()
# does not take 3 arguments).
addr_byte.char[0] = chr(byte | bitmask)
#
if objhdr.tid & GCFLAG_CARDS_SET == 0:
self.old_objects_with_cards_set.append(addr_array)
objhdr.tid |= GCFLAG_CARDS_SET
remember_young_pointer_from_array2._dont_inline_ = True
ll_assert(self.card_page_indices > 0,
"non-positive card_page_indices")
self.remember_young_pointer_from_array2 = (
remember_young_pointer_from_array2)
def jit_remember_young_pointer_from_array(addr_array):
# minimal version of the above, with just one argument,
# called by the JIT when GCFLAG_TRACK_YOUNG_PTRS is set
# but GCFLAG_CARDS_SET is cleared. This tries to set
# GCFLAG_CARDS_SET if possible; otherwise, it falls back
# to remember_young_pointer().
objhdr = self.header(addr_array)
if objhdr.tid & GCFLAG_HAS_CARDS:
self.old_objects_with_cards_set.append(addr_array)
objhdr.tid |= GCFLAG_CARDS_SET
else:
self.remember_young_pointer(addr_array)
self.jit_remember_young_pointer_from_array = (
jit_remember_young_pointer_from_array)
def get_card(self, obj, byteindex):
size_gc_header = self.gcheaderbuilder.size_gc_header
addr_byte = obj - size_gc_header
return llarena.getfakearenaaddress(addr_byte) + (~byteindex)
def writebarrier_before_copy(self, source_addr, dest_addr,
source_start, dest_start, length):
""" This has the same effect as calling writebarrier over
each element in dest copied from source, except it might reset
one of the following flags a bit too eagerly, which means we'll have
a bit more objects to track, but being on the safe side.
"""
# obscuuuure. The flag 'updated_old_objects_pointing_to_pinned'
# is set to True when 'old_objects_pointing_to_pinned' is modified.
# Here, when it was modified, then we do a write_barrier() on
# all items in that list (there should only be a small number,
# so we don't care). The goal is that the logic that follows below
# works as expected...
if self.updated_old_objects_pointing_to_pinned:
self.old_objects_pointing_to_pinned.foreach(
self._wb_old_object_pointing_to_pinned, None)
self.updated_old_objects_pointing_to_pinned = False
#
source_hdr = self.header(source_addr)
dest_hdr = self.header(dest_addr)
if dest_hdr.tid & GCFLAG_TRACK_YOUNG_PTRS == 0:
return True
# ^^^ a fast path of write-barrier
#
if (self.card_page_indices > 0 and # check constant-folded
source_hdr.tid & GCFLAG_HAS_CARDS != 0):
#
if source_hdr.tid & GCFLAG_TRACK_YOUNG_PTRS == 0:
# The source object may have random young pointers.
# Return False to mean "do it manually in ll_arraycopy".
return False
#
if source_hdr.tid & GCFLAG_CARDS_SET == 0:
# The source object has no young pointers at all. Done.
return True
#
if dest_hdr.tid & GCFLAG_HAS_CARDS == 0:
# The dest object doesn't have cards. Do it manually.
return False
#
if source_start != 0 or dest_start != 0:
# Misaligned. Do it manually.
return False
#
self.manually_copy_card_bits(source_addr, dest_addr, length)
return True
#
if source_hdr.tid & GCFLAG_TRACK_YOUNG_PTRS == 0:
# there might be in source a pointer to a young object
self.old_objects_pointing_to_young.append(dest_addr)
dest_hdr.tid &= ~GCFLAG_TRACK_YOUNG_PTRS
#
if dest_hdr.tid & GCFLAG_NO_HEAP_PTRS:
if source_hdr.tid & GCFLAG_NO_HEAP_PTRS == 0:
dest_hdr.tid &= ~GCFLAG_NO_HEAP_PTRS
self.prebuilt_root_objects.append(dest_addr)
return True
def manually_copy_card_bits(self, source_addr, dest_addr, length):
# manually copy the individual card marks from source to dest
ll_assert(self.card_page_indices > 0,
"non-positive card_page_indices")
bytes = self.card_marking_bytes_for_length(length)
#
anybyte = 0
i = 0
while i < bytes:
addr_srcbyte = self.get_card(source_addr, i)
addr_dstbyte = self.get_card(dest_addr, i)
byte = ord(addr_srcbyte.char[0])
anybyte |= byte
addr_dstbyte.char[0] = chr(ord(addr_dstbyte.char[0]) | byte)
i += 1
#
if anybyte:
dest_hdr = self.header(dest_addr)
if dest_hdr.tid & GCFLAG_CARDS_SET == 0:
self.old_objects_with_cards_set.append(dest_addr)
dest_hdr.tid |= GCFLAG_CARDS_SET
def _wb_old_object_pointing_to_pinned(self, obj, ignore):
self.write_barrier(obj)
def record_pinned_object_with_shadow(self, obj, new_shadow_object_dict):
# checks if the pinned object has a shadow and if so add it to the
# dict of shadows.
obj = obj + self.gcheaderbuilder.size_gc_header
shadow = self.nursery_objects_shadows.get(obj)
if shadow != llmemory.NULL:
# visit shadow to keep it alive
# XXX seems like it is save to set GCFLAG_VISITED, however
# should be double checked
self.header(shadow).tid |= GCFLAG_VISITED
new_shadow_object_dict.setitem(obj, shadow)
def register_finalizer(self, fq_index, gcobj):
from rpython.rtyper.lltypesystem import rffi
obj = llmemory.cast_ptr_to_adr(gcobj)
fq_index = rffi.cast(llmemory.Address, fq_index)
self.probably_young_objects_with_finalizers.append(obj)
self.probably_young_objects_with_finalizers.append(fq_index)
# ----------
# Nursery collection
def _minor_collection(self):
"""Perform a minor collection: find the objects from the nursery
that remain alive and move them out."""
#
start = time.time()
debug_start("gc-minor")
#
# All nursery barriers are invalid from this point on. They
# are evaluated anew as part of the minor collection.
self.nursery_barriers.delete()
#
# Keeps track of surviving pinned objects. See also '_trace_drag_out()'
# where this stack is filled. Pinning an object only prevents it from
# being moved, not from being collected if it is not reachable anymore.
self.surviving_pinned_objects = self.AddressStack()
# The following counter keeps track of alive and pinned young objects
# inside the nursery. We reset it here and increase it in
# '_trace_drag_out()'.
any_pinned_object_from_earlier = self.any_pinned_object_kept
self.pinned_objects_in_nursery = 0
self.any_pinned_object_kept = False
#
# Before everything else, remove from 'old_objects_pointing_to_young'
# the young arrays.
if self.young_rawmalloced_objects:
self.remove_young_arrays_from_old_objects_pointing_to_young()
#
# A special step in the STATE_MARKING phase.
if self.gc_state == STATE_MARKING:
# Copy the 'old_objects_pointing_to_young' list so far to
# 'more_objects_to_trace'. Turn black objects back to gray.
# This is because these are precisely the old objects that
# have been modified and need rescanning.
self.old_objects_pointing_to_young.foreach(
self._add_to_more_objects_to_trace_if_black, None)
# Old black objects pointing to pinned objects that may no
# longer be pinned now: careful,
# _visit_old_objects_pointing_to_pinned() will move the
# previously-pinned object, and that creates a white object.
# We prevent the "black->white" situation by forcing the
# old black object to become gray again.
self.old_objects_pointing_to_pinned.foreach(
self._add_to_more_objects_to_trace_if_black, None)
#
# First, find the roots that point to young objects. All nursery
# objects found are copied out of the nursery, and the occasional
# young raw-malloced object is flagged with GCFLAG_VISITED_RMY.
# Note that during this step, we ignore references to further
# young objects; only objects directly referenced by roots
# are copied out or flagged. They are also added to the list
# 'old_objects_pointing_to_young'.
self.nursery_surviving_size = 0
self.collect_roots_in_nursery(any_pinned_object_from_earlier)
#
# visit all objects that are known for pointing to pinned
# objects. This way we populate 'surviving_pinned_objects'
# with pinned object that are (only) visible from an old
# object.
# Additionally we create a new list as it may be that an old object
# no longer points to a pinned one. Such old objects won't be added
# again to 'old_objects_pointing_to_pinned'.
if self.old_objects_pointing_to_pinned.non_empty():
current_old_objects_pointing_to_pinned = \
self.old_objects_pointing_to_pinned
self.old_objects_pointing_to_pinned = self.AddressStack()
current_old_objects_pointing_to_pinned.foreach(
self._visit_old_objects_pointing_to_pinned, None)
current_old_objects_pointing_to_pinned.delete()
#
# visit the P list from rawrefcount, if enabled.
if self.rrc_enabled:
self.rrc_minor_collection_trace()
#
# visit the "probably young" objects with finalizers. They
# all survive, except if IGNORE_FINALIZER is set.
if self.probably_young_objects_with_finalizers.non_empty():
self.deal_with_young_objects_with_finalizers()
#
while True:
# If we are using card marking, do a partial trace of the arrays
# that are flagged with GCFLAG_CARDS_SET.
if self.card_page_indices > 0:
self.collect_cardrefs_to_nursery()
#
# Now trace objects from 'old_objects_pointing_to_young'.
# All nursery objects they reference are copied out of the
# nursery, and again added to 'old_objects_pointing_to_young'.
# All young raw-malloced object found are flagged
# GCFLAG_VISITED_RMY.
# We proceed until 'old_objects_pointing_to_young' is empty.
self.collect_oldrefs_to_nursery()
#
# We have to loop back if collect_oldrefs_to_nursery caused
# new objects to show up in old_objects_with_cards_set
if self.card_page_indices > 0:
if self.old_objects_with_cards_set.non_empty():
continue
break
#
# Now all live nursery objects should be out. Update the young
# weakrefs' targets.
if self.young_objects_with_weakrefs.non_empty():
self.invalidate_young_weakrefs()
if self.young_objects_with_destructors.non_empty():
self.deal_with_young_objects_with_destructors()
#
# Clear this mapping. Without pinned objects we just clear the dict
# as all objects in the nursery are dragged out of the nursery and, if
# needed, into their shadow. However, if we have pinned objects we have
# to check if those pinned object have a shadow and keep a dictionary
# filled with shadow information for them as they stay in the nursery.
if self.nursery_objects_shadows.length() > 0:
if self.surviving_pinned_objects.non_empty():
new_shadows = self.AddressDict()
self.surviving_pinned_objects.foreach(
self.record_pinned_object_with_shadow, new_shadows)
self.nursery_objects_shadows.delete()
self.nursery_objects_shadows = new_shadows
else:
self.nursery_objects_shadows.clear()
#
# visit the P and O lists from rawrefcount, if enabled.
if self.rrc_enabled:
self.rrc_minor_collection_free()
#
# Walk the list of young raw-malloced objects, and either free
# them or make them old.
if self.young_rawmalloced_objects:
self.free_young_rawmalloced_objects()
#
# All live nursery objects are out of the nursery or pinned inside
# the nursery. Create nursery barriers to protect the pinned objects,
# fill the rest of the nursery with zeros and reset the current nursery
# pointer.
size_gc_header = self.gcheaderbuilder.size_gc_header
nursery_barriers = self.AddressDeque()
prev = self.nursery
self.surviving_pinned_objects.sort()
ll_assert(
self.pinned_objects_in_nursery == \
self.surviving_pinned_objects.length(),
"pinned_objects_in_nursery != surviving_pinned_objects.length()")
while self.surviving_pinned_objects.non_empty():
#
cur = self.surviving_pinned_objects.pop()
ll_assert(
cur >= prev, "pinned objects encountered in backwards order")
#
# clear the arena between the last pinned object (or arena start)
# and the pinned object
free_range_size = llarena.getfakearenaaddress(cur) - prev
if self.gc_nursery_debug:
llarena.arena_reset(prev, free_range_size, 3)
else:
llarena.arena_reset(prev, free_range_size, 0)
#
# clean up object's flags
obj = cur + size_gc_header
self.header(obj).tid &= ~GCFLAG_VISITED
#
# create a new nursery barrier for the pinned object
nursery_barriers.append(cur)
#
# update 'prev' to the end of the 'cur' object
prev = prev + free_range_size + \
(size_gc_header + self.get_size(obj))
#
# reset everything after the last pinned object till the end of the arena
if self.gc_nursery_debug:
llarena.arena_reset(prev, self.nursery + self.nursery_size - prev, 3)
if not nursery_barriers.non_empty(): # no pinned objects
self.debug_rotate_nursery()
else:
llarena.arena_reset(prev, self.nursery + self.nursery_size - prev, 0)
#
# always add the end of the nursery to the list
nursery_barriers.append(self.nursery + self.nursery_size)
#
self.nursery_barriers = nursery_barriers
self.surviving_pinned_objects.delete()
#
self.nursery_free = self.nursery
self.nursery_top = self.nursery_barriers.popleft()
#
# clear GCFLAG_PINNED_OBJECT_PARENT_KNOWN from all parents in the list.
self.old_objects_pointing_to_pinned.foreach(
self._reset_flag_old_objects_pointing_to_pinned, None)
#
# Accounting: 'nursery_surviving_size' is the size of objects
# from the nursery that we just moved out.
self.size_objects_made_old += r_uint(self.nursery_surviving_size)
#
total_memory_used = self.get_total_memory_used()
debug_print("minor collect, total memory used:", total_memory_used)
debug_print("number of pinned objects:",
self.pinned_objects_in_nursery)
debug_print("total size of surviving objects:", self.nursery_surviving_size)
if self.DEBUG >= 2:
self.debug_check_consistency() # expensive!
#
self.root_walker.finished_minor_collection()
#
debug_stop("gc-minor")
duration = time.time() - start
self.total_gc_time += duration
self.hooks.fire_gc_minor(
duration=duration,
total_memory_used=total_memory_used,
pinned_objects=self.pinned_objects_in_nursery)
def _reset_flag_old_objects_pointing_to_pinned(self, obj, ignore):
ll_assert(self.header(obj).tid & GCFLAG_PINNED_OBJECT_PARENT_KNOWN != 0,
"!GCFLAG_PINNED_OBJECT_PARENT_KNOWN, but requested to reset.")
self.header(obj).tid &= ~GCFLAG_PINNED_OBJECT_PARENT_KNOWN
def _visit_old_objects_pointing_to_pinned(self, obj, ignore):
self.trace(obj, self._trace_drag_out, obj)
def collect_roots_in_nursery(self, any_pinned_object_from_earlier):
# we don't need to trace prebuilt GcStructs during a minor collect:
# if a prebuilt GcStruct contains a pointer to a young object,
# then the write_barrier must have ensured that the prebuilt
# GcStruct is in the list self.old_objects_pointing_to_young.
debug_start("gc-minor-walkroots")
if self.gc_state == STATE_MARKING:
callback = IncrementalMiniMarkGC._trace_drag_out1_marking_phase
else:
callback = IncrementalMiniMarkGC._trace_drag_out1
#
# Note a subtlety: if the nursery contains pinned objects "from
# earlier", i.e. created earlier than the previous minor
# collection, then we can't use the "is_minor=True" optimization.
# We really need to walk the complete stack to be sure we still
# see them.
use_jit_frame_stoppers = not any_pinned_object_from_earlier
#
self.root_walker.walk_roots(
callback, # stack roots
callback, # static in prebuilt non-gc
None, # static in prebuilt gc
is_minor=use_jit_frame_stoppers)
debug_stop("gc-minor-walkroots")
def collect_cardrefs_to_nursery(self):
size_gc_header = self.gcheaderbuilder.size_gc_header
oldlist = self.old_objects_with_cards_set
while oldlist.non_empty():
obj = oldlist.pop()
#
# Remove the GCFLAG_CARDS_SET flag.
ll_assert(self.header(obj).tid & GCFLAG_CARDS_SET != 0,
"!GCFLAG_CARDS_SET but object in 'old_objects_with_cards_set'")
self.header(obj).tid &= ~GCFLAG_CARDS_SET
#
# Get the number of card marker bytes in the header.
typeid = self.get_type_id(obj)
offset_to_length = self.varsize_offset_to_length(typeid)
length = (obj + offset_to_length).signed[0]
bytes = self.card_marking_bytes_for_length(length)
p = llarena.getfakearenaaddress(obj - size_gc_header)
#
# If the object doesn't have GCFLAG_TRACK_YOUNG_PTRS, then it
# means that it is in 'old_objects_pointing_to_young' and
# will be fully traced by collect_oldrefs_to_nursery() just
# afterwards.
if self.header(obj).tid & GCFLAG_TRACK_YOUNG_PTRS == 0:
#
# In that case, we just have to reset all card bits.
while bytes > 0:
p -= 1
p.char[0] = '\x00'
bytes -= 1
#
else:
# Walk the bytes encoding the card marker bits, and for
# each bit set, call trace_and_drag_out_of_nursery_partial().
interval_start = 0
while bytes > 0:
p -= 1
cardbyte = ord(p.char[0])
p.char[0] = '\x00' # reset the bits
bytes -= 1
next_byte_start = interval_start + 8*self.card_page_indices
#
while cardbyte != 0:
interval_stop = interval_start + self.card_page_indices
#
if cardbyte & 1:
if interval_stop > length:
interval_stop = length
#--- the sanity check below almost always
#--- passes, except in situations like
#--- test_writebarrier_before_copy_manually\
# _copy_card_bits
#ll_assert(cardbyte <= 1 and bytes == 0,
# "premature end of object")
ll_assert(bytes == 0, "premature end of object")
if interval_stop <= interval_start:
break
self.trace_and_drag_out_of_nursery_partial(
obj, interval_start, interval_stop)
#
interval_start = interval_stop
cardbyte >>= 1
interval_start = next_byte_start
#
# If we're incrementally marking right now, sorry, we also
# need to add the object to 'more_objects_to_trace' and have
# it fully traced once at the end of the current marking phase.
ll_assert(not self.is_in_nursery(obj),
"expected nursery obj in collect_cardrefs_to_nursery")
if self.gc_state == STATE_MARKING:
self.header(obj).tid &= ~GCFLAG_VISITED
self.more_objects_to_trace.append(obj)
def collect_oldrefs_to_nursery(self):
# Follow the old_objects_pointing_to_young list and move the
# young objects they point to out of the nursery.
oldlist = self.old_objects_pointing_to_young
while oldlist.non_empty():
obj = oldlist.pop()
#
# Check that the flags are correct: we must not have
# GCFLAG_TRACK_YOUNG_PTRS so far.
ll_assert(self.header(obj).tid & GCFLAG_TRACK_YOUNG_PTRS == 0,
"old_objects_pointing_to_young contains obj with "
"GCFLAG_TRACK_YOUNG_PTRS")
#
# Add the flag GCFLAG_TRACK_YOUNG_PTRS. All live objects should
# have this flag set after a nursery collection.
self.header(obj).tid |= GCFLAG_TRACK_YOUNG_PTRS
#
# Trace the 'obj' to replace pointers to nursery with pointers
# outside the nursery, possibly forcing nursery objects out
# and adding them to 'old_objects_pointing_to_young' as well.
self.trace_and_drag_out_of_nursery(obj)
def trace_and_drag_out_of_nursery(self, obj):
"""obj must not be in the nursery. This copies all the
young objects it references out of the nursery.
"""
self.trace(obj, self._trace_drag_out, obj)
def trace_and_drag_out_of_nursery_partial(self, obj, start, stop):
"""Like trace_and_drag_out_of_nursery(), but limited to the array
indices in range(start, stop).
"""
ll_assert(start < stop, "empty or negative range "
"in trace_and_drag_out_of_nursery_partial()")
#print 'trace_partial:', start, stop, '\t', obj
self.trace_partial(obj, start, stop, self._trace_drag_out, obj)
def _trace_drag_out1(self, root):
self._trace_drag_out(root, llmemory.NULL)
def _trace_drag_out1_marking_phase(self, root):
self._trace_drag_out(root, llmemory.NULL)
#
# We are in the MARKING state: we must also record this object
# if it was young. Don't bother with old objects in general,
# as they are anyway added to 'more_objects_to_trace' if they
# are modified (see _add_to_more_objects_to_trace). But we do
# need to record the not-visited-yet (white) old objects. So
# as a conservative approximation, we need to add the object to
# the list if and only if it doesn't have GCFLAG_VISITED yet.
#
# Additionally, ignore pinned objects.
#
obj = root.address[0]
if (self.header(obj).tid & (GCFLAG_VISITED | GCFLAG_PINNED)) == 0:
self.more_objects_to_trace.append(obj)
def _trace_drag_out(self, root, parent):
obj = root.address[0]
#print '_trace_drag_out(%x: %r)' % (hash(obj.ptr._obj), obj)
#
# If 'obj' is not in the nursery, nothing to change -- expect
# that we must set GCFLAG_VISITED_RMY on young raw-malloced objects.
if not self.is_in_nursery(obj):
# cache usage trade-off: I think that it is a better idea to
# check if 'obj' is in young_rawmalloced_objects with an access
# to this (small) dictionary, rather than risk a lot of cache
# misses by reading a flag in the header of all the 'objs' that
# arrive here.
if (bool(self.young_rawmalloced_objects)
and self.young_rawmalloced_objects.contains(obj)):
self._visit_young_rawmalloced_object(obj)
return
# copy the contents of the object? usually yes, but not for some
# shadow objects
copy = True
#
size_gc_header = self.gcheaderbuilder.size_gc_header
if self.header(obj).tid & (GCFLAG_HAS_SHADOW | GCFLAG_PINNED) == 0:
#
# Common case: 'obj' was not already forwarded (otherwise
# tid == -42, containing all flags), and it doesn't have the
# HAS_SHADOW flag either. We must move it out of the nursery,
# into a new nonmovable location.
totalsize = size_gc_header + self.get_size(obj)
self.nursery_surviving_size += raw_malloc_usage(totalsize)
newhdr = self._malloc_out_of_nursery(totalsize)
#
elif self.is_forwarded(obj):
#
# 'obj' was already forwarded. Change the original reference
# to point to its forwarding address, and we're done.
root.address[0] = self.get_forwarding_address(obj)
return
#
elif self._is_pinned(obj):
hdr = self.header(obj)
#
# track parent of pinned object specially. This mus be done before
# checking for GCFLAG_VISITED: it may be that the same pinned object
# is reachable from multiple sources (e.g. two old objects pointing
# to the same pinned object). In such a case we need all parents
# of the pinned object in the list. Otherwise he pinned object could
# become dead and be removed just because the first parent of it
# is dead and collected.
if parent != llmemory.NULL and \
not self.header(parent).tid & GCFLAG_PINNED_OBJECT_PARENT_KNOWN:
#
self.old_objects_pointing_to_pinned.append(parent)
self.updated_old_objects_pointing_to_pinned = True
self.header(parent).tid |= GCFLAG_PINNED_OBJECT_PARENT_KNOWN
#
if hdr.tid & GCFLAG_VISITED:
return
#
hdr.tid |= GCFLAG_VISITED
#
self.surviving_pinned_objects.append(
llarena.getfakearenaaddress(obj - size_gc_header))
self.pinned_objects_in_nursery += 1
self.any_pinned_object_kept = True
return
else:
# First visit to an object that has already a shadow.
newobj = self.nursery_objects_shadows.get(obj)
ll_assert(newobj != llmemory.NULL, "GCFLAG_HAS_SHADOW but no shadow found")
newhdr = newobj - size_gc_header
#
# The flags GCFLAG_HAS_SHADOW and GCFLAG_SHADOW_INITIALIZED
# have no meaning in non-nursery objects. We don't need to
# remove them explicitly here before doing the copy.
tid = self.header(obj).tid
if (tid & GCFLAG_SHADOW_INITIALIZED) != 0:
copy = False
#
totalsize = size_gc_header + self.get_size(obj)
self.nursery_surviving_size += raw_malloc_usage(totalsize)
#
# Copy it. Note that references to other objects in the
# nursery are kept unchanged in this step.
if copy:
llmemory.raw_memcopy(obj - size_gc_header, newhdr, totalsize)
#
# Set the old object's tid to -42 (containing all flags) and
# replace the old object's content with the target address.
# A bit of no-ops to convince llarena that we are changing
# the layout, in non-translated versions.
typeid = self.get_type_id(obj)
obj = llarena.getfakearenaaddress(obj)
llarena.arena_reset(obj - size_gc_header, totalsize, 0)
llarena.arena_reserve(obj - size_gc_header,
size_gc_header + llmemory.sizeof(FORWARDSTUB))
self.header(obj).tid = -42
newobj = newhdr + size_gc_header
llmemory.cast_adr_to_ptr(obj, FORWARDSTUBPTR).forw = newobj
#
# Change the original pointer to this object.
root.address[0] = newobj
#
# Add the newobj to the list 'old_objects_pointing_to_young',
# because it can contain further pointers to other young objects.
# We will fix such references to point to the copy of the young
# objects when we walk 'old_objects_pointing_to_young'.
if self.has_gcptr(typeid):
# we only have to do it if we have any gcptrs
self.old_objects_pointing_to_young.append(newobj)
_trace_drag_out._always_inline_ = True
def _visit_young_rawmalloced_object(self, obj):
# 'obj' points to a young, raw-malloced object.
# Any young rawmalloced object never seen by the code here
# will end up without GCFLAG_VISITED_RMY, and be freed at the
# end of the current minor collection. Note that there was
# a bug in which dying young arrays with card marks would
# still be scanned before being freed, keeping a lot of
# objects unnecessarily alive.
hdr = self.header(obj)
if hdr.tid & GCFLAG_VISITED_RMY:
return
hdr.tid |= GCFLAG_VISITED_RMY
#
# Accounting
size_gc_header = self.gcheaderbuilder.size_gc_header
size = size_gc_header + self.get_size(obj)
self.size_objects_made_old += r_uint(raw_malloc_usage(size))
#
# we just made 'obj' old, so we need to add it to the correct lists
added_somewhere = False
#
if hdr.tid & GCFLAG_TRACK_YOUNG_PTRS == 0:
self.old_objects_pointing_to_young.append(obj)
added_somewhere = True
#
if hdr.tid & GCFLAG_HAS_CARDS != 0:
ll_assert(hdr.tid & GCFLAG_CARDS_SET != 0,
"young array: GCFLAG_HAS_CARDS without GCFLAG_CARDS_SET")
self.old_objects_with_cards_set.append(obj)
added_somewhere = True
#
ll_assert(added_somewhere, "wrong flag combination on young array")
def _malloc_out_of_nursery(self, totalsize):
"""Allocate non-movable memory for an object of the given
'totalsize' that lives so far in the nursery."""
if (r_uint(raw_malloc_usage(totalsize)) <=
r_uint(self.small_request_threshold)):
# most common path
return self.ac.malloc(totalsize)
else:
# for nursery objects that are not small
return self._malloc_out_of_nursery_nonsmall(totalsize)
_malloc_out_of_nursery._always_inline_ = True
def _malloc_out_of_nursery_nonsmall(self, totalsize):
if r_uint(raw_malloc_usage(totalsize)) > r_uint(self.nursery_size):
out_of_memory("memory corruption: bad size for object in the "
"nursery")
# 'totalsize' should be aligned.
ll_assert(raw_malloc_usage(totalsize) & (WORD-1) == 0,
"misaligned totalsize in _malloc_out_of_nursery_nonsmall")
#
arena = llarena.arena_malloc(raw_malloc_usage(totalsize), False)
if not arena:
out_of_memory("out of memory: couldn't allocate a few KB more")
llarena.arena_reserve(arena, totalsize)
#
size_gc_header = self.gcheaderbuilder.size_gc_header
self.rawmalloced_total_size += r_uint(raw_malloc_usage(totalsize))
self.rawmalloced_peak_size = max(self.rawmalloced_total_size,
self.rawmalloced_peak_size)
self.old_rawmalloced_objects.append(arena + size_gc_header)
return arena
def free_young_rawmalloced_objects(self):
self.young_rawmalloced_objects.foreach(
self._free_young_rawmalloced_obj, None)
self.young_rawmalloced_objects.delete()
self.young_rawmalloced_objects = self.null_address_dict()
def _free_young_rawmalloced_obj(self, obj, ignored1, ignored2):
# If 'obj' has GCFLAG_VISITED_RMY, it was seen by _trace_drag_out
# and survives. Otherwise, it dies.
self.free_rawmalloced_object_if_unvisited(obj, GCFLAG_VISITED_RMY)
def remove_young_arrays_from_old_objects_pointing_to_young(self):
old = self.old_objects_pointing_to_young
new = self.AddressStack()
while old.non_empty():
obj = old.pop()
if not self.young_rawmalloced_objects.contains(obj):
new.append(obj)
# an extra copy, to avoid assignments to
# 'self.old_objects_pointing_to_young'
while new.non_empty():
old.append(new.pop())
new.delete()
def _add_to_more_objects_to_trace(self, obj, ignored):
ll_assert(not self.is_in_nursery(obj), "unexpected nursery obj here")
self.header(obj).tid &= ~GCFLAG_VISITED
self.more_objects_to_trace.append(obj)
def _add_to_more_objects_to_trace_if_black(self, obj, ignored):
if self.header(obj).tid & GCFLAG_VISITED:
self._add_to_more_objects_to_trace(obj, ignored)
def minor_and_major_collection(self):
# First, finish the current major gc, if there is one in progress.
# This is a no-op if the gc_state is already STATE_SCANNING.
self.gc_step_until(STATE_SCANNING)
#
# Then do a complete collection again.
self.gc_step_until(STATE_MARKING)
self.gc_step_until(STATE_SCANNING)
def gc_step_until(self, state):
while self.gc_state != state:
self._minor_collection()
self.major_collection_step()
debug_gc_step_until = gc_step_until # xxx
def debug_gc_step(self, n=1):
while n > 0:
self._minor_collection()
self.major_collection_step()
n -= 1
# Note - minor collections seem fast enough so that one
# is done before every major collection step
def major_collection_step(self, reserving_size=0):
start = time.time()
debug_start("gc-collect-step")
oldstate = self.gc_state
debug_print("starting gc state: ", GC_STATES[self.gc_state])
# Debugging checks
if self.pinned_objects_in_nursery == 0:
ll_assert(self.nursery_free == self.nursery,
"nursery not empty in major_collection_step()")
else:
# XXX try to add some similar check to the above one for the case
# that the nursery still contains some pinned objects (groggi)
pass
self.debug_check_consistency()
#
# 'threshold_objects_made_old', is used inside comparisons
# with 'size_objects_made_old' to know when we must do
# several major GC steps (i.e. several consecutive calls
# to the present function). Here is the target that
# we try to aim to: either (A1) or (A2)
#
# (A1) gc_state == STATE_SCANNING (i.e. major GC cycle ended)
# (A2) size_objects_made_old <= threshold_objects_made_old
#
# Every call to major_collection_step() adds nursery_size//2
# to 'threshold_objects_made_old'.
# In the common case, this is larger than the size of all
# objects that survive a minor collection. After a few
# minor collections (each followed by one call to
# major_collection_step()) the threshold is much higher than
# the 'size_objects_made_old', making the target invariant (A2)
# true by a large margin.
#
# However there are less common cases:
#
# * if more than half of the nursery consistently survives:
# then we need two calls to major_collection_step() after
# some minor collection;
#
# * or if we're allocating a large number of bytes in
# external_malloc() and some of them survive the following
# minor collection. In that case, more than two major
# collection steps must be done immediately, until we
# restore the target invariant (A2).
#
self.threshold_objects_made_old += r_uint(self.nursery_size // 2)
if self.gc_state == STATE_SCANNING:
# starting a major GC cycle: reset these two counters
self.size_objects_made_old = r_uint(0)
self.threshold_objects_made_old = r_uint(self.nursery_size // 2)
self.objects_to_trace = self.AddressStack()
self.collect_roots()
self.gc_state = STATE_MARKING
self.more_objects_to_trace = self.AddressStack()
#END SCANNING
elif self.gc_state == STATE_MARKING:
debug_print("number of objects to mark",
self.objects_to_trace.length(),
"plus",
self.more_objects_to_trace.length())
estimate = self.gc_increment_step
estimate_from_nursery = self.nursery_surviving_size * 2
if estimate_from_nursery > estimate:
estimate = estimate_from_nursery
estimate = intmask(estimate)
remaining = self.visit_all_objects_step(estimate)
#
if remaining >= estimate // 2:
if self.more_objects_to_trace.non_empty():
# We consumed less than 1/2 of our step's time, and
# there are more objects added during the marking steps
# of this major collection. Visit them all now.
# The idea is to ensure termination at the cost of some
# incrementality, in theory.
swap = self.objects_to_trace
self.objects_to_trace = self.more_objects_to_trace
self.more_objects_to_trace = swap
self.visit_all_objects()
# XXX A simplifying assumption that should be checked,
# finalizers/weak references are rare and short which means that
# they do not need a separate state and do not need to be
# made incremental.
# For now, the same applies to rawrefcount'ed objects.
if (not self.objects_to_trace.non_empty() and
not self.more_objects_to_trace.non_empty()):
#
# First, 'prebuilt_root_objects' might have grown since
# we scanned it in collect_roots() (rare case). Rescan.
self.collect_nonstack_roots()
self.visit_all_objects()
#
if self.rrc_enabled:
self.rrc_major_collection_trace()
#
ll_assert(not (self.probably_young_objects_with_finalizers
.non_empty()),
"probably_young_objects_with_finalizers should be empty")
self.kept_alive_by_finalizer = r_uint(0)
if self.old_objects_with_finalizers.non_empty():
self.deal_with_objects_with_finalizers()
elif self.old_objects_with_weakrefs.non_empty():
# Weakref support: clear the weak pointers to dying objects
# (if we call deal_with_objects_with_finalizers(), it will
# invoke invalidate_old_weakrefs() itself directly)
self.invalidate_old_weakrefs()
ll_assert(not self.objects_to_trace.non_empty(),
"objects_to_trace should be empty")
ll_assert(not self.more_objects_to_trace.non_empty(),
"more_objects_to_trace should be empty")
self.objects_to_trace.delete()
self.more_objects_to_trace.delete()
#
# Destructors
if self.old_objects_with_destructors.non_empty():
self.deal_with_old_objects_with_destructors()
# objects_to_trace processed fully, can move on to sweeping
self.ac.mass_free_prepare()
self.start_free_rawmalloc_objects()
#
# get rid of objects pointing to pinned objects that were not
# visited
if self.old_objects_pointing_to_pinned.non_empty():
new_old_objects_pointing_to_pinned = self.AddressStack()
self.old_objects_pointing_to_pinned.foreach(
self._sweep_old_objects_pointing_to_pinned,
new_old_objects_pointing_to_pinned)
self.old_objects_pointing_to_pinned.delete()
self.old_objects_pointing_to_pinned = \
new_old_objects_pointing_to_pinned
self.updated_old_objects_pointing_to_pinned = True
#
if self.rrc_enabled:
self.rrc_major_collection_free()
#
self.stat_ac_arenas_count = self.ac.arenas_count
self.stat_rawmalloced_total_size = self.rawmalloced_total_size
self.gc_state = STATE_SWEEPING
#END MARKING
elif self.gc_state == STATE_SWEEPING:
#
if self.raw_malloc_might_sweep.non_empty():
# Walk all rawmalloced objects and free the ones that don't
# have the GCFLAG_VISITED flag. Visit at most 'limit' objects.
# This limit is conservatively high enough to guarantee that
# a total object size of at least '3 * nursery_size' bytes
# is processed.
limit = 3 * self.nursery_size // self.small_request_threshold
nobjects = self.free_unvisited_rawmalloc_objects_step(limit)
debug_print("freeing raw objects:", limit-nobjects,
"freed, limit was", limit)
done = False # the 2nd half below must still be done
else:
# Ask the ArenaCollection to visit a fraction of the objects.
# Free the ones that have not been visited above, and reset
# GCFLAG_VISITED on the others. Visit at most '3 *
# nursery_size' bytes.
limit = 3 * self.nursery_size // self.ac.page_size
done = self.ac.mass_free_incremental(self._free_if_unvisited,
limit)
status = done and "No more pages left." or "More to do."
debug_print("freeing GC objects, up to", limit, "pages.", status)
# XXX tweak the limits above
#
if done:
self.num_major_collects += 1
#
# We also need to reset the GCFLAG_VISITED on prebuilt GC objects.
self.prebuilt_root_objects.foreach(self._reset_gcflag_visited, None)
#
# Set the threshold for the next major collection to be when we
# have allocated 'major_collection_threshold' times more than
# we currently have -- but no more than 'max_delta' more than
# we currently have.
total_memory_used = float(self.get_total_memory_used())
total_memory_used -= float(self.kept_alive_by_finalizer)
if total_memory_used < 0:
total_memory_used = 0
bounded = self.set_major_threshold_from(
min(total_memory_used * self.major_collection_threshold,
total_memory_used + self.max_delta),
reserving_size)
#
# Print statistics
debug_start("gc-collect-done")
debug_print("arenas: ",
self.stat_ac_arenas_count, " => ",
self.ac.arenas_count)
debug_print("bytes used in arenas: ",
self.ac.total_memory_used)
debug_print("bytes raw-malloced: ",
self.stat_rawmalloced_total_size, " => ",
self.rawmalloced_total_size)
debug_print("next major collection threshold: ",
self.next_major_collection_threshold)
debug_stop("gc-collect-done")
self.hooks.fire_gc_collect(
num_major_collects=self.num_major_collects,
arenas_count_before=self.stat_ac_arenas_count,
arenas_count_after=self.ac.arenas_count,
arenas_bytes=self.ac.total_memory_used,
rawmalloc_bytes_before=self.stat_rawmalloced_total_size,
rawmalloc_bytes_after=self.rawmalloced_total_size)
#
# Max heap size: gives an upper bound on the threshold. If we
# already have at least this much allocated, raise MemoryError.
if bounded and self.threshold_reached(reserving_size):
#
# First raise MemoryError, giving the program a chance to
# quit cleanly. It might still allocate in the nursery,
# which might eventually be emptied, triggering another
# major collect and (possibly) reaching here again with an
# even higher memory consumption. To prevent it, if it's
# the second time we are here, then abort the program.
if self.max_heap_size_already_raised:
out_of_memory("using too much memory, aborting")
self.max_heap_size_already_raised = True
self.gc_state = STATE_SCANNING
raise MemoryError
self.gc_state = STATE_FINALIZING
# FINALIZING not yet incrementalised
# but it seems safe to allow mutator to run after sweeping and
# before finalizers are called. This is because run_finalizers
# is a different list to objects_with_finalizers.
# END SWEEPING
elif self.gc_state == STATE_FINALIZING:
# XXX This is considered rare,
# so should we make the calling incremental? or leave as is
# Must be ready to start another scan
# just in case finalizer calls collect again.
self.gc_state = STATE_SCANNING
self.execute_finalizers()
#END FINALIZING
else:
ll_assert(False, "bogus gc_state")
debug_print("stopping, now in gc state: ", GC_STATES[self.gc_state])
debug_stop("gc-collect-step")
duration = time.time() - start
self.total_gc_time += duration
self.hooks.fire_gc_collect_step(
duration=duration,
oldstate=oldstate,
newstate=self.gc_state)
def _sweep_old_objects_pointing_to_pinned(self, obj, new_list):
if self.header(obj).tid & GCFLAG_VISITED:
new_list.append(obj)
def _free_if_unvisited(self, hdr):
size_gc_header = self.gcheaderbuilder.size_gc_header
obj = hdr + size_gc_header
if self.header(obj).tid & GCFLAG_VISITED:
self.header(obj).tid &= ~GCFLAG_VISITED
return False # survives
return True # dies
def _reset_gcflag_visited(self, obj, ignored):
self.header(obj).tid &= ~GCFLAG_VISITED
def free_rawmalloced_object_if_unvisited(self, obj, check_flag):
if self.header(obj).tid & check_flag:
self.header(obj).tid &= ~check_flag # survives
self.old_rawmalloced_objects.append(obj)
else:
size_gc_header = self.gcheaderbuilder.size_gc_header
totalsize = size_gc_header + self.get_size(obj)
allocsize = raw_malloc_usage(totalsize)
arena = llarena.getfakearenaaddress(obj - size_gc_header)
#
# Must also include the card marker area, if any
if (self.card_page_indices > 0 # <- this is constant-folded
and self.header(obj).tid & GCFLAG_HAS_CARDS):
#
# Get the length and compute the number of extra bytes
typeid = self.get_type_id(obj)
ll_assert(self.has_gcptr_in_varsize(typeid),
"GCFLAG_HAS_CARDS but not has_gcptr_in_varsize")
offset_to_length = self.varsize_offset_to_length(typeid)
length = (obj + offset_to_length).signed[0]
extra_words = self.card_marking_words_for_length(length)
arena -= extra_words * WORD
allocsize += extra_words * WORD
#
llarena.arena_free(arena)
self.rawmalloced_total_size -= r_uint(allocsize)
def start_free_rawmalloc_objects(self):
ll_assert(not self.raw_malloc_might_sweep.non_empty(),
"raw_malloc_might_sweep must be empty")
swap = self.raw_malloc_might_sweep
self.raw_malloc_might_sweep = self.old_rawmalloced_objects
self.old_rawmalloced_objects = swap
# Returns true when finished processing objects
def free_unvisited_rawmalloc_objects_step(self, nobjects):
while self.raw_malloc_might_sweep.non_empty() and nobjects > 0:
obj = self.raw_malloc_might_sweep.pop()
self.free_rawmalloced_object_if_unvisited(obj, GCFLAG_VISITED)
nobjects -= 1
return nobjects
def collect_nonstack_roots(self):
# Non-stack roots: first, the objects from 'prebuilt_root_objects'
self.prebuilt_root_objects.foreach(self._collect_obj, None)
#
# Add the roots from static prebuilt non-gc structures
self.root_walker.walk_roots(
None,
IncrementalMiniMarkGC._collect_ref_stk,
None) # we don't need the static in all prebuilt gc objects
#
# If we are in an inner collection caused by a call to a finalizer,
# the 'run_finalizers' objects also need to be kept alive.
self.enum_pending_finalizers(self._collect_obj, None)
def collect_roots(self):
# Collect all roots. Starts from the non-stack roots.
self.collect_nonstack_roots()
#
# Add the stack roots.
self.root_walker.walk_roots(
IncrementalMiniMarkGC._collect_ref_stk, # stack roots
None,
None)
def enumerate_all_roots(self, callback, arg):
self.prebuilt_root_objects.foreach(callback, arg)
MovingGCBase.enumerate_all_roots(self, callback, arg)
enumerate_all_roots._annspecialcase_ = 'specialize:arg(1)'
def enum_live_with_finalizers(self, callback, arg):
self.probably_young_objects_with_finalizers.foreach(callback, arg, 2)
self.old_objects_with_finalizers.foreach(callback, arg, 2)
enum_live_with_finalizers._annspecialcase_ = 'specialize:arg(1)'
def _collect_obj(self, obj, ignored):
# Ignore pinned objects, which are the ones still in the nursery here.
# Cache effects: don't read any flag out of 'obj' at this point.
# But only checking if it is in the nursery or not is fine.
llop.debug_nonnull_pointer(lltype.Void, obj)
if not self.is_in_nursery(obj):
self.objects_to_trace.append(obj)
else:
# A pinned object can be found here. Such an object is handled
# by minor collections and shouldn't be specially handled by
# major collections. Therefore we only add non-pinned objects
# to the 'objects_to_trace' list.
ll_assert(self._is_pinned(obj),
"non-pinned nursery obj in _collect_obj")
_collect_obj._always_inline_ = True
def _collect_ref_stk(self, root):
self._collect_obj(root.address[0], None)
def _collect_ref_rec(self, root, ignored):
self._collect_obj(root.address[0], None)
def visit_all_objects(self):
while self.objects_to_trace.non_empty():
self.visit_all_objects_step(sys.maxint)
TEST_VISIT_SINGLE_STEP = False # for tests
def visit_all_objects_step(self, size_to_track):
# Objects can be added to pending by visit
pending = self.objects_to_trace
while pending.non_empty():
obj = pending.pop()
size_to_track -= self.visit(obj)
if size_to_track < 0 or self.TEST_VISIT_SINGLE_STEP:
return 0
return size_to_track
def visit(self, obj):
#
# 'obj' is a live object. Check GCFLAG_VISITED to know if we
# have already seen it before.
#
# Moreover, we can ignore prebuilt objects with GCFLAG_NO_HEAP_PTRS.
# If they have this flag set, then they cannot point to heap
# objects, so ignoring them is fine. If they don't have this
# flag set, then the object should be in 'prebuilt_root_objects',
# and the GCFLAG_VISITED will be reset at the end of the
# collection.
# We shouldn't see an object with GCFLAG_PINNED here (the pinned
# objects are never added to 'objects_to_trace'). The same-valued
# flag GCFLAG_PINNED_OBJECT_PARENT_KNOWN is used during minor
# collections and shouldn't be set here either.
#
hdr = self.header(obj)
ll_assert((hdr.tid & GCFLAG_PINNED) == 0,
"pinned object in 'objects_to_trace'")
ll_assert(not self.is_in_nursery(obj),
"nursery object in 'objects_to_trace'")
if hdr.tid & (GCFLAG_VISITED | GCFLAG_NO_HEAP_PTRS):
return 0
#
# It's the first time. We set the flag VISITED. The trick is
# to also set TRACK_YOUNG_PTRS here, for the write barrier.
hdr.tid |= GCFLAG_VISITED | GCFLAG_TRACK_YOUNG_PTRS
if self.has_gcptr(llop.extract_ushort(llgroup.HALFWORD, hdr.tid)):
#
# Trace the content of the object and put all objects it references
# into the 'objects_to_trace' list.
self.trace(obj, self._collect_ref_rec, None)
size_gc_header = self.gcheaderbuilder.size_gc_header
totalsize = size_gc_header + self.get_size(obj)
return raw_malloc_usage(totalsize)
# ----------
# id() and identityhash() support
def _allocate_shadow(self, obj):
size_gc_header = self.gcheaderbuilder.size_gc_header
size = self.get_size(obj)
shadowhdr = self._malloc_out_of_nursery(size_gc_header +
size)
# Initialize the shadow enough to be considered a
# valid gc object. If the original object stays
# alive at the next minor collection, it will anyway
# be copied over the shadow and overwrite the
# following fields. But if the object dies, then
# the shadow will stay around and only be freed at
# the next major collection, at which point we want
# it to look valid (but ready to be freed).
shadow = shadowhdr + size_gc_header
self.header(shadow).tid = self.header(obj).tid
typeid = self.get_type_id(obj)
if self.is_varsize(typeid):
lenofs = self.varsize_offset_to_length(typeid)
(shadow + lenofs).signed[0] = (obj + lenofs).signed[0]
#
self.header(obj).tid |= GCFLAG_HAS_SHADOW
self.nursery_objects_shadows.setitem(obj, shadow)
return shadow
def _find_shadow(self, obj):
#
# The object is not a tagged pointer, and it is still in the
# nursery. Find or allocate a "shadow" object, which is
# where the object will be moved by the next minor
# collection
if self.header(obj).tid & GCFLAG_HAS_SHADOW:
shadow = self.nursery_objects_shadows.get(obj)
ll_assert(shadow != llmemory.NULL,
"GCFLAG_HAS_SHADOW but no shadow found")
else:
shadow = self._allocate_shadow(obj)
#
# The answer is the address of the shadow.
return shadow
_find_shadow._dont_inline_ = True
def id_or_identityhash(self, gcobj):
"""Implement the common logic of id() and identityhash()
of an object, given as a GCREF.
"""
obj = llmemory.cast_ptr_to_adr(gcobj)
if self.is_valid_gc_object(obj):
if self.is_in_nursery(obj):
obj = self._find_shadow(obj)
return llmemory.cast_adr_to_int(obj)
id_or_identityhash._always_inline_ = True
def id(self, gcobj):
return self.id_or_identityhash(gcobj)
def identityhash(self, gcobj):
return mangle_hash(self.id_or_identityhash(gcobj))
# ----------
# Finalizers
def deal_with_young_objects_with_destructors(self):
"""We can reasonably assume that destructors don't do
anything fancy and *just* call them. Among other things
they won't resurrect objects
"""
while self.young_objects_with_destructors.non_empty():
obj = self.young_objects_with_destructors.pop()
if not self.is_forwarded(obj):
self.call_destructor(obj)
else:
obj = self.get_forwarding_address(obj)
self.old_objects_with_destructors.append(obj)
def deal_with_old_objects_with_destructors(self):
"""We can reasonably assume that destructors don't do
anything fancy and *just* call them. Among other things
they won't resurrect objects
"""
new_objects = self.AddressStack()
while self.old_objects_with_destructors.non_empty():
obj = self.old_objects_with_destructors.pop()
if self.header(obj).tid & GCFLAG_VISITED:
# surviving
new_objects.append(obj)
else:
# dying
self.call_destructor(obj)
self.old_objects_with_destructors.delete()
self.old_objects_with_destructors = new_objects
def deal_with_young_objects_with_finalizers(self):
while self.probably_young_objects_with_finalizers.non_empty():
obj = self.probably_young_objects_with_finalizers.popleft()
fq_nr = self.probably_young_objects_with_finalizers.popleft()
if self.get_possibly_forwarded_tid(obj) & GCFLAG_IGNORE_FINALIZER:
continue
self.singleaddr.address[0] = obj
self._trace_drag_out1(self.singleaddr)
obj = self.singleaddr.address[0]
self.old_objects_with_finalizers.append(obj)
self.old_objects_with_finalizers.append(fq_nr)
def deal_with_objects_with_finalizers(self):
# Walk over list of objects with finalizers.
# If it is not surviving, add it to the list of to-be-called
# finalizers and make it survive, to make the finalizer runnable.
# We try to run the finalizers in a "reasonable" order, like
# CPython does. The details of this algorithm are in
# pypy/doc/discussion/finalizer-order.txt.
new_with_finalizer = self.AddressDeque()
marked = self.AddressDeque()
pending = self.AddressStack()
self.tmpstack = self.AddressStack()
while self.old_objects_with_finalizers.non_empty():
x = self.old_objects_with_finalizers.popleft()
fq_nr = self.old_objects_with_finalizers.popleft()
ll_assert(self._finalization_state(x) != 1,
"bad finalization state 1")
if self.header(x).tid & GCFLAG_IGNORE_FINALIZER:
continue
if self.header(x).tid & GCFLAG_VISITED:
new_with_finalizer.append(x)
new_with_finalizer.append(fq_nr)
continue
marked.append(x)
marked.append(fq_nr)
pending.append(x)
while pending.non_empty():
y = pending.pop()
state = self._finalization_state(y)
if state == 0:
self._bump_finalization_state_from_0_to_1(y)
self.trace(y, self._append_if_nonnull, pending)
elif state == 2:
self._recursively_bump_finalization_state_from_2_to_3(y)
self._recursively_bump_finalization_state_from_1_to_2(x)
# Clear the weak pointers to dying objects. Also clears them if
# they point to objects which have the GCFLAG_FINALIZATION_ORDERING
# bit set here. These are objects which will be added to
# run_finalizers().
self.invalidate_old_weakrefs()
while marked.non_empty():
x = marked.popleft()
fq_nr = marked.popleft()
state = self._finalization_state(x)
ll_assert(state >= 2, "unexpected finalization state < 2")
if state == 2:
from rpython.rtyper.lltypesystem import rffi
fq_index = rffi.cast(lltype.Signed, fq_nr)
self.mark_finalizer_to_run(fq_index, x)
# we must also fix the state from 2 to 3 here, otherwise
# we leave the GCFLAG_FINALIZATION_ORDERING bit behind
# which will confuse the next collection
self._recursively_bump_finalization_state_from_2_to_3(x)
else:
new_with_finalizer.append(x)
new_with_finalizer.append(fq_nr)
self.tmpstack.delete()
pending.delete()
marked.delete()
self.old_objects_with_finalizers.delete()
self.old_objects_with_finalizers = new_with_finalizer
def _append_if_nonnull(pointer, stack):
stack.append(pointer.address[0])
_append_if_nonnull = staticmethod(_append_if_nonnull)
def _finalization_state(self, obj):
tid = self.header(obj).tid
if tid & GCFLAG_VISITED:
if tid & GCFLAG_FINALIZATION_ORDERING:
return 2
else:
return 3
else:
if tid & GCFLAG_FINALIZATION_ORDERING:
return 1
else:
return 0
def _bump_finalization_state_from_0_to_1(self, obj):
ll_assert(self._finalization_state(obj) == 0,
"unexpected finalization state != 0")
size_gc_header = self.gcheaderbuilder.size_gc_header
totalsize = size_gc_header + self.get_size(obj)
hdr = self.header(obj)
hdr.tid |= GCFLAG_FINALIZATION_ORDERING
# A bit hackish, but we will not count these objects as "alive"
# for the purpose of computing when the next major GC should
# occur. This is done for issue #2590: without this, if we
# allocate mostly objects with finalizers, the
# next_major_collection_threshold grows forever and actual
# memory usage is not bounded.
self.kept_alive_by_finalizer += raw_malloc_usage(totalsize)
def _recursively_bump_finalization_state_from_2_to_3(self, obj):
ll_assert(self._finalization_state(obj) == 2,
"unexpected finalization state != 2")
pending = self.tmpstack
ll_assert(not pending.non_empty(), "tmpstack not empty")
pending.append(obj)
while pending.non_empty():
y = pending.pop()
hdr = self.header(y)
if hdr.tid & GCFLAG_FINALIZATION_ORDERING: # state 2 ?
hdr.tid &= ~GCFLAG_FINALIZATION_ORDERING # change to state 3
self.trace(y, self._append_if_nonnull, pending)
def _recursively_bump_finalization_state_from_1_to_2(self, obj):
# recursively convert objects from state 1 to state 2.
# The call to visit_all_objects() will add the GCFLAG_VISITED
# recursively.
ll_assert(not self.is_in_nursery(obj), "pinned finalizer object??")
self.objects_to_trace.append(obj)
self.visit_all_objects()
def ignore_finalizer(self, obj):
self.header(obj).tid |= GCFLAG_IGNORE_FINALIZER
# ----------
# Weakrefs
# XXX (groggi): weakref pointing to pinned object not supported.
# XXX (groggi): missing asserts/checks for the missing feature.
# The code relies on the fact that no weakref can be an old object
# weakly pointing to a young object. Indeed, weakrefs are immutable
# so they cannot point to an object that was created after it.
# Thanks to this, during a minor collection, we don't have to fix
# or clear the address stored in old weakrefs.
def invalidate_young_weakrefs(self):
"""Called during a nursery collection."""
# walk over the list of objects that contain weakrefs and are in the
# nursery. if the object it references survives then update the
# weakref; otherwise invalidate the weakref
while self.young_objects_with_weakrefs.non_empty():
obj = self.young_objects_with_weakrefs.pop()
if not self.is_forwarded(obj):
continue # weakref itself dies
obj = self.get_forwarding_address(obj)
offset = self.weakpointer_offset(self.get_type_id(obj))
pointing_to = (obj + offset).address[0]
if self.is_in_nursery(pointing_to):
if self.is_forwarded(pointing_to):
(obj + offset).address[0] = self.get_forwarding_address(
pointing_to)
else:
# If the target is pinned, then we reach this point too.
# It means that a hypothetical RPython interpreter that
# would let you take a weakref to a pinned object (strange
# thing not possible at all in PyPy) might see these
# weakrefs marked as dead too early.
(obj + offset).address[0] = llmemory.NULL
continue # no need to remember this weakref any longer
#
elif (bool(self.young_rawmalloced_objects) and
self.young_rawmalloced_objects.contains(pointing_to)):
# young weakref to a young raw-malloced object
if self.header(pointing_to).tid & GCFLAG_VISITED_RMY:
pass # survives, but does not move
else:
(obj + offset).address[0] = llmemory.NULL
continue # no need to remember this weakref any longer
#
elif self.header(pointing_to).tid & GCFLAG_NO_HEAP_PTRS:
# see test_weakref_to_prebuilt: it's not useful to put
# weakrefs into 'old_objects_with_weakrefs' if they point
# to a prebuilt object (they are immortal). If moreover
# the 'pointing_to' prebuilt object still has the
# GCFLAG_NO_HEAP_PTRS flag, then it's even wrong, because
# 'pointing_to' will not get the GCFLAG_VISITED during
# the next major collection. Solve this by not registering
# the weakref into 'old_objects_with_weakrefs'.
continue
#
self.old_objects_with_weakrefs.append(obj)
def invalidate_old_weakrefs(self):
"""Called during a major collection."""
# walk over list of objects that contain weakrefs
# if the object it references does not survive, invalidate the weakref
new_with_weakref = self.AddressStack()
while self.old_objects_with_weakrefs.non_empty():
obj = self.old_objects_with_weakrefs.pop()
if self.header(obj).tid & GCFLAG_VISITED == 0:
continue # weakref itself dies
offset = self.weakpointer_offset(self.get_type_id(obj))
pointing_to = (obj + offset).address[0]
ll_assert((self.header(pointing_to).tid & GCFLAG_NO_HEAP_PTRS)
== 0, "registered old weakref should not "
"point to a NO_HEAP_PTRS obj")
tid = self.header(pointing_to).tid
if ((tid & (GCFLAG_VISITED | GCFLAG_FINALIZATION_ORDERING)) ==
GCFLAG_VISITED):
new_with_weakref.append(obj)
else:
(obj + offset).address[0] = llmemory.NULL
self.old_objects_with_weakrefs.delete()
self.old_objects_with_weakrefs = new_with_weakref
def get_stats(self, stats_no):
from rpython.memory.gc import inspector
if stats_no == rgc.TOTAL_MEMORY:
return intmask(self.get_total_memory_used() + self.nursery_size)
elif stats_no == rgc.PEAK_MEMORY:
return intmask(self.get_peak_memory_used() + self.nursery_size)
elif stats_no == rgc.PEAK_ALLOCATED_MEMORY:
return intmask(self.get_peak_memory_alloced() + self.nursery_size)
elif stats_no == rgc.TOTAL_ALLOCATED_MEMORY:
return intmask(self.get_total_memory_alloced() + self.nursery_size)
elif stats_no == rgc.TOTAL_MEMORY_PRESSURE:
return inspector.count_memory_pressure(self)
elif stats_no == rgc.TOTAL_ARENA_MEMORY:
return intmask(self.ac.total_memory_used)
elif stats_no == rgc.TOTAL_RAWMALLOCED_MEMORY:
return intmask(self.rawmalloced_total_size)
elif stats_no == rgc.PEAK_RAWMALLOCED_MEMORY:
return intmask(self.rawmalloced_peak_size)
elif stats_no == rgc.PEAK_ARENA_MEMORY:
return intmask(max(self.ac.peak_memory_used,
self.ac.total_memory_used))
elif stats_no == rgc.NURSERY_SIZE:
return intmask(self.nursery_size)
elif stats_no == rgc.TOTAL_GC_TIME:
return int(self.total_gc_time * 1000)
return 0
# ----------
# RawRefCount
rrc_enabled = False
_ADDRARRAY = lltype.Array(llmemory.Address, hints={'nolength': True})
PYOBJ_HDR = lltype.Struct('GCHdr_PyObject',
('ob_refcnt', lltype.Signed),
('ob_pypy_link', lltype.Signed))
PYOBJ_HDR_PTR = lltype.Ptr(PYOBJ_HDR)
RAWREFCOUNT_DEALLOC_TRIGGER = lltype.Ptr(lltype.FuncType([], lltype.Void))
def _pyobj(self, pyobjaddr):
return llmemory.cast_adr_to_ptr(pyobjaddr, self.PYOBJ_HDR_PTR)
def rawrefcount_init(self, dealloc_trigger_callback):
# see pypy/doc/discussion/rawrefcount.rst
if not self.rrc_enabled:
self.rrc_p_list_young = self.AddressStack()
self.rrc_p_list_old = self.AddressStack()
self.rrc_o_list_young = self.AddressStack()
self.rrc_o_list_old = self.AddressStack()
self.rrc_p_dict = self.AddressDict() # non-nursery keys only
self.rrc_p_dict_nurs = self.AddressDict() # nursery keys only
self.rrc_dealloc_trigger_callback = dealloc_trigger_callback
self.rrc_dealloc_pending = self.AddressStack()
self.rrc_enabled = True
def check_no_more_rawrefcount_state(self):
"NOT_RPYTHON: for tests"
assert self.rrc_p_list_young.length() == 0
assert self.rrc_p_list_old .length() == 0
assert self.rrc_o_list_young.length() == 0
assert self.rrc_o_list_old .length() == 0
def check_value_is_null(key, value, ignore):
assert value == llmemory.NULL
self.rrc_p_dict.foreach(check_value_is_null, None)
self.rrc_p_dict_nurs.foreach(check_value_is_null, None)
def rawrefcount_create_link_pypy(self, gcobj, pyobject):
ll_assert(self.rrc_enabled, "rawrefcount.init not called")
obj = llmemory.cast_ptr_to_adr(gcobj)
objint = llmemory.cast_adr_to_int(obj, "symbolic")
self._pyobj(pyobject).ob_pypy_link = objint
#
lst = self.rrc_p_list_young
if self.is_in_nursery(obj):
dct = self.rrc_p_dict_nurs
else:
dct = self.rrc_p_dict
if not self.is_young_object(obj):
lst = self.rrc_p_list_old
lst.append(pyobject)
dct.setitem(obj, pyobject)
def rawrefcount_create_link_pyobj(self, gcobj, pyobject):
ll_assert(self.rrc_enabled, "rawrefcount.init not called")
obj = llmemory.cast_ptr_to_adr(gcobj)
if self.is_young_object(obj):
self.rrc_o_list_young.append(pyobject)
else:
self.rrc_o_list_old.append(pyobject)
objint = llmemory.cast_adr_to_int(obj, "symbolic")
self._pyobj(pyobject).ob_pypy_link = objint
# there is no rrc_o_dict
def rawrefcount_mark_deallocating(self, gcobj, pyobject):
ll_assert(self.rrc_enabled, "rawrefcount.init not called")
obj = llmemory.cast_ptr_to_adr(gcobj) # should be a prebuilt obj
objint = llmemory.cast_adr_to_int(obj, "symbolic")
self._pyobj(pyobject).ob_pypy_link = objint
def rawrefcount_from_obj(self, gcobj):
obj = llmemory.cast_ptr_to_adr(gcobj)
if self.is_in_nursery(obj):
dct = self.rrc_p_dict_nurs
else:
dct = self.rrc_p_dict
return dct.get(obj)
def rawrefcount_to_obj(self, pyobject):
obj = llmemory.cast_int_to_adr(self._pyobj(pyobject).ob_pypy_link)
return llmemory.cast_adr_to_ptr(obj, llmemory.GCREF)
def rawrefcount_next_dead(self):
if self.rrc_dealloc_pending.non_empty():
return self.rrc_dealloc_pending.pop()
return llmemory.NULL
def rrc_invoke_callback(self):
if self.rrc_enabled and self.rrc_dealloc_pending.non_empty():
self.rrc_dealloc_trigger_callback()
def rrc_minor_collection_trace(self):
length_estimate = self.rrc_p_dict_nurs.length()
self.rrc_p_dict_nurs.delete()
self.rrc_p_dict_nurs = self.AddressDict(length_estimate)
self.rrc_p_list_young.foreach(self._rrc_minor_trace,
self.singleaddr)
def _rrc_minor_trace(self, pyobject, singleaddr):
from rpython.rlib.rawrefcount import REFCNT_FROM_PYPY
from rpython.rlib.rawrefcount import REFCNT_FROM_PYPY_LIGHT
#
rc = self._pyobj(pyobject).ob_refcnt
if rc == REFCNT_FROM_PYPY or rc == REFCNT_FROM_PYPY_LIGHT:
pass # the corresponding object may die
else:
# force the corresponding object to be alive
intobj = self._pyobj(pyobject).ob_pypy_link
singleaddr.address[0] = llmemory.cast_int_to_adr(intobj)
self._trace_drag_out1(singleaddr)
def rrc_minor_collection_free(self):
ll_assert(self.rrc_p_dict_nurs.length() == 0, "p_dict_nurs not empty 1")
lst = self.rrc_p_list_young
while lst.non_empty():
self._rrc_minor_free(lst.pop(), self.rrc_p_list_old,
self.rrc_p_dict)
lst = self.rrc_o_list_young
no_o_dict = self.null_address_dict()
while lst.non_empty():
self._rrc_minor_free(lst.pop(), self.rrc_o_list_old,
no_o_dict)
def _rrc_minor_free(self, pyobject, surviving_list, surviving_dict):
intobj = self._pyobj(pyobject).ob_pypy_link
obj = llmemory.cast_int_to_adr(intobj)
if self.is_in_nursery(obj):
if self.is_forwarded(obj):
# Common case: survives and moves
obj = self.get_forwarding_address(obj)
intobj = llmemory.cast_adr_to_int(obj, "symbolic")
self._pyobj(pyobject).ob_pypy_link = intobj
surviving = True
if surviving_dict:
# Surviving nursery object: was originally in
# rrc_p_dict_nurs and now must be put into rrc_p_dict
surviving_dict.setitem(obj, pyobject)
else:
surviving = False
elif (bool(self.young_rawmalloced_objects) and
self.young_rawmalloced_objects.contains(obj)):
# young weakref to a young raw-malloced object
if self.header(obj).tid & GCFLAG_VISITED_RMY:
surviving = True # survives, but does not move
else:
surviving = False
if surviving_dict:
# Dying young large object: was in rrc_p_dict,
# must be deleted
surviving_dict.setitem(obj, llmemory.NULL)
else:
ll_assert(False, "rrc_X_list_young contains non-young obj")
return
#
if surviving:
surviving_list.append(pyobject)
else:
self._rrc_free(pyobject)
def _rrc_free(self, pyobject):
from rpython.rlib.rawrefcount import REFCNT_FROM_PYPY
from rpython.rlib.rawrefcount import REFCNT_FROM_PYPY_LIGHT
#
rc = self._pyobj(pyobject).ob_refcnt
if rc >= REFCNT_FROM_PYPY_LIGHT:
rc -= REFCNT_FROM_PYPY_LIGHT
if rc == 0:
lltype.free(self._pyobj(pyobject), flavor='raw')
else:
# can only occur if LIGHT is used in create_link_pyobj()
self._pyobj(pyobject).ob_refcnt = rc
self._pyobj(pyobject).ob_pypy_link = 0
else:
ll_assert(rc >= REFCNT_FROM_PYPY, "refcount underflow?")
ll_assert(rc < int(REFCNT_FROM_PYPY_LIGHT * 0.99),
"refcount underflow from REFCNT_FROM_PYPY_LIGHT?")
rc -= REFCNT_FROM_PYPY
self._pyobj(pyobject).ob_pypy_link = 0
if rc == 0:
self.rrc_dealloc_pending.append(pyobject)
# an object with refcnt == 0 cannot stay around waiting
# for its deallocator to be called. Some code (lxml)
# expects that tp_dealloc is called immediately when
# the refcnt drops to 0. If it isn't, we get some
# uncleared raw pointer that can still be used to access
# the object; but (PyObject *)raw_pointer is then bogus
# because after a Py_INCREF()/Py_DECREF() on it, its
# tp_dealloc is also called!
rc = 1
self._pyobj(pyobject).ob_refcnt = rc
_rrc_free._always_inline_ = True
def rrc_major_collection_trace(self):
self.rrc_p_list_old.foreach(self._rrc_major_trace, None)
def _rrc_major_trace(self, pyobject, ignore):
from rpython.rlib.rawrefcount import REFCNT_FROM_PYPY
from rpython.rlib.rawrefcount import REFCNT_FROM_PYPY_LIGHT
#
rc = self._pyobj(pyobject).ob_refcnt
if rc == REFCNT_FROM_PYPY or rc == REFCNT_FROM_PYPY_LIGHT:
pass # the corresponding object may die
else:
# force the corresponding object to be alive
intobj = self._pyobj(pyobject).ob_pypy_link
obj = llmemory.cast_int_to_adr(intobj)
self.objects_to_trace.append(obj)
self.visit_all_objects()
def rrc_major_collection_free(self):
ll_assert(self.rrc_p_dict_nurs.length() == 0, "p_dict_nurs not empty 2")
length_estimate = self.rrc_p_dict.length()
self.rrc_p_dict.delete()
self.rrc_p_dict = new_p_dict = self.AddressDict(length_estimate)
new_p_list = self.AddressStack()
while self.rrc_p_list_old.non_empty():
self._rrc_major_free(self.rrc_p_list_old.pop(), new_p_list,
new_p_dict)
self.rrc_p_list_old.delete()
self.rrc_p_list_old = new_p_list
#
new_o_list = self.AddressStack()
no_o_dict = self.null_address_dict()
while self.rrc_o_list_old.non_empty():
self._rrc_major_free(self.rrc_o_list_old.pop(), new_o_list,
no_o_dict)
self.rrc_o_list_old.delete()
self.rrc_o_list_old = new_o_list
def _rrc_major_free(self, pyobject, surviving_list, surviving_dict):
# The pyobject survives if the corresponding obj survives.
# This is true if the obj has one of the following two flags:
# * GCFLAG_VISITED: was seen during tracing
# * GCFLAG_NO_HEAP_PTRS: immortal object never traced (so far)
intobj = self._pyobj(pyobject).ob_pypy_link
obj = llmemory.cast_int_to_adr(intobj)
if self.header(obj).tid & (GCFLAG_VISITED | GCFLAG_NO_HEAP_PTRS):
surviving_list.append(pyobject)
if surviving_dict:
surviving_dict.insertclean(obj, pyobject)
else:
self._rrc_free(pyobject)
|