1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
import math
import py
import sys
import random
import struct
from rpython.rlib.mutbuffer import MutableStringBuffer
from rpython.rlib.rstruct import ieee
from rpython.rlib.rfloat import NAN, INFINITY
from rpython.translator.c.test.test_genc import compile
class TestFloatSpecific:
def test_halffloat_exact(self):
#testcases generated from numpy.float16(x).view('uint16')
cases = [[0, 0], [10, 18688], [-10, 51456], [10e3, 28898],
[float('inf'), 31744], [-float('inf'), 64512]]
for c, h in cases:
hbit = ieee.float_pack(c, 2)
assert hbit == h
assert c == ieee.float_unpack(h, 2)
def test_halffloat_inexact(self):
#testcases generated from numpy.float16(x).view('uint16')
cases = [[10.001, 18688, 10.], [-10.001, 51456, -10],
[0.027588, 10000, 0.027587890625],
[22001, 30047, 22000]]
for c, h, f in cases:
hbit = ieee.float_pack(c, 2)
assert hbit == h
assert f == ieee.float_unpack(h, 2)
def test_halffloat_overunderflow(self):
cases = [[670000, float('inf')], [-67000, -float('inf')],
[1e-08, 0], [-1e-8, -0.]]
for f1, f2 in cases:
try:
f_out = ieee.float_unpack(ieee.float_pack(f1, 2), 2)
except OverflowError:
f_out = math.copysign(float('inf'), f1)
assert f_out == f2
assert math.copysign(1., f_out) == math.copysign(1., f2)
def test_float80_exact(self):
s = []
ieee.pack_float80(s, -1., 16, False)
assert repr(s[-1]) == repr('\x00\x00\x00\x00\x00\x00\x00\x80\xff\xbf\x00\x00\x00\x00\x00\x00')
ieee.pack_float80(s, -1., 16, True)
assert repr(s[-1]) == repr('\x00\x00\x00\x00\x00\x00\xbf\xff\x80\x00\x00\x00\x00\x00\x00\x00')
ieee.pack_float80(s, -123.456, 16, False)
assert repr(s[-1]) == repr('\x00\xb8\xf3\xfd\xd4x\xe9\xf6\x05\xc0\x00\x00\x00\x00\x00\x00')
ieee.pack_float80(s, -123.456, 16, True)
assert repr(s[-1]) == repr('\x00\x00\x00\x00\x00\x00\xc0\x05\xf6\xe9x\xd4\xfd\xf3\xb8\x00')
x = ieee.unpack_float80('\x00\x00\x00\x00\x00\x00\x00\x80\xff?\xc8\x01\x00\x00\x00\x00', False)
assert x == 1.0
x = ieee.unpack_float80('\x00\x00\x7f\x83\xe1\x91?\xff\x80\x00\x00\x00\x00\x00\x00\x00', True)
assert x == 1.0
class TestFloatPacking:
def check_float(self, x):
# check roundtrip
for size in [10, 12, 16]:
for be in [False, True]:
Q = []
ieee.pack_float80(Q, x, size, be)
Q = Q[0]
y = ieee.unpack_float80(Q, be)
assert repr(x) == repr(y), '%r != %r, Q=%r' % (x, y, Q)
for be in [False, True]:
buf = MutableStringBuffer(8)
ieee.pack_float(buf, 0, x, 8, be)
Q = buf.finish()
y = ieee.unpack_float(Q, be)
assert repr(x) == repr(y), '%r != %r, Q=%r' % (x, y, Q)
# check that packing agrees with the struct module
struct_pack8 = struct.unpack('<Q', struct.pack('<d', x))[0]
float_pack8 = ieee.float_pack(x, 8)
assert struct_pack8 == float_pack8
# check that packing agrees with the struct module
try:
struct_pack4 = struct.unpack('<L', struct.pack('<f', x))[0]
except OverflowError:
struct_pack4 = "overflow"
try:
float_pack4 = ieee.float_pack(x, 4)
except OverflowError:
float_pack4 = "overflow"
assert struct_pack4 == float_pack4
if float_pack4 == "overflow":
return
# if we didn't overflow, try round-tripping the binary32 value
roundtrip = ieee.float_pack(ieee.float_unpack(float_pack4, 4), 4)
assert float_pack4 == roundtrip
try:
float_pack2 = ieee.float_pack(x, 2)
except OverflowError:
return
roundtrip = ieee.float_pack(ieee.float_unpack(float_pack2, 2), 2)
assert (float_pack2, x) == (roundtrip, x)
def test_infinities(self):
self.check_float(float('inf'))
self.check_float(float('-inf'))
def test_zeros(self):
self.check_float(0.0)
self.check_float(-0.0)
def test_nans(self):
self.check_float(float('nan'))
def test_simple(self):
test_values = [1e-10, 0.00123, 0.5, 0.7, 1.0, 123.456, 1e10]
for value in test_values:
self.check_float(value)
self.check_float(-value)
def test_subnormal(self):
# special boundaries
self.check_float(2**-1074)
self.check_float(2**-1022)
self.check_float(2**-1021)
self.check_float((2**53-1)*2**-1074)
self.check_float((2**52-1)*2**-1074)
self.check_float((2**52+1)*2**-1074)
# other subnormals
self.check_float(1e-309)
self.check_float(1e-320)
def test_powers_of_two(self):
# exact powers of 2
for k in range(-1074, 1024):
self.check_float(2.**k)
# and values near powers of 2
for k in range(-1074, 1024):
self.check_float((2 - 2**-52) * 2.**k)
def test_float4_boundaries(self):
# Exercise IEEE 754 binary32 boundary cases.
self.check_float(2**128.)
# largest representable finite binary32 value
self.check_float((1 - 2.**-24) * 2**128.)
# halfway case: rounds up to an overflowing value
self.check_float((1 - 2.**-25) * 2**128.)
self.check_float(2**-125)
# smallest normal
self.check_float(2**-126)
# smallest positive binary32 value (subnormal)
self.check_float(2**-149)
# 2**-150 should round down to 0
self.check_float(2**-150)
# but anything even a tiny bit larger should round up to 2**-149
self.check_float((1 + 2**-52) * 2**-150)
def test_random(self):
# construct a Python float from random integer, using struct
mantissa_mask = (1 << 53) - 1
for _ in xrange(10000):
Q = random.randrange(2**64)
x = struct.unpack('<d', struct.pack('<Q', Q))[0]
# nans are tricky: we can't hope to reproduce the bit
# pattern exactly, so check_float will fail for a nan
# whose mantissa does not fit into float16's mantissa.
if math.isnan(x) and (Q & mantissa_mask) >= 1 << 11:
continue
self.check_float(x)
def test_various_nans(self):
# check patterns that should preserve the mantissa across nan conversions
maxmant64 = (1 << 52) - 1 # maximum double mantissa
maxmant16 = (1 << 10) - 1 # maximum float16 mantissa
assert maxmant64 >> 42 == maxmant16
exp = 0xfff << 52
for i in range(20):
val_to_preserve = exp | ((maxmant16 - i) << 42)
a = ieee.float_unpack(val_to_preserve, 8)
assert math.isnan(a), 'i %d, maxmant %s' % (i, hex(val_to_preserve))
b = ieee.float_pack(a, 8)
assert b == val_to_preserve, 'i %d, val %s b %s' % (i, hex(val_to_preserve), hex(b))
b = ieee.float_pack(a, 2)
assert b == 0xffff - i, 'i %d, b%s' % (i, hex(b))
class TestCompiled:
def test_pack_float(self):
def pack(x, size):
buf = MutableStringBuffer(size)
ieee.pack_float(buf, 0, x, size, False)
l = []
for c in buf.finish():
l.append(str(ord(c)))
return ','.join(l)
c_pack = compile(pack, [float, int])
def unpack(s):
l = s.split(',')
s = ''.join([chr(int(x)) for x in l])
return ieee.unpack_float(s, False)
c_unpack = compile(unpack, [str])
def check_roundtrip(x, size):
s = c_pack(x, size)
if not math.isnan(x):
# pack uses copysign which is ambiguous for NAN
assert s == pack(x, size)
assert unpack(s) == x
assert c_unpack(s) == x
else:
assert math.isnan(unpack(s))
assert math.isnan(c_unpack(s))
for size in [2, 4, 8]:
check_roundtrip(123.4375, size)
check_roundtrip(-123.4375, size)
check_roundtrip(INFINITY, size)
check_roundtrip(NAN, size)
|