1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
|
import sys
from rpython.tool.pairtype import pairtype
from rpython.flowspace.model import Constant
from rpython.rtyper.rdict import AbstractDictRepr, AbstractDictIteratorRepr
from rpython.rtyper.lltypesystem import lltype, llmemory, rffi
from rpython.rlib import objectmodel, jit, rgc, types
from rpython.rlib.signature import signature
from rpython.rlib.objectmodel import specialize, likely, not_rpython
from rpython.rtyper.debug import ll_assert
from rpython.rlib.rarithmetic import r_uint, intmask
from rpython.rtyper import rmodel
from rpython.rtyper.error import TyperError
from rpython.rtyper.annlowlevel import llhelper
# ____________________________________________________________
#
# generic implementation of RPython dictionary, with parametric DICTKEY and
# DICTVALUE types. The basic implementation is a sparse array of indexes
# plus a dense array of structs that contain keys and values. struct looks
# like that:
#
#
# struct dictentry {
# DICTKEY key;
# DICTVALUE value;
# long f_hash; # (optional) key hash, if hard to recompute
# bool f_valid; # (optional) the entry is filled
# }
#
# struct dicttable {
# int num_live_items;
# int num_ever_used_items;
# int resize_counter;
# {byte, short, int, long} *indexes;
# dictentry *entries;
# lookup_function_no; # one of the four possible functions for different
# # size dicts; the rest of the word is a counter for how
# # many 'entries' at the start are known to be deleted
# (Function DICTKEY, DICTKEY -> bool) *fnkeyeq;
# (Function DICTKEY -> int) *fnkeyhash;
# }
#
#
@jit.look_inside_iff(lambda d, key, hash, flag: jit.isvirtual(d))
@jit.oopspec('ordereddict.lookup(d, key, hash, flag)')
def ll_call_lookup_function(d, key, hash, flag):
while True:
fun = d.lookup_function_no & FUNC_MASK
# This likely() here forces gcc to compile the check for fun==FUNC_BYTE
# first. Otherwise, this is a regular switch and gcc (at least 4.7)
# compiles this as a series of checks, with the FUNC_BYTE case last.
# It sounds minor, but it is worth 6-7% on a PyPy microbenchmark.
if likely(fun == FUNC_BYTE):
return ll_dict_lookup(d, key, hash, flag, TYPE_BYTE)
elif fun == FUNC_SHORT:
return ll_dict_lookup(d, key, hash, flag, TYPE_SHORT)
elif IS_64BIT and fun == FUNC_INT:
return ll_dict_lookup(d, key, hash, flag, TYPE_INT)
elif fun == FUNC_LONG:
return ll_dict_lookup(d, key, hash, flag, TYPE_LONG)
else:
ll_dict_create_initial_index(d)
# then, retry
def get_ll_dict(DICTKEY, DICTVALUE, get_custom_eq_hash=None, DICT=None,
ll_fasthash_function=None, ll_hash_function=None,
ll_eq_function=None, method_cache={}, simple_hash_eq=False,
dummykeyobj=None, dummyvalueobj=None, rtyper=None):
# get the actual DICT type. if DICT is None, it's created, otherwise
# forward reference is becoming DICT
if DICT is None:
DICT = lltype.GcForwardReference()
# compute the shape of the DICTENTRY structure
entryfields = []
entrymeths = {
'allocate': lltype.typeMethod(_ll_malloc_entries),
'delete': _ll_free_entries,
'must_clear_key': (isinstance(DICTKEY, lltype.Ptr)
and DICTKEY._needsgc()),
'must_clear_value': (isinstance(DICTVALUE, lltype.Ptr)
and DICTVALUE._needsgc()),
}
if getattr(ll_eq_function, 'no_direct_compare', False):
entrymeths['no_direct_compare'] = True
# * the key
entryfields.append(("key", DICTKEY))
# * the state of the entry - trying to encode it as dummy objects
if dummykeyobj:
# all the state can be encoded in the key
entrymeths['dummy_obj'] = dummykeyobj
entrymeths['valid'] = ll_valid_from_key
entrymeths['mark_deleted'] = ll_mark_deleted_in_key
# the key is overwritten by 'dummy' when the entry is deleted
entrymeths['must_clear_key'] = False
elif dummyvalueobj:
# all the state can be encoded in the value
entrymeths['dummy_obj'] = dummyvalueobj
entrymeths['valid'] = ll_valid_from_value
entrymeths['mark_deleted'] = ll_mark_deleted_in_value
# value is overwritten by 'dummy' when entry is deleted
entrymeths['must_clear_value'] = False
else:
# we need a flag to know if the entry was ever used
entryfields.append(("f_valid", lltype.Bool))
entrymeths['valid'] = ll_valid_from_flag
entrymeths['mark_deleted'] = ll_mark_deleted_in_flag
# * the value
entryfields.append(("value", DICTVALUE))
if simple_hash_eq:
assert get_custom_eq_hash is not None
entrymeths['entry_hash'] = ll_hash_custom_fast
elif ll_fasthash_function is None:
entryfields.append(("f_hash", lltype.Signed))
entrymeths['entry_hash'] = ll_hash_from_cache
else:
entrymeths['entry_hash'] = ll_hash_recomputed
entrymeths['fasthashfn'] = ll_fasthash_function
# Build the lltype data structures
DICTENTRY = lltype.Struct("odictentry", *entryfields)
DICTENTRYARRAY = lltype.GcArray(DICTENTRY,
adtmeths=entrymeths)
fields = [ ("num_live_items", lltype.Signed),
("num_ever_used_items", lltype.Signed),
("resize_counter", lltype.Signed),
("indexes", llmemory.GCREF),
("lookup_function_no", lltype.Signed),
("entries", lltype.Ptr(DICTENTRYARRAY)) ]
if get_custom_eq_hash is not None:
r_rdict_eqfn, r_rdict_hashfn = get_custom_eq_hash()
fields.extend([ ("fnkeyeq", r_rdict_eqfn.lowleveltype),
("fnkeyhash", r_rdict_hashfn.lowleveltype) ])
adtmeths = {
'keyhash': ll_keyhash_custom,
'keyeq': ll_keyeq_custom,
'r_rdict_eqfn': r_rdict_eqfn,
'r_rdict_hashfn': r_rdict_hashfn,
'paranoia': not simple_hash_eq,
}
else:
# figure out which functions must be used to hash and compare
ll_keyhash = ll_hash_function
ll_keyeq = ll_eq_function
ll_keyhash = lltype.staticAdtMethod(ll_keyhash)
if ll_keyeq is not None:
ll_keyeq = lltype.staticAdtMethod(ll_keyeq)
adtmeths = {
'keyhash': ll_keyhash,
'keyeq': ll_keyeq,
'paranoia': False,
}
adtmeths['KEY'] = DICTKEY
adtmeths['VALUE'] = DICTVALUE
adtmeths['lookup_function'] = lltype.staticAdtMethod(ll_call_lookup_function)
adtmeths['allocate'] = lltype.typeMethod(_ll_malloc_dict)
DICT.become(lltype.GcStruct("dicttable", adtmeths=adtmeths,
*fields))
return DICT
class OrderedDictRepr(AbstractDictRepr):
def __init__(self, rtyper, key_repr, value_repr, dictkey, dictvalue,
custom_eq_hash=None, force_non_null=False, simple_hash_eq=False):
#assert not force_non_null
self.rtyper = rtyper
self.finalized = False
self.DICT = lltype.GcForwardReference()
self.lowleveltype = lltype.Ptr(self.DICT)
self.custom_eq_hash = custom_eq_hash is not None
self.simple_hash_eq = simple_hash_eq
if not isinstance(key_repr, rmodel.Repr): # not computed yet, done by setup()
assert callable(key_repr)
self._key_repr_computer = key_repr
else:
self.external_key_repr, self.key_repr = self.pickkeyrepr(key_repr)
if not isinstance(value_repr, rmodel.Repr): # not computed yet, done by setup()
assert callable(value_repr)
self._value_repr_computer = value_repr
else:
self.external_value_repr, self.value_repr = self.pickrepr(value_repr)
self.dictkey = dictkey
self.dictvalue = dictvalue
self.dict_cache = {}
self._custom_eq_hash_repr = custom_eq_hash
# setup() needs to be called to finish this initialization
def _externalvsinternal(self, rtyper, item_repr):
return rmodel.externalvsinternal(self.rtyper, item_repr)
def _setup_repr(self):
if 'key_repr' not in self.__dict__:
key_repr = self._key_repr_computer()
self.external_key_repr, self.key_repr = self.pickkeyrepr(key_repr)
if 'value_repr' not in self.__dict__:
self.external_value_repr, self.value_repr = self.pickrepr(self._value_repr_computer())
if isinstance(self.DICT, lltype.GcForwardReference):
DICTKEY = self.key_repr.lowleveltype
DICTVALUE = self.value_repr.lowleveltype
# * we need an explicit flag if the key and the value is not
# able to store dummy values
s_key = self.dictkey.s_value
s_value = self.dictvalue.s_value
kwd = {}
if self.custom_eq_hash:
self.r_rdict_eqfn, self.r_rdict_hashfn = (
self._custom_eq_hash_repr())
kwd['get_custom_eq_hash'] = self._custom_eq_hash_repr
kwd['simple_hash_eq'] = self.simple_hash_eq
else:
kwd['ll_hash_function'] = self.key_repr.get_ll_hash_function()
kwd['ll_eq_function'] = self.key_repr.get_ll_eq_function()
kwd['ll_fasthash_function'] = self.key_repr.get_ll_fasthash_function()
kwd['dummykeyobj'] = self.key_repr.get_ll_dummyval_obj(self.rtyper,
s_key)
kwd['dummyvalueobj'] = self.value_repr.get_ll_dummyval_obj(
self.rtyper, s_value)
get_ll_dict(DICTKEY, DICTVALUE, DICT=self.DICT,
rtyper=self.rtyper, **kwd)
def convert_const(self, dictobj):
from rpython.rtyper.lltypesystem import llmemory
# get object from bound dict methods
#dictobj = getattr(dictobj, '__self__', dictobj)
if dictobj is None:
return lltype.nullptr(self.DICT)
if not isinstance(dictobj, (dict, objectmodel.r_dict)):
raise TypeError("expected a dict: %r" % (dictobj,))
try:
key = Constant(dictobj)
return self.dict_cache[key]
except KeyError:
self.setup()
self.setup_final()
l_dict = ll_newdict_size(self.DICT, len(dictobj))
ll_no_initial_index(l_dict)
self.dict_cache[key] = l_dict
r_key = self.key_repr
if r_key.lowleveltype == llmemory.Address:
raise TypeError("No prebuilt dicts of address keys")
r_value = self.value_repr
if isinstance(dictobj, objectmodel.r_dict):
if self.r_rdict_eqfn.lowleveltype != lltype.Void:
l_fn = self.r_rdict_eqfn.convert_const(dictobj.key_eq)
l_dict.fnkeyeq = l_fn
if self.r_rdict_hashfn.lowleveltype != lltype.Void:
l_fn = self.r_rdict_hashfn.convert_const(dictobj.key_hash)
l_dict.fnkeyhash = l_fn
for dictkeycontainer, dictvalue in dictobj._dict.items():
llkey = r_key.convert_const(dictkeycontainer.key)
llvalue = r_value.convert_const(dictvalue)
_ll_dict_insert_no_index(l_dict, llkey, llvalue)
return l_dict
else:
for dictkey, dictvalue in dictobj.items():
llkey = r_key.convert_const(dictkey)
llvalue = r_value.convert_const(dictvalue)
_ll_dict_insert_no_index(l_dict, llkey, llvalue)
return l_dict
def rtype_len(self, hop):
v_dict, = hop.inputargs(self)
return hop.gendirectcall(ll_dict_len, v_dict)
def rtype_bool(self, hop):
v_dict, = hop.inputargs(self)
return hop.gendirectcall(ll_dict_bool, v_dict)
def make_iterator_repr(self, *variant):
return DictIteratorRepr(self, *variant)
def rtype_method_get(self, hop):
if hop.nb_args == 3:
v_dict, v_key, v_default = hop.inputargs(self, self.key_repr,
self.value_repr)
else:
v_dict, v_key = hop.inputargs(self, self.key_repr)
v_default = hop.inputconst(self.value_repr, None)
hop.exception_cannot_occur()
v_res = hop.gendirectcall(ll_dict_get, v_dict, v_key, v_default)
return self.recast_value(hop.llops, v_res)
def rtype_method_setdefault(self, hop):
v_dict, v_key, v_default = hop.inputargs(self, self.key_repr,
self.value_repr)
hop.exception_cannot_occur()
v_res = hop.gendirectcall(ll_dict_setdefault, v_dict, v_key, v_default)
return self.recast_value(hop.llops, v_res)
def rtype_method_copy(self, hop):
v_dict, = hop.inputargs(self)
hop.exception_cannot_occur()
return hop.gendirectcall(ll_dict_copy, v_dict)
def rtype_method_update(self, hop):
v_dic1, v_dic2 = hop.inputargs(self, self)
hop.exception_cannot_occur()
return hop.gendirectcall(ll_dict_update, v_dic1, v_dic2)
def rtype_method__prepare_dict_update(self, hop):
v_dict, v_num = hop.inputargs(self, lltype.Signed)
hop.exception_cannot_occur()
hop.gendirectcall(ll_prepare_dict_update, v_dict, v_num)
def _rtype_method_kvi(self, hop, ll_func):
v_dic, = hop.inputargs(self)
r_list = hop.r_result
cLIST = hop.inputconst(lltype.Void, r_list.lowleveltype.TO)
hop.exception_cannot_occur()
return hop.gendirectcall(ll_func, cLIST, v_dic)
def rtype_method_keys(self, hop):
return self._rtype_method_kvi(hop, ll_dict_keys)
def rtype_method_values(self, hop):
return self._rtype_method_kvi(hop, ll_dict_values)
def rtype_method_items(self, hop):
return self._rtype_method_kvi(hop, ll_dict_items)
def rtype_bltn_list(self, hop):
return self._rtype_method_kvi(hop, ll_dict_keys)
def rtype_method_iterkeys(self, hop):
hop.exception_cannot_occur()
return DictIteratorRepr(self, "keys").newiter(hop)
def rtype_method_itervalues(self, hop):
hop.exception_cannot_occur()
return DictIteratorRepr(self, "values").newiter(hop)
def rtype_method_iteritems(self, hop):
hop.exception_cannot_occur()
return DictIteratorRepr(self, "items").newiter(hop)
def rtype_method_iterkeys_with_hash(self, hop):
v_dic, = hop.inputargs(self)
hop.exception_is_here()
hop.gendirectcall(ll_ensure_indexes, v_dic)
return DictIteratorRepr(self, "keys_with_hash").newiter(hop)
def rtype_method_iteritems_with_hash(self, hop):
v_dic, = hop.inputargs(self)
hop.exception_is_here()
hop.gendirectcall(ll_ensure_indexes, v_dic)
return DictIteratorRepr(self, "items_with_hash").newiter(hop)
def rtype_method_clear(self, hop):
v_dict, = hop.inputargs(self)
hop.exception_cannot_occur()
return hop.gendirectcall(ll_dict_clear, v_dict)
def rtype_method_popitem(self, hop):
v_dict, = hop.inputargs(self)
r_tuple = hop.r_result
cTUPLE = hop.inputconst(lltype.Void, r_tuple.lowleveltype)
hop.exception_is_here()
return hop.gendirectcall(ll_dict_popitem, cTUPLE, v_dict)
def rtype_method_pop(self, hop):
if hop.nb_args == 2:
v_args = hop.inputargs(self, self.key_repr)
target = ll_dict_pop
elif hop.nb_args == 3:
v_args = hop.inputargs(self, self.key_repr, self.value_repr)
target = ll_dict_pop_default
hop.exception_is_here()
v_res = hop.gendirectcall(target, *v_args)
return self.recast_value(hop.llops, v_res)
def rtype_method_contains_with_hash(self, hop):
v_dict, v_key, v_hash = hop.inputargs(self, self.key_repr,
lltype.Signed)
hop.exception_is_here()
return hop.gendirectcall(ll_dict_contains_with_hash,
v_dict, v_key, v_hash)
def rtype_method_setitem_with_hash(self, hop):
v_dict, v_key, v_hash, v_value = hop.inputargs(
self, self.key_repr, lltype.Signed, self.value_repr)
if self.custom_eq_hash:
hop.exception_is_here()
else:
hop.exception_cannot_occur()
hop.gendirectcall(ll_dict_setitem_with_hash,
v_dict, v_key, v_hash, v_value)
def rtype_method_getitem_with_hash(self, hop):
v_dict, v_key, v_hash = hop.inputargs(
self, self.key_repr, lltype.Signed)
if not self.custom_eq_hash:
hop.has_implicit_exception(KeyError) # record that we know about it
hop.exception_is_here()
v_res = hop.gendirectcall(ll_dict_getitem_with_hash,
v_dict, v_key, v_hash)
return self.recast_value(hop.llops, v_res)
def rtype_method_delitem_with_hash(self, hop):
v_dict, v_key, v_hash = hop.inputargs(
self, self.key_repr, lltype.Signed)
if not self.custom_eq_hash:
hop.has_implicit_exception(KeyError) # record that we know about it
hop.exception_is_here()
hop.gendirectcall(ll_dict_delitem_with_hash, v_dict, v_key, v_hash)
def rtype_method_delitem_if_value_is(self, hop):
v_dict, v_key, v_value = hop.inputargs(
self, self.key_repr, self.value_repr)
hop.exception_cannot_occur()
hop.gendirectcall(ll_dict_delitem_if_value_is, v_dict, v_key, v_value)
def rtype_method_move_to_end(self, hop):
v_dict, v_key, v_last = hop.inputargs(
self, self.key_repr, lltype.Bool)
if not self.custom_eq_hash:
hop.has_implicit_exception(KeyError) # record that we know about it
hop.exception_is_here()
hop.gendirectcall(ll_dict_move_to_end, v_dict, v_key, v_last)
class __extend__(pairtype(OrderedDictRepr, rmodel.Repr)):
def rtype_getitem((r_dict, r_key), hop):
v_dict, v_key = hop.inputargs(r_dict, r_dict.key_repr)
if not r_dict.custom_eq_hash:
hop.has_implicit_exception(KeyError) # record that we know about it
hop.exception_is_here()
v_res = hop.gendirectcall(ll_dict_getitem, v_dict, v_key)
return r_dict.recast_value(hop.llops, v_res)
def rtype_delitem((r_dict, r_key), hop):
v_dict, v_key = hop.inputargs(r_dict, r_dict.key_repr)
if not r_dict.custom_eq_hash:
hop.has_implicit_exception(KeyError) # record that we know about it
hop.exception_is_here()
hop.gendirectcall(ll_dict_delitem, v_dict, v_key)
def rtype_setitem((r_dict, r_key), hop):
v_dict, v_key, v_value = hop.inputargs(r_dict, r_dict.key_repr, r_dict.value_repr)
if r_dict.custom_eq_hash:
hop.exception_is_here()
else:
hop.exception_cannot_occur()
hop.gendirectcall(ll_dict_setitem, v_dict, v_key, v_value)
def rtype_contains((r_dict, r_key), hop):
v_dict, v_key = hop.inputargs(r_dict, r_dict.key_repr)
hop.exception_is_here()
return hop.gendirectcall(ll_dict_contains, v_dict, v_key)
class __extend__(pairtype(OrderedDictRepr, OrderedDictRepr)):
def convert_from_to((r_dict1, r_dict2), v, llops):
# check that we don't convert from Dicts with
# different key/value types
if r_dict1.dictkey is None or r_dict2.dictkey is None:
return NotImplemented
if r_dict1.dictkey is not r_dict2.dictkey:
return NotImplemented
if r_dict1.dictvalue is None or r_dict2.dictvalue is None:
return NotImplemented
if r_dict1.dictvalue is not r_dict2.dictvalue:
return NotImplemented
return v
# ____________________________________________________________
#
# Low-level methods. These can be run for testing, but are meant to
# be direct_call'ed from rtyped flow graphs, which means that they will
# get flowed and annotated, mostly with SomePtr.
DICTINDEX_LONG = lltype.Ptr(lltype.GcArray(lltype.Unsigned))
DICTINDEX_INT = lltype.Ptr(lltype.GcArray(rffi.UINT))
DICTINDEX_SHORT = lltype.Ptr(lltype.GcArray(rffi.USHORT))
DICTINDEX_BYTE = lltype.Ptr(lltype.GcArray(rffi.UCHAR))
IS_64BIT = sys.maxint != 2 ** 31 - 1
if IS_64BIT:
FUNC_SHIFT = 3
FUNC_MASK = 0x07 # three bits
FUNC_BYTE, FUNC_SHORT, FUNC_INT, FUNC_LONG, FUNC_MUST_REINDEX = range(5)
else:
FUNC_SHIFT = 2
FUNC_MASK = 0x03 # two bits
FUNC_BYTE, FUNC_SHORT, FUNC_LONG, FUNC_MUST_REINDEX = range(4)
TYPE_BYTE = rffi.UCHAR
TYPE_SHORT = rffi.USHORT
TYPE_INT = rffi.UINT
TYPE_LONG = lltype.Unsigned
def ll_no_initial_index(d):
# Used when making new empty dicts, and when translating prebuilt dicts.
# Remove the index completely. A dictionary must always have an
# index unless it is freshly created or freshly translated. Most
# dict operations start with ll_call_lookup_function(), which will
# recompute the hashes and create the index.
ll_assert(d.num_live_items == d.num_ever_used_items,
"ll_no_initial_index(): dict already in use")
d.lookup_function_no = FUNC_MUST_REINDEX
d.indexes = lltype.nullptr(llmemory.GCREF.TO)
def ll_malloc_indexes_and_choose_lookup(d, n):
# keep in sync with ll_clear_indexes() below
if n <= 256:
d.indexes = lltype.cast_opaque_ptr(llmemory.GCREF,
lltype.malloc(DICTINDEX_BYTE.TO, n,
zero=True))
d.lookup_function_no = FUNC_BYTE
elif n <= 65536:
d.indexes = lltype.cast_opaque_ptr(llmemory.GCREF,
lltype.malloc(DICTINDEX_SHORT.TO, n,
zero=True))
d.lookup_function_no = FUNC_SHORT
elif IS_64BIT and n <= 2 ** 32:
d.indexes = lltype.cast_opaque_ptr(llmemory.GCREF,
lltype.malloc(DICTINDEX_INT.TO, n,
zero=True))
d.lookup_function_no = FUNC_INT
else:
d.indexes = lltype.cast_opaque_ptr(llmemory.GCREF,
lltype.malloc(DICTINDEX_LONG.TO, n,
zero=True))
d.lookup_function_no = FUNC_LONG
def ll_clear_indexes(d, n):
fun = d.lookup_function_no & FUNC_MASK
d.lookup_function_no = fun
if fun == FUNC_BYTE:
rgc.ll_arrayclear(lltype.cast_opaque_ptr(DICTINDEX_BYTE, d.indexes))
elif fun == FUNC_SHORT:
rgc.ll_arrayclear(lltype.cast_opaque_ptr(DICTINDEX_SHORT, d.indexes))
elif IS_64BIT and fun == FUNC_INT:
rgc.ll_arrayclear(lltype.cast_opaque_ptr(DICTINDEX_INT, d.indexes))
elif fun == FUNC_LONG:
rgc.ll_arrayclear(lltype.cast_opaque_ptr(DICTINDEX_LONG, d.indexes))
else:
assert False
@jit.dont_look_inside
def ll_call_insert_clean_function(d, hash, i):
assert i >= 0
fun = d.lookup_function_no & FUNC_MASK
if fun == FUNC_BYTE:
ll_dict_store_clean(d, hash, i, TYPE_BYTE)
elif fun == FUNC_SHORT:
ll_dict_store_clean(d, hash, i, TYPE_SHORT)
elif IS_64BIT and fun == FUNC_INT:
ll_dict_store_clean(d, hash, i, TYPE_INT)
elif fun == FUNC_LONG:
ll_dict_store_clean(d, hash, i, TYPE_LONG)
else:
# can't be still FUNC_MUST_REINDEX here
ll_assert(False, "ll_call_insert_clean_function(): invalid lookup_fun")
assert False
def ll_call_delete_by_entry_index(d, hash, i, replace_with):
# only called from _ll_dict_del, whose @jit.look_inside_iff
# condition should control when we get inside here with the jit
fun = d.lookup_function_no & FUNC_MASK
if fun == FUNC_BYTE:
ll_dict_delete_by_entry_index(d, hash, i, replace_with, TYPE_BYTE)
elif fun == FUNC_SHORT:
ll_dict_delete_by_entry_index(d, hash, i, replace_with, TYPE_SHORT)
elif IS_64BIT and fun == FUNC_INT:
ll_dict_delete_by_entry_index(d, hash, i, replace_with, TYPE_INT)
elif fun == FUNC_LONG:
ll_dict_delete_by_entry_index(d, hash, i, replace_with, TYPE_LONG)
else:
# can't be still FUNC_MUST_REINDEX here
ll_assert(False, "ll_call_delete_by_entry_index(): invalid lookup_fun")
assert False
def ll_valid_from_flag(entries, i):
return entries[i].f_valid
def ll_valid_from_key(entries, i):
ENTRIES = lltype.typeOf(entries).TO
dummy = ENTRIES.dummy_obj.ll_dummy_value
return entries[i].key != dummy
def ll_valid_from_value(entries, i):
ENTRIES = lltype.typeOf(entries).TO
dummy = ENTRIES.dummy_obj.ll_dummy_value
return entries[i].value != dummy
def ll_mark_deleted_in_flag(entries, i):
entries[i].f_valid = False
def ll_mark_deleted_in_key(entries, i):
ENTRIES = lltype.typeOf(entries).TO
dummy = ENTRIES.dummy_obj.ll_dummy_value
entries[i].key = dummy
def ll_mark_deleted_in_value(entries, i):
ENTRIES = lltype.typeOf(entries).TO
dummy = ENTRIES.dummy_obj.ll_dummy_value
entries[i].value = dummy
@signature(types.any(), types.any(), types.int(), returns=types.any())
def ll_hash_from_cache(entries, d, i):
return entries[i].f_hash
@signature(types.any(), types.any(), types.int(), returns=types.any())
def ll_hash_recomputed(entries, d, i):
ENTRIES = lltype.typeOf(entries).TO
return ENTRIES.fasthashfn(entries[i].key)
@signature(types.any(), types.any(), types.int(), returns=types.any())
def ll_hash_custom_fast(entries, d, i):
DICT = lltype.typeOf(d).TO
key = entries[i].key
return objectmodel.hlinvoke(DICT.r_rdict_hashfn, d.fnkeyhash, key)
def ll_keyhash_custom(d, key):
DICT = lltype.typeOf(d).TO
return objectmodel.hlinvoke(DICT.r_rdict_hashfn, d.fnkeyhash, key)
def ll_keyeq_custom(d, key1, key2):
DICT = lltype.typeOf(d).TO
return objectmodel.hlinvoke(DICT.r_rdict_eqfn, d.fnkeyeq, key1, key2)
def ll_dict_len(d):
return d.num_live_items
def ll_dict_bool(d):
# check if a dict is True, allowing for None
return bool(d) and d.num_live_items != 0
def ll_dict_getitem(d, key):
return ll_dict_getitem_with_hash(d, key, d.keyhash(key))
def ll_dict_getitem_with_hash(d, key, hash):
index = d.lookup_function(d, key, hash, FLAG_LOOKUP)
if index >= 0:
return d.entries[index].value
else:
raise KeyError
def ll_dict_setitem(d, key, value):
ll_dict_setitem_with_hash(d, key, d.keyhash(key), value)
def ll_dict_setitem_with_hash(d, key, hash, value):
index = d.lookup_function(d, key, hash, FLAG_STORE)
_ll_dict_setitem_lookup_done(d, key, value, hash, index)
# It may be safe to look inside always, it has a few branches though, and their
# frequencies needs to be investigated.
@jit.look_inside_iff(lambda d, key, value, hash, i: jit.isvirtual(d) and jit.isconstant(key))
def _ll_dict_setitem_lookup_done(d, key, value, hash, i):
ENTRY = lltype.typeOf(d.entries).TO.OF
if i >= 0:
entry = d.entries[i]
entry.value = value
else:
reindexed = False
if len(d.entries) == d.num_ever_used_items:
try:
reindexed = ll_dict_grow(d)
except:
_ll_dict_rescue(d)
raise
rc = d.resize_counter - 3
if rc <= 0:
try:
ll_dict_resize(d)
reindexed = True
except:
_ll_dict_rescue(d)
raise
rc = d.resize_counter - 3
ll_assert(rc > 0, "ll_dict_resize failed?")
if reindexed:
ll_call_insert_clean_function(d, hash, d.num_ever_used_items)
#
d.resize_counter = rc
entry = d.entries[d.num_ever_used_items]
entry.key = key
entry.value = value
if hasattr(ENTRY, 'f_hash'):
entry.f_hash = hash
if hasattr(ENTRY, 'f_valid'):
entry.f_valid = True
d.num_ever_used_items += 1
d.num_live_items += 1
@jit.dont_look_inside
def _ll_dict_rescue(d):
# MemoryError situation! The 'indexes' contains an invalid entry
# at this point. But we can call ll_dict_reindex() with the
# following arguments, ensuring no further malloc occurs.
ll_dict_reindex(d, _ll_len_of_d_indexes(d))
_ll_dict_rescue._dont_inline_ = True
@not_rpython
def _ll_dict_insert_no_index(d, key, value):
# never translated
ENTRY = lltype.typeOf(d.entries).TO.OF
entry = d.entries[d.num_ever_used_items]
entry.key = key
entry.value = value
# note that f_hash is left uninitialized in prebuilt dicts
if hasattr(ENTRY, 'f_valid'):
entry.f_valid = True
d.num_ever_used_items += 1
d.num_live_items += 1
rc = d.resize_counter - 3
d.resize_counter = rc
def _ll_len_of_d_indexes(d):
# xxx Haaaack: returns len(d.indexes). Works independently of
# the exact type pointed to by d, using a forced cast...
# Must only be called by @jit.dont_look_inside functions.
return lltype.length_of_simple_gcarray_from_opaque(d.indexes)
def _overallocate_entries_len(baselen):
# This over-allocates proportional to the list size, making room
# for additional growth. This over-allocates slightly more eagerly
# than with regular lists. The idea is that there are many more
# lists than dicts around in PyPy, and dicts of 5 to 8 items are
# not that rare (so a single jump from 0 to 8 is a good idea).
# The growth pattern is: 0, 8, 17, 27, 38, 50, 64, 80, 98, ...
newsize = baselen + (baselen >> 3)
return newsize + 8
@jit.look_inside_iff(lambda d: jit.isvirtual(d))
def ll_dict_grow(d):
# note: this @jit.look_inside_iff is here to inline the three lines
# at the end of this function. It's important because dicts start
# with a length-zero 'd.entries' which must be grown as soon as we
# insert an element.
if d.num_live_items < d.num_ever_used_items // 2:
# At least 50% of the allocated entries are dead, so perform a
# compaction. If ll_dict_remove_deleted_items detects that over
# 75% of allocated entries are dead, then it will also shrink the
# memory allocated at the same time as doing a compaction.
ll_dict_remove_deleted_items(d)
return True
new_allocated = _overallocate_entries_len(len(d.entries))
# Detect a relatively rare case where the indexes numeric type is too
# small to store all the entry indexes: there would be 'new_allocated'
# entries, which may in corner cases be larger than 253 even though we
# have single bytes in 'd.indexes' (and the same for the larger
# boundaries). The 'd.indexes' hashtable is never more than 2/3rd
# full, so we know that 'd.num_live_items' should be at most 2/3 * 256
# (or 65536 or etc.) so after the ll_dict_remove_deleted_items() below
# at least 1/3rd items in 'd.entries' are free.
fun = d.lookup_function_no & FUNC_MASK
toobig = False
if fun == FUNC_BYTE:
assert d.num_live_items < ((1 << 8) - MIN_INDEXES_MINUS_ENTRIES)
toobig = new_allocated > ((1 << 8) - MIN_INDEXES_MINUS_ENTRIES)
elif fun == FUNC_SHORT:
assert d.num_live_items < ((1 << 16) - MIN_INDEXES_MINUS_ENTRIES)
toobig = new_allocated > ((1 << 16) - MIN_INDEXES_MINUS_ENTRIES)
elif IS_64BIT and fun == FUNC_INT:
assert d.num_live_items < ((1 << 32) - MIN_INDEXES_MINUS_ENTRIES)
toobig = new_allocated > ((1 << 32) - MIN_INDEXES_MINUS_ENTRIES)
#
if toobig:
ll_dict_remove_deleted_items(d)
assert d.num_live_items == d.num_ever_used_items
return True
newitems = lltype.malloc(lltype.typeOf(d).TO.entries.TO, new_allocated)
rgc.ll_arraycopy(d.entries, newitems, 0, 0, len(d.entries))
d.entries = newitems
return False
@jit.dont_look_inside
def ll_dict_remove_deleted_items(d):
if d.num_live_items < len(d.entries) // 4:
# At least 75% of the allocated entries are dead, so shrink the memory
# allocated as well as doing a compaction.
new_allocated = _overallocate_entries_len(d.num_live_items)
newitems = lltype.malloc(lltype.typeOf(d).TO.entries.TO, new_allocated)
else:
newitems = d.entries
# The loop below does a lot of writes into 'newitems'. It's a better
# idea to do a single gc_writebarrier rather than activating the
# card-by-card logic (worth 11% in microbenchmarks).
from rpython.rtyper.lltypesystem.lloperation import llop
llop.gc_writebarrier(lltype.Void, newitems)
#
ENTRIES = lltype.typeOf(d).TO.entries.TO
ENTRY = ENTRIES.OF
isrc = 0
idst = 0
isrclimit = d.num_ever_used_items
while isrc < isrclimit:
if d.entries.valid(isrc):
src = d.entries[isrc]
dst = newitems[idst]
dst.key = src.key
dst.value = src.value
if hasattr(ENTRY, 'f_hash'):
dst.f_hash = src.f_hash
if hasattr(ENTRY, 'f_valid'):
assert src.f_valid
dst.f_valid = True
idst += 1
isrc += 1
assert d.num_live_items == idst
d.num_ever_used_items = idst
if ((ENTRIES.must_clear_key or ENTRIES.must_clear_value) and
d.entries == newitems):
# must clear the extra entries: they may contain valid pointers
# which would create a temporary memory leak
while idst < isrclimit:
entry = newitems[idst]
if ENTRIES.must_clear_key:
entry.key = lltype.nullptr(ENTRY.key.TO)
if ENTRIES.must_clear_value:
entry.value = lltype.nullptr(ENTRY.value.TO)
idst += 1
else:
d.entries = newitems
ll_dict_reindex(d, _ll_len_of_d_indexes(d))
def ll_dict_delitem(d, key):
ll_dict_delitem_with_hash(d, key, d.keyhash(key))
def ll_dict_delitem_with_hash(d, key, hash):
index = d.lookup_function(d, key, hash, FLAG_LOOKUP)
if index < 0:
raise KeyError
_ll_dict_del(d, hash, index)
def ll_dict_delitem_if_value_is(d, key, value):
hash = d.keyhash(key)
index = d.lookup_function(d, key, hash, FLAG_LOOKUP)
if index < 0:
return
if d.entries[index].value != value:
return
_ll_dict_del(d, hash, index)
def _ll_dict_del_entry(d, index):
d.entries.mark_deleted(index)
d.num_live_items -= 1
# clear the key and the value if they are GC pointers
ENTRIES = lltype.typeOf(d.entries).TO
ENTRY = ENTRIES.OF
entry = d.entries[index]
if ENTRIES.must_clear_key:
entry.key = lltype.nullptr(ENTRY.key.TO)
if ENTRIES.must_clear_value:
entry.value = lltype.nullptr(ENTRY.value.TO)
@jit.look_inside_iff(lambda d, h, i: jit.isvirtual(d) and jit.isconstant(i))
def _ll_dict_del(d, hash, index):
ll_call_delete_by_entry_index(d, hash, index, DELETED)
_ll_dict_del_entry(d, index)
if d.num_live_items == 0:
# Dict is now empty. Reset these fields.
d.num_ever_used_items = 0
d.lookup_function_no &= FUNC_MASK
elif index == d.num_ever_used_items - 1:
# The last element of the ordereddict has been deleted. Instead of
# simply marking the item as dead, we can safely reuse it. Since it's
# also possible that there are more dead items immediately behind the
# last one, we reclaim all the dead items at the end of the ordereditem
# at the same point.
i = index
while True:
i -= 1
assert i >= 0
if d.entries.valid(i): # must be at least one
break
d.num_ever_used_items = i + 1
# If the dictionary is at least 87.5% dead items, then consider shrinking
# it.
if d.num_live_items + DICT_INITSIZE <= len(d.entries) / 8:
ll_dict_resize(d)
def ll_dict_resize(d):
# make a 'new_size' estimate and shrink it if there are many
# deleted entry markers. See CPython for why it is a good idea to
# quadruple the dictionary size as long as it's not too big.
# (Quadrupling comes from '(d.num_live_items + d.num_live_items + 1) * 2'
# as long as num_live_items is not too large.)
num_extra = min(d.num_live_items + 1, 30000)
_ll_dict_resize_to(d, num_extra)
ll_dict_resize.oopspec = 'odict.resize(d)'
def _ll_dict_resize_to(d, num_extra):
new_estimate = (d.num_live_items + num_extra) * 2
new_size = DICT_INITSIZE
while new_size <= new_estimate:
new_size *= 2
if new_size < _ll_len_of_d_indexes(d):
ll_dict_remove_deleted_items(d)
else:
ll_dict_reindex(d, new_size)
def ll_ensure_indexes(d):
num = d.lookup_function_no
if num == FUNC_MUST_REINDEX:
ll_dict_create_initial_index(d)
else:
ll_assert((num & FUNC_MASK) != FUNC_MUST_REINDEX,
"bad combination in lookup_function_no")
def ll_dict_create_initial_index(d):
"""Create the initial index for a dictionary. The common case is
that 'd' is empty. The uncommon case is that it is a prebuilt
dictionary frozen by translation, in which case we must rehash all
entries. The common case must be seen by the JIT.
"""
if d.num_live_items == 0:
ll_malloc_indexes_and_choose_lookup(d, DICT_INITSIZE)
d.resize_counter = DICT_INITSIZE * 2
else:
ll_dict_rehash_after_translation(d)
@jit.dont_look_inside
def ll_dict_rehash_after_translation(d):
assert d.num_live_items == d.num_ever_used_items
assert not d.indexes
#
# recompute all hashes. Needed if they are stored in d.entries,
# but do it anyway: otherwise, e.g. a string-keyed dictionary
# won't have a fasthash on its strings if their hash is still
# uncomputed.
ENTRY = lltype.typeOf(d.entries).TO.OF
for i in range(d.num_ever_used_items):
assert d.entries.valid(i)
d_entry = d.entries[i]
h = d.keyhash(d_entry.key)
if hasattr(ENTRY, 'f_hash'):
d_entry.f_hash = h
#else: purely for the side-effect it can have on d_entry.key
#
# Use the smallest acceptable size for ll_dict_reindex
new_size = DICT_INITSIZE
while new_size * 2 - d.num_live_items * 3 <= 0:
new_size *= 2
ll_dict_reindex(d, new_size)
def ll_dict_reindex(d, new_size):
if bool(d.indexes) and _ll_len_of_d_indexes(d) == new_size:
ll_clear_indexes(d, new_size) # hack: we can reuse the same array
else:
ll_malloc_indexes_and_choose_lookup(d, new_size)
d.resize_counter = new_size * 2 - d.num_live_items * 3
ll_assert(d.resize_counter > 0, "reindex: resize_counter <= 0")
ll_assert((d.lookup_function_no >> FUNC_SHIFT) == 0,
"reindex: lookup_fun >> SHIFT")
#
entries = d.entries
i = 0
ibound = d.num_ever_used_items
#
# Write four loops, moving the check for the value of 'fun' out of
# the loops. A small speed-up over ll_call_insert_clean_function().
fun = d.lookup_function_no # == lookup_function_no & FUNC_MASK
if fun == FUNC_BYTE:
while i < ibound:
if entries.valid(i):
ll_dict_store_clean(d, entries.entry_hash(d, i), i, TYPE_BYTE)
i += 1
elif fun == FUNC_SHORT:
while i < ibound:
if entries.valid(i):
ll_dict_store_clean(d, entries.entry_hash(d, i), i, TYPE_SHORT)
i += 1
elif IS_64BIT and fun == FUNC_INT:
while i < ibound:
if entries.valid(i):
ll_dict_store_clean(d, entries.entry_hash(d, i), i, TYPE_INT)
i += 1
elif fun == FUNC_LONG:
while i < ibound:
if entries.valid(i):
ll_dict_store_clean(d, entries.entry_hash(d, i), i, TYPE_LONG)
i += 1
else:
assert False
# ------- a port of CPython's dictobject.c's lookdict implementation -------
PERTURB_SHIFT = 5
FREE = 0
DELETED = 1
VALID_OFFSET = 2
MIN_INDEXES_MINUS_ENTRIES = VALID_OFFSET + 1
FLAG_LOOKUP = 0
FLAG_STORE = 1
@specialize.memo()
def _ll_ptr_to_array_of(T):
return lltype.Ptr(lltype.GcArray(T))
@jit.look_inside_iff(lambda d, key, hash, store_flag, T:
jit.isvirtual(d) and jit.isconstant(key))
@jit.oopspec('ordereddict.lookup(d, key, hash, store_flag, T)')
def ll_dict_lookup(d, key, hash, store_flag, T):
INDEXES = _ll_ptr_to_array_of(T)
entries = d.entries
indexes = lltype.cast_opaque_ptr(INDEXES, d.indexes)
mask = len(indexes) - 1
i = r_uint(hash & mask)
# do the first try before any looping
ENTRIES = lltype.typeOf(entries).TO
direct_compare = not hasattr(ENTRIES, 'no_direct_compare')
index = rffi.cast(lltype.Signed, indexes[intmask(i)])
if index >= VALID_OFFSET:
checkingkey = entries[index - VALID_OFFSET].key
if direct_compare and checkingkey == key:
return index - VALID_OFFSET # found the entry
if d.keyeq is not None and entries.entry_hash(d, index - VALID_OFFSET) == hash:
# correct hash, maybe the key is e.g. a different pointer to
# an equal object
found = d.keyeq(checkingkey, key)
#llop.debug_print(lltype.Void, "comparing keys", ll_debugrepr(checkingkey), ll_debugrepr(key), found)
if d.paranoia:
if (entries != d.entries or lltype.cast_opaque_ptr(llmemory.GCREF, indexes) != d.indexes or
not entries.valid(index - VALID_OFFSET) or
entries[index - VALID_OFFSET].key != checkingkey):
# the compare did major nasty stuff to the dict: start over
return ll_dict_lookup(d, key, hash, store_flag, T)
if found:
return index - VALID_OFFSET
deletedslot = -1
elif index == DELETED:
deletedslot = intmask(i)
else:
# pristine entry -- lookup failed
if store_flag == FLAG_STORE:
indexes[i] = rffi.cast(T, d.num_ever_used_items + VALID_OFFSET)
return -1
# In the loop, a deleted entry (everused and not valid) is by far
# (factor of 100s) the least likely outcome, so test for that last.
perturb = r_uint(hash)
while 1:
# compute the next index using unsigned arithmetic
i = (i << 2) + i + perturb + 1
i = i & mask
index = rffi.cast(lltype.Signed, indexes[intmask(i)])
if index == FREE:
if store_flag == FLAG_STORE:
if deletedslot == -1:
deletedslot = intmask(i)
indexes[deletedslot] = rffi.cast(T, d.num_ever_used_items +
VALID_OFFSET)
return -1
elif index >= VALID_OFFSET:
checkingkey = entries[index - VALID_OFFSET].key
if direct_compare and checkingkey == key:
return index - VALID_OFFSET # found the entry
if d.keyeq is not None and entries.entry_hash(d, index - VALID_OFFSET) == hash:
# correct hash, maybe the key is e.g. a different pointer to
# an equal object
found = d.keyeq(checkingkey, key)
if d.paranoia:
if (entries != d.entries or lltype.cast_opaque_ptr(llmemory.GCREF, indexes) != d.indexes or
not entries.valid(index - VALID_OFFSET) or
entries[index - VALID_OFFSET].key != checkingkey):
# the compare did major nasty stuff to the dict: start over
return ll_dict_lookup(d, key, hash, store_flag, T)
if found:
return index - VALID_OFFSET
elif deletedslot == -1:
deletedslot = intmask(i)
perturb >>= PERTURB_SHIFT
def ll_dict_store_clean(d, hash, index, T):
# a simplified version of ll_dict_lookup() which assumes that the
# key is new, and the dictionary doesn't contain deleted entries.
# It only finds the next free slot for the given hash.
INDEXES = _ll_ptr_to_array_of(T)
indexes = lltype.cast_opaque_ptr(INDEXES, d.indexes)
mask = len(indexes) - 1
i = r_uint(hash & mask)
perturb = r_uint(hash)
while rffi.cast(lltype.Signed, indexes[i]) != FREE:
i = (i << 2) + i + perturb + 1
i = i & mask
perturb >>= PERTURB_SHIFT
indexes[i] = rffi.cast(T, index + VALID_OFFSET)
# the following function is only called from _ll_dict_del, whose
# @jit.look_inside_iff condition should control when we get inside
# here with the jit
@jit.unroll_safe
def ll_dict_delete_by_entry_index(d, hash, locate_index, replace_with, T):
# Another simplified version of ll_dict_lookup() which locates a
# hashtable entry with the given 'index' stored in it, and deletes it.
# This *should* be safe against evil user-level __eq__/__hash__
# functions because the 'hash' argument here should be the one stored
# into the directory, which is correct.
INDEXES = _ll_ptr_to_array_of(T)
indexes = lltype.cast_opaque_ptr(INDEXES, d.indexes)
mask = len(indexes) - 1
i = r_uint(hash & mask)
perturb = r_uint(hash)
locate_value = locate_index + VALID_OFFSET
while rffi.cast(lltype.Signed, indexes[i]) != locate_value:
assert rffi.cast(lltype.Signed, indexes[i]) != FREE
i = (i << 2) + i + perturb + 1
i = i & mask
perturb >>= PERTURB_SHIFT
indexes[i] = rffi.cast(T, replace_with)
# ____________________________________________________________
#
# Irregular operations.
# Start the hashtable size at 16 rather than 8, as with rdict.py, because
# it is only an array of bytes
DICT_INITSIZE = 16
@specialize.memo()
def _ll_empty_array(DICT):
"""Memo function: cache a single prebuilt allocated empty array."""
return DICT.entries.TO.allocate(0)
def ll_newdict(DICT):
d = DICT.allocate()
d.entries = _ll_empty_array(DICT)
# Don't allocate an 'indexes' for empty dict. It seems a typical
# program contains tons of empty dicts, so this might be a memory win.
d.num_live_items = 0
d.num_ever_used_items = 0
ll_no_initial_index(d)
return d
OrderedDictRepr.ll_newdict = staticmethod(ll_newdict)
def ll_newdict_size(DICT, orig_length_estimate):
length_estimate = (orig_length_estimate // 2) * 3
n = DICT_INITSIZE
while n < length_estimate:
n *= 2
d = DICT.allocate()
d.entries = DICT.entries.TO.allocate(orig_length_estimate)
ll_malloc_indexes_and_choose_lookup(d, n)
d.num_live_items = 0
d.num_ever_used_items = 0
d.resize_counter = n * 2
return d
# rpython.memory.lldict uses a dict based on Struct and Array
# instead of GcStruct and GcArray, which is done by using different
# 'allocate' and 'delete' adtmethod implementations than the ones below
def _ll_malloc_dict(DICT):
return lltype.malloc(DICT)
def _ll_malloc_entries(ENTRIES, n):
return lltype.malloc(ENTRIES, n, zero=True)
def _ll_free_entries(entries):
pass
# ____________________________________________________________
#
# Iteration.
def get_ll_dictiter(DICTPTR):
return lltype.Ptr(lltype.GcStruct('dictiter',
('dict', DICTPTR),
('index', lltype.Signed)))
class DictIteratorRepr(AbstractDictIteratorRepr):
def __init__(self, r_dict, variant="keys"):
self.r_dict = r_dict
self.variant = variant
self.lowleveltype = get_ll_dictiter(r_dict.lowleveltype)
if variant == 'reversed':
self.ll_dictiter = ll_dictiter_reversed
self._ll_dictnext = _ll_dictnext_reversed
else:
self.ll_dictiter = ll_dictiter
self._ll_dictnext = _ll_dictnext
def ll_dictiter(ITERPTR, d):
iter = lltype.malloc(ITERPTR.TO)
iter.dict = d
# initialize the index with usually 0, but occasionally a larger value
iter.index = d.lookup_function_no >> FUNC_SHIFT
return iter
@jit.look_inside_iff(lambda iter: jit.isvirtual(iter)
and (iter.dict is None or
jit.isvirtual(iter.dict)))
@jit.oopspec("odictiter.next(iter)")
def _ll_dictnext(iter):
dict = iter.dict
if dict:
entries = dict.entries
index = iter.index
assert index >= 0
entries_len = dict.num_ever_used_items
while index < entries_len:
nextindex = index + 1
if entries.valid(index):
iter.index = nextindex
return index
else:
# In case of repeated iteration over the start of
# a dict where the items get removed, like
# collections.OrderedDict.popitem(last=False),
# the hack below will increase the value stored in
# the high bits of lookup_function_no and so the
# next iteration will start at a higher value.
# We should carefully reset these high bits to zero
# as soon as we do something like ll_dict_reindex().
if index == (dict.lookup_function_no >> FUNC_SHIFT):
dict.lookup_function_no += (1 << FUNC_SHIFT)
# note that we can't have modified a FUNC_MUST_REINDEX
# dict here because such dicts have no invalid entries
ll_assert((dict.lookup_function_no & FUNC_MASK) !=
FUNC_MUST_REINDEX, "bad combination in _ll_dictnext")
index = nextindex
# clear the reference to the dict and prevent restarts
iter.dict = lltype.nullptr(lltype.typeOf(iter).TO.dict.TO)
raise StopIteration
def ll_dictiter_reversed(ITERPTR, d):
iter = lltype.malloc(ITERPTR.TO)
iter.dict = d
iter.index = d.num_ever_used_items
return iter
def _ll_dictnext_reversed(iter):
dict = iter.dict
if dict:
entries = dict.entries
index = iter.index - 1
while index >= 0:
if entries.valid(index):
iter.index = index
return index
index = index - 1
# clear the reference to the dict and prevent restarts
iter.dict = lltype.nullptr(lltype.typeOf(iter).TO.dict.TO)
raise StopIteration
# _____________________________________________________________
# methods
def ll_dict_get(dict, key, default):
index = dict.lookup_function(dict, key, dict.keyhash(key), FLAG_LOOKUP)
if index < 0:
return default
else:
return dict.entries[index].value
def ll_dict_setdefault(dict, key, default):
hash = dict.keyhash(key)
index = dict.lookup_function(dict, key, hash, FLAG_STORE)
if index < 0:
_ll_dict_setitem_lookup_done(dict, key, default, hash, -1)
return default
else:
return dict.entries[index].value
def ll_dict_copy(dict):
ll_ensure_indexes(dict)
DICT = lltype.typeOf(dict).TO
newdict = DICT.allocate()
newdict.entries = DICT.entries.TO.allocate(len(dict.entries))
newdict.num_live_items = dict.num_live_items
newdict.num_ever_used_items = dict.num_ever_used_items
if hasattr(DICT, 'fnkeyeq'):
newdict.fnkeyeq = dict.fnkeyeq
if hasattr(DICT, 'fnkeyhash'):
newdict.fnkeyhash = dict.fnkeyhash
rgc.ll_arraycopy(dict.entries, newdict.entries, 0, 0,
newdict.num_ever_used_items)
ll_dict_reindex(newdict, _ll_len_of_d_indexes(dict))
return newdict
ll_dict_copy.oopspec = 'odict.copy(dict)'
def ll_dict_clear(d):
if d.num_ever_used_items == 0:
return
DICT = lltype.typeOf(d).TO
old_entries = d.entries
d.entries = _ll_empty_array(DICT)
# note: we can't remove the index here, because it is possible that
# crazy Python code calls d.clear() from the method __eq__() called
# from ll_dict_lookup(d). Instead, stick to the rule that once a
# dictionary has got an index, it will always have one.
ll_malloc_indexes_and_choose_lookup(d, DICT_INITSIZE)
d.num_live_items = 0
d.num_ever_used_items = 0
d.resize_counter = DICT_INITSIZE * 2
# old_entries.delete() XXX
ll_dict_clear.oopspec = 'odict.clear(d)'
def ll_dict_update(dic1, dic2):
if dic1 == dic2:
return
ll_ensure_indexes(dic2) # needed for entries.entry_hash() below
ll_prepare_dict_update(dic1, dic2.num_live_items)
i = 0
while i < dic2.num_ever_used_items:
entries = dic2.entries
if entries.valid(i):
entry = entries[i]
hash = entries.entry_hash(dic2, i)
key = entry.key
value = entry.value
index = dic1.lookup_function(dic1, key, hash, FLAG_STORE)
_ll_dict_setitem_lookup_done(dic1, key, value, hash, index)
i += 1
ll_dict_update.oopspec = 'odict.update(dic1, dic2)'
def ll_prepare_dict_update(d, num_extra):
# Prescale 'd' for 'num_extra' items, assuming that most items don't
# collide. If this assumption is false, 'd' becomes too large by at
# most 'num_extra'. The logic is based on:
# (d.resize_counter - 1) // 3 = room left in d
# so, if num_extra == 1, we need d.resize_counter > 3
# if num_extra == 2, we need d.resize_counter > 6 etc.
# Note however a further hack: if num_extra <= d.num_live_items,
# we avoid calling _ll_dict_resize_to here. This is to handle
# the case where dict.update() actually has a lot of collisions.
# If num_extra is much greater than d.num_live_items the conditional_call
# will trigger anyway, which is really the goal.
ll_ensure_indexes(d)
x = num_extra - d.num_live_items
jit.conditional_call(d.resize_counter <= x * 3,
_ll_dict_resize_to, d, num_extra)
# this is an implementation of keys(), values() and items()
# in a single function.
# note that by specialization on func, three different
# and very efficient functions are created.
def recast(P, v):
if isinstance(P, lltype.Ptr):
return lltype.cast_pointer(P, v)
else:
return v
def _make_ll_keys_values_items(kind):
def ll_kvi(LIST, dic):
res = LIST.ll_newlist(dic.num_live_items)
entries = dic.entries
dlen = dic.num_ever_used_items
items = res.ll_items()
i = 0
p = 0
while i < dlen:
if entries.valid(i):
ELEM = lltype.typeOf(items).TO.OF
if ELEM is not lltype.Void:
entry = entries[i]
if kind == 'items':
r = lltype.malloc(ELEM.TO)
r.item0 = recast(ELEM.TO.item0, entry.key)
r.item1 = recast(ELEM.TO.item1, entry.value)
items[p] = r
elif kind == 'keys':
items[p] = recast(ELEM, entry.key)
elif kind == 'values':
items[p] = recast(ELEM, entry.value)
p += 1
i += 1
assert p == res.ll_length()
return res
ll_kvi.oopspec = 'odict.%s(dic)' % kind
return ll_kvi
ll_dict_keys = _make_ll_keys_values_items('keys')
ll_dict_values = _make_ll_keys_values_items('values')
ll_dict_items = _make_ll_keys_values_items('items')
def ll_dict_contains(d, key):
return ll_dict_contains_with_hash(d, key, d.keyhash(key))
def ll_dict_contains_with_hash(d, key, hash):
i = d.lookup_function(d, key, hash, FLAG_LOOKUP)
return i >= 0
def _ll_getnextitem(dic):
if dic.num_live_items == 0:
raise KeyError
ll_ensure_indexes(dic)
entries = dic.entries
# find the last entry. It's unclear if the loop below is still
# needed nowadays, because 'num_ever_used_items - 1' should always
# point to the last active item (we decrease it as needed in
# _ll_dict_del). Better safe than sorry.
while True:
i = dic.num_ever_used_items - 1
if entries.valid(i):
break
dic.num_ever_used_items -= 1
return i
def ll_dict_popitem(ELEM, dic):
i = _ll_getnextitem(dic)
entry = dic.entries[i]
r = lltype.malloc(ELEM.TO)
r.item0 = recast(ELEM.TO.item0, entry.key)
r.item1 = recast(ELEM.TO.item1, entry.value)
_ll_dict_del(dic, dic.entries.entry_hash(dic, i), i)
return r
def ll_dict_pop(dic, key):
hash = dic.keyhash(key)
index = dic.lookup_function(dic, key, hash, FLAG_LOOKUP)
if index < 0:
raise KeyError
value = dic.entries[index].value
_ll_dict_del(dic, hash, index)
return value
def ll_dict_pop_default(dic, key, dfl):
hash = dic.keyhash(key)
index = dic.lookup_function(dic, key, hash, FLAG_LOOKUP)
if index < 0:
return dfl
value = dic.entries[index].value
_ll_dict_del(dic, hash, index)
return value
def ll_dict_move_to_end(d, key, last):
if last:
ll_dict_move_to_last(d, key)
else:
ll_dict_move_to_first(d, key)
def ll_dict_move_to_last(d, key):
hash = d.keyhash(key)
old_index = d.lookup_function(d, key, hash, FLAG_LOOKUP)
if old_index < 0:
raise KeyError
if old_index == d.num_ever_used_items - 1:
return
# remove the entry at the old position
old_entry = d.entries[old_index]
key = old_entry.key
value = old_entry.value
_ll_dict_del_entry(d, old_index)
# note a corner case: it is possible that 'replace_with' is just too
# large to fit in the type T used so far for the index. But in that
# case, the list 'd.entries' is full, and the following call to
# _ll_dict_setitem_lookup_done() will necessarily reindex the dict.
# So in that case, this value of 'replace_with' should be ignored.
ll_call_delete_by_entry_index(d, hash, old_index,
replace_with = VALID_OFFSET + d.num_ever_used_items)
_ll_dict_setitem_lookup_done(d, key, value, hash, -1)
def ll_dict_move_to_first(d, key):
# In this function, we might do a bit more than the strict minimum
# of walks over parts of the array, trying to keep the code at least
# semi-reasonable, while the goal is still amortized constant-time
# over many calls.
# Call ll_dict_remove_deleted_items() first if there are too many
# deleted items. Not a perfect solution, because lookup_function()
# might do random things with the dict and create many new deleted
# items. Still, should be fine, because nothing crucially depends
# on this: the goal is to avoid the dictionary's list growing
# forever.
if d.num_live_items < len(d.entries) // 2 - 16:
ll_dict_remove_deleted_items(d)
hash = d.keyhash(key)
old_index = d.lookup_function(d, key, hash, FLAG_LOOKUP)
if old_index <= 0:
if old_index < 0:
raise KeyError
else:
return
# the goal of the following is to set 'idst' to the number of
# deleted entries at the beginning, ensuring 'idst > 0'
must_reindex = False
if d.entries.valid(0):
# the first entry is valid, so we need to make room before.
new_allocated = _overallocate_entries_len(d.num_ever_used_items)
idst = ((new_allocated - d.num_ever_used_items) * 3) // 4
ll_assert(idst > 0, "overallocate did not do enough")
newitems = lltype.malloc(lltype.typeOf(d).TO.entries.TO, new_allocated)
rgc.ll_arraycopy(d.entries, newitems, 0, idst, d.num_ever_used_items)
d.entries = newitems
i = 0
while i < idst:
d.entries.mark_deleted(i)
i += 1
d.num_ever_used_items += idst
old_index += idst
must_reindex = True
idst -= 1
else:
idst = d.lookup_function_no >> FUNC_SHIFT
# All entries in range(0, idst) are deleted. Check if more are
while not d.entries.valid(idst):
idst += 1
if idst == old_index:
d.lookup_function_no = ((d.lookup_function_no & FUNC_MASK) |
(old_index << FUNC_SHIFT))
return
idst -= 1
d.lookup_function_no = ((d.lookup_function_no & FUNC_MASK) |
(idst << FUNC_SHIFT))
# remove the entry at the old position
ll_assert(d.entries.valid(old_index),
"ll_dict_move_to_first: lost old_index")
ENTRY = lltype.typeOf(d.entries).TO.OF
old_entry = d.entries[old_index]
key = old_entry.key
value = old_entry.value
if hasattr(ENTRY, 'f_hash'):
ll_assert(old_entry.f_hash == hash,
"ll_dict_move_to_first: bad hash")
_ll_dict_del_entry(d, old_index)
# put the entry at its new position
ll_assert(not d.entries.valid(idst),
"ll_dict_move_to_first: overwriting idst")
new_entry = d.entries[idst]
new_entry.key = key
new_entry.value = value
if hasattr(ENTRY, 'f_hash'):
new_entry.f_hash = hash
if hasattr(ENTRY, 'f_valid'):
new_entry.f_valid = True
d.num_live_items += 1
# fix the index
if must_reindex:
ll_dict_reindex(d, _ll_len_of_d_indexes(d))
else:
ll_call_delete_by_entry_index(d, hash, old_index,
replace_with = VALID_OFFSET + idst)
|