1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
|
"""Python control flow graph generation and bytecode assembly."""
import math
import os
from rpython.rlib.objectmodel import specialize, we_are_translated
from pypy.interpreter.astcompiler import ast, consts, misc, symtable
from pypy.interpreter.error import OperationError
from pypy.interpreter.pycode import PyCode
from pypy.interpreter.miscutils import string_sort
from pypy.tool import stdlib_opcode as ops
class StackDepthComputationError(Exception):
pass
class Instruction(object):
"""Represents a single opcode."""
def __init__(self, opcode, arg=0):
self.opcode = opcode
self.arg = arg
self.lineno = 0
self.has_jump = False
def size(self):
"""Return the size of bytes of this instruction when it is
encoded.
"""
if self.opcode >= ops.HAVE_ARGUMENT:
return (6 if self.arg > 0xFFFF else 3)
return 1
def jump_to(self, target, absolute=False):
"""Indicate the target this jump instruction.
The opcode must be a JUMP opcode.
"""
self.jump = (target, absolute)
self.has_jump = True
def __repr__(self):
data = [ops.opname[self.opcode]]
template = "<%s"
if self.opcode >= ops.HAVE_ARGUMENT:
data.append(self.arg)
template += " %i"
if self.has_jump:
data.append(self.jump[0])
template += " %s"
template += ">"
return template % tuple(data)
class Block(object):
"""A basic control flow block.
It has one entry point and several possible exit points. Its
instructions may be jumps to other blocks, or if control flow
reaches the end of the block, it continues to next_block.
"""
marked = False
have_return = False
auto_inserted_return = False
def __init__(self):
self.instructions = []
self.next_block = None
def _post_order_see(self, stack, nextblock):
if nextblock.marked == 0:
nextblock.marked = 1
stack.append(nextblock)
def post_order(self):
"""Return this block and its children in post order. This means
that the graph of blocks is first cleaned up to ignore
back-edges, thus turning it into a DAG. Then the DAG is
linearized. For example:
A --> B -\ => [A, D, B, C]
\-> D ---> C
"""
resultblocks = []
stack = [self]
self.marked = 1
while stack:
current = stack[-1]
if current.marked == 1:
current.marked = 2
if current.next_block is not None:
self._post_order_see(stack, current.next_block)
else:
i = current.marked - 2
assert i >= 0
while i < len(current.instructions):
instr = current.instructions[i]
i += 1
if instr.has_jump:
current.marked = i + 2
self._post_order_see(stack, instr.jump[0])
break
else:
resultblocks.append(current)
stack.pop()
resultblocks.reverse()
return resultblocks
def code_size(self):
"""Return the encoded size of all the instructions in this
block.
"""
i = 0
for instr in self.instructions:
i += instr.size()
return i
def get_code(self):
"""Encode the instructions in this block into bytecode."""
code = []
for instr in self.instructions:
opcode = instr.opcode
if opcode >= ops.HAVE_ARGUMENT:
arg = instr.arg
if instr.arg > 0xFFFF:
ext = arg >> 16
code.append(chr(ops.EXTENDED_ARG))
code.append(chr(ext & 0xFF))
code.append(chr(ext >> 8))
arg &= 0xFFFF
code.append(chr(opcode))
code.append(chr(arg & 0xFF))
code.append(chr(arg >> 8))
else:
code.append(chr(opcode))
return ''.join(code)
def _make_index_dict_filter(syms, flag1, flag2):
names = syms.keys()
string_sort(names) # return cell vars in alphabetical order
i = 0
result = {}
for name in names:
scope = syms[name]
if scope in (flag1, flag2):
result[name] = i
i += 1
return result
@specialize.argtype(0)
def _iter_to_dict(iterable, offset=0):
result = {}
index = offset
for item in iterable:
result[item] = index
index += 1
return result
class PythonCodeMaker(ast.ASTVisitor):
"""Knows how to assemble a PyCode object."""
def __init__(self, space, name, first_lineno, scope, compile_info):
self.space = space
self.name = name
self.first_lineno = first_lineno
self.compile_info = compile_info
self.first_block = self.new_block()
self.use_block(self.first_block)
self.names = {}
self.var_names = _iter_to_dict(scope.varnames)
self.cell_vars = _make_index_dict_filter(scope.symbols,
symtable.SCOPE_CELL,
symtable.SCOPE_CELL_CLASS)
string_sort(scope.free_vars) # return free vars in alphabetical order
self.free_vars = _iter_to_dict(scope.free_vars, len(self.cell_vars))
self.w_consts = space.newdict()
self.argcount = 0
self.kwonlyargcount = 0
self.lineno_set = False
self.lineno = 0
self.add_none_to_final_return = True
def new_block(self):
return Block()
def use_block(self, block):
"""Start emitting bytecode into block."""
self.current_block = block
self.instrs = block.instructions
def use_next_block(self, block=None):
"""Set this block as the next_block for the last and use it."""
if block is None:
block = self.new_block()
self.current_block.next_block = block
self.use_block(block)
return block
def is_dead_code(self):
"""Return False if any code can be meaningfully added to the
current block, or True if it would be dead code."""
# currently only True after a RETURN_VALUE.
return self.current_block.have_return
def emit_op(self, op):
"""Emit an opcode without an argument."""
instr = Instruction(op)
if not self.lineno_set:
instr.lineno = self.lineno
self.lineno_set = True
if not self.is_dead_code():
self.instrs.append(instr)
if op == ops.RETURN_VALUE:
self.current_block.have_return = True
return instr
def emit_op_arg(self, op, arg):
"""Emit an opcode with an integer argument."""
instr = Instruction(op, arg)
if not self.lineno_set:
instr.lineno = self.lineno
self.lineno_set = True
if not self.is_dead_code():
self.instrs.append(instr)
def emit_op_name(self, op, container, name):
"""Emit an opcode referencing a name."""
self.emit_op_arg(op, self.add_name(container, name))
def emit_jump(self, op, block_to, absolute=False):
"""Emit a jump opcode to another block."""
self.emit_op(op).jump_to(block_to, absolute)
def add_name(self, container, name):
"""Get the index of a name in container."""
name = self.scope.mangle(name)
try:
index = container[name]
except KeyError:
index = len(container)
container[name] = index
return index
def add_const(self, obj):
"""Add a W_Root to the constant array and return its location."""
space = self.space
# To avoid confusing equal but separate types, we hash store the type
# of the constant in the dictionary. Moreover, we have to keep the
# difference between -0.0 and 0.0 floats, and this recursively in
# tuples.
w_key = self._make_key(obj)
w_len = space.finditem(self.w_consts, w_key)
if w_len is None:
w_len = space.len(self.w_consts)
space.setitem(self.w_consts, w_key, w_len)
if space.int_w(w_len) == 0:
self.scope.doc_removable = False
return space.int_w(w_len)
def _make_key(self, obj):
# see the tests 'test_zeros_not_mixed*' in ../test/test_compiler.py
space = self.space
w_type = space.type(obj)
if space.is_w(w_type, space.w_float):
val = space.float_w(obj)
if val == 0.0 and math.copysign(1., val) < 0:
w_key = space.newtuple([obj, space.w_float, space.w_None])
else:
w_key = space.newtuple([obj, space.w_float])
elif space.is_w(w_type, space.w_complex):
w_real = space.getattr(obj, space.newtext("real"))
w_imag = space.getattr(obj, space.newtext("imag"))
real = space.float_w(w_real)
imag = space.float_w(w_imag)
real_negzero = (real == 0.0 and
math.copysign(1., real) < 0)
imag_negzero = (imag == 0.0 and
math.copysign(1., imag) < 0)
if real_negzero and imag_negzero:
tup = [obj, space.w_complex, space.w_None, space.w_None,
space.w_None]
elif imag_negzero:
tup = [obj, space.w_complex, space.w_None, space.w_None]
elif real_negzero:
tup = [obj, space.w_complex, space.w_None]
else:
tup = [obj, space.w_complex]
w_key = space.newtuple(tup)
elif space.is_w(w_type, space.w_tuple):
result_w = [obj, w_type]
for w_item in space.fixedview(obj):
result_w.append(self._make_key(w_item))
w_key = space.newtuple(result_w[:])
elif isinstance(obj, PyCode):
w_key = space.newtuple([obj, w_type, space.id(obj)])
else:
w_key = space.newtuple([obj, w_type])
return w_key
def load_const(self, obj):
index = self.add_const(obj)
self.emit_op_arg(ops.LOAD_CONST, index)
def update_position(self, lineno, force=False):
"""Possibly change the lineno for the next instructions."""
if force or lineno > self.lineno:
self.lineno = lineno
self.lineno_set = False
def _resolve_block_targets(self, blocks):
"""Compute the arguments of jump instructions."""
last_extended_arg_count = 0
# The reason for this loop is extended jumps. EXTENDED_ARG
# extends the bytecode size, so it might invalidate the offsets
# we've already given. Thus we have to loop until the number of
# extended args is stable. Any extended jump at all is
# extremely rare, so performance is not too concerning.
while True:
extended_arg_count = 0
offset = 0
force_redo = False
# Calculate the code offset of each block.
for block in blocks:
block.offset = offset
offset += block.code_size()
for block in blocks:
offset = block.offset
for instr in block.instructions:
offset += instr.size()
if instr.has_jump:
target, absolute = instr.jump
op = instr.opcode
# Optimize an unconditional jump going to another
# unconditional jump.
if op == ops.JUMP_ABSOLUTE or op == ops.JUMP_FORWARD:
if target.instructions:
target_op = target.instructions[0].opcode
if target_op == ops.JUMP_ABSOLUTE:
target = target.instructions[0].jump[0]
instr.opcode = ops.JUMP_ABSOLUTE
absolute = True
elif target_op == ops.RETURN_VALUE:
# Replace JUMP_* to a RETURN into
# just a RETURN
instr.opcode = ops.RETURN_VALUE
instr.arg = 0
instr.has_jump = False
# The size of the code changed,
# we have to trigger another pass
force_redo = True
continue
if absolute:
jump_arg = target.offset
else:
jump_arg = target.offset - offset
instr.arg = jump_arg
if jump_arg > 0xFFFF:
extended_arg_count += 1
if (extended_arg_count == last_extended_arg_count and
not force_redo):
break
else:
last_extended_arg_count = extended_arg_count
def _build_consts_array(self):
"""Turn the applevel constants dictionary into a list."""
w_consts = self.w_consts
space = self.space
consts_w = [space.w_None] * space.len_w(w_consts)
w_iter = space.iter(w_consts)
first = space.newint(0)
while True:
try:
w_key = space.next(w_iter)
except OperationError as e:
if not e.match(space, space.w_StopIteration):
raise
break
w_index = space.getitem(w_consts, w_key)
w_constant = space.getitem(w_key, first)
w_constant = misc.intern_if_common_string(space, w_constant)
consts_w[space.int_w(w_index)] = w_constant
return consts_w
def _get_code_flags(self):
"""Get an extra flags that should be attached to the code object."""
raise NotImplementedError
def _stacksize(self, blocks):
"""Compute co_stacksize."""
for block in blocks:
block.initial_depth = -99
blocks[0].initial_depth = 0
# Assumes that it is sufficient to walk the blocks in 'post-order'.
# This means we ignore all back-edges, but apart from that, we only
# look into a block when all the previous blocks have been done.
self._max_depth = 0
for block in blocks:
depth = self._do_stack_depth_walk(block)
if block.auto_inserted_return and depth != 0:
# This case occurs if this code object uses some
# construction for which the stack depth computation
# is wrong (too high). If you get here while working
# on the astcompiler, then you should at first ignore
# the error, and comment out the 'raise' below. Such
# an error is not really bad: it is just a bit
# wasteful. For release-ready versions, though, we'd
# like not to be wasteful. :-)
os.write(2, "StackDepthComputationError(POS) in %s at %s:%s\n"
% (self.compile_info.filename, self.name, self.first_lineno))
raise StackDepthComputationError # would-be-nice-not-to-have
return self._max_depth
def _next_stack_depth_walk(self, nextblock, depth):
if depth > nextblock.initial_depth:
nextblock.initial_depth = depth
def _do_stack_depth_walk(self, block):
depth = block.initial_depth
if depth == -99: # this block is never reached, skip
return 0
for instr in block.instructions:
depth += _opcode_stack_effect(instr.opcode, instr.arg)
if depth < 0:
# This is really a fatal error, don't comment out this
# 'raise'. It means that the stack depth computation
# thinks there is a path that yields a negative stack
# depth, which means that it underestimates the space
# needed and it would crash when interpreting this
# code.
os.write(2, "StackDepthComputationError(NEG) in %s at %s:%s\n"
% (self.compile_info.filename, self.name, self.first_lineno))
raise StackDepthComputationError # really fatal error
if depth >= self._max_depth:
self._max_depth = depth
jump_op = instr.opcode
if instr.has_jump:
target_depth = depth
if jump_op == ops.FOR_ITER:
target_depth -= 2
elif (jump_op == ops.SETUP_FINALLY or
jump_op == ops.SETUP_EXCEPT or
jump_op == ops.SETUP_WITH or
jump_op == ops.SETUP_ASYNC_WITH):
if jump_op == ops.SETUP_FINALLY:
target_depth += 4
elif jump_op == ops.SETUP_EXCEPT:
target_depth += 4
elif jump_op == ops.SETUP_WITH:
target_depth += 3
elif jump_op == ops.SETUP_ASYNC_WITH:
target_depth += 3
if target_depth > self._max_depth:
self._max_depth = target_depth
elif (jump_op == ops.JUMP_IF_TRUE_OR_POP or
jump_op == ops.JUMP_IF_FALSE_OR_POP):
depth -= 1
self._next_stack_depth_walk(instr.jump[0], target_depth)
if jump_op == ops.JUMP_ABSOLUTE or jump_op == ops.JUMP_FORWARD:
# Nothing more can occur.
break
elif jump_op == ops.RETURN_VALUE or jump_op == ops.RAISE_VARARGS:
# Nothing more can occur.
break
else:
if block.next_block:
self._next_stack_depth_walk(block.next_block, depth)
return depth
def _build_lnotab(self, blocks):
"""Build the line number table for tracebacks and tracing."""
current_line = self.first_lineno
current_off = 0
table = []
push = table.append
for block in blocks:
offset = block.offset
for instr in block.instructions:
if instr.lineno:
# compute deltas
line = instr.lineno - current_line
if line < 0:
continue
addr = offset - current_off
# Python assumes that lineno always increases with
# increasing bytecode address (lnotab is unsigned
# char). Depending on when SET_LINENO instructions
# are emitted this is not always true. Consider the
# code:
# a = (1,
# b)
# In the bytecode stream, the assignment to "a"
# occurs after the loading of "b". This works with
# the C Python compiler because it only generates a
# SET_LINENO instruction for the assignment.
if line or addr:
while addr > 255:
push(chr(255))
push(chr(0))
addr -= 255
while line > 255:
push(chr(addr))
push(chr(255))
line -= 255
addr = 0
push(chr(addr))
push(chr(line))
current_line = instr.lineno
current_off = offset
offset += instr.size()
return ''.join(table)
def assemble(self):
"""Build a PyCode object."""
# Unless it's interactive, every code object must end in a return.
if not self.current_block.have_return:
self.use_next_block()
if self.add_none_to_final_return:
self.load_const(self.space.w_None)
self.emit_op(ops.RETURN_VALUE)
self.current_block.auto_inserted_return = True
# Set the first lineno if it is not already explicitly set.
if self.first_lineno == -1:
if self.first_block.instructions:
self.first_lineno = self.first_block.instructions[0].lineno
else:
self.first_lineno = 1
blocks = self.first_block.post_order()
self._resolve_block_targets(blocks)
lnotab = self._build_lnotab(blocks)
stack_depth = self._stacksize(blocks)
consts_w = self._build_consts_array()
names = _list_from_dict(self.names)
var_names = _list_from_dict(self.var_names)
cell_names = _list_from_dict(self.cell_vars)
free_names = _list_from_dict(self.free_vars, len(cell_names))
flags = self._get_code_flags()
# (Only) inherit compilerflags in PyCF_MASK
flags |= (self.compile_info.flags & consts.PyCF_MASK)
bytecode = ''.join([block.get_code() for block in blocks])
return PyCode(self.space,
self.argcount,
self.kwonlyargcount,
len(self.var_names),
stack_depth,
flags,
bytecode,
list(consts_w),
names,
var_names,
self.compile_info.filename,
self.name,
self.first_lineno,
lnotab,
free_names,
cell_names,
self.compile_info.hidden_applevel)
def _list_from_dict(d, offset=0):
result = [None] * len(d)
for obj, index in d.iteritems():
result[index - offset] = obj
return result
_static_opcode_stack_effects = {
ops.NOP: 0,
ops.POP_TOP: -1,
ops.ROT_TWO: 0,
ops.ROT_THREE: 0,
ops.DUP_TOP: 1,
ops.DUP_TOP_TWO: 2,
ops.UNARY_POSITIVE: 0,
ops.UNARY_NEGATIVE: 0,
ops.UNARY_NOT: 0,
ops.UNARY_INVERT: 0,
ops.LIST_APPEND: -1,
ops.SET_ADD: -1,
ops.MAP_ADD: -2,
ops.BINARY_POWER: -1,
ops.BINARY_MULTIPLY: -1,
ops.BINARY_MODULO: -1,
ops.BINARY_ADD: -1,
ops.BINARY_SUBTRACT: -1,
ops.BINARY_SUBSCR: -1,
ops.BINARY_FLOOR_DIVIDE: -1,
ops.BINARY_TRUE_DIVIDE: -1,
ops.BINARY_MATRIX_MULTIPLY: -1,
ops.BINARY_LSHIFT: -1,
ops.BINARY_RSHIFT: -1,
ops.BINARY_AND: -1,
ops.BINARY_OR: -1,
ops.BINARY_XOR: -1,
ops.INPLACE_FLOOR_DIVIDE: -1,
ops.INPLACE_TRUE_DIVIDE: -1,
ops.INPLACE_ADD: -1,
ops.INPLACE_SUBTRACT: -1,
ops.INPLACE_MULTIPLY: -1,
ops.INPLACE_MODULO: -1,
ops.INPLACE_POWER: -1,
ops.INPLACE_MATRIX_MULTIPLY: -1,
ops.INPLACE_LSHIFT: -1,
ops.INPLACE_RSHIFT: -1,
ops.INPLACE_AND: -1,
ops.INPLACE_OR: -1,
ops.INPLACE_XOR: -1,
ops.STORE_SUBSCR: -3,
ops.DELETE_SUBSCR: -2,
ops.GET_ITER: 0,
ops.FOR_ITER: 1,
ops.BREAK_LOOP: 0,
ops.CONTINUE_LOOP: 0,
ops.SETUP_LOOP: 0,
ops.PRINT_EXPR: -1,
ops.WITH_CLEANUP_START: 0,
ops.WITH_CLEANUP_FINISH: -1,
ops.LOAD_BUILD_CLASS: 1,
ops.POP_BLOCK: 0,
ops.POP_EXCEPT: -1,
ops.END_FINALLY: -4, # assume always 4: we pretend that SETUP_FINALLY
# pushes 4. In truth, it would only push 1 and
# the corresponding END_FINALLY only pops 1.
ops.SETUP_WITH: 1,
ops.SETUP_FINALLY: 0,
ops.SETUP_EXCEPT: 0,
ops.RETURN_VALUE: -1,
ops.YIELD_VALUE: 0,
ops.YIELD_FROM: -1,
ops.COMPARE_OP: -1,
ops.LOOKUP_METHOD: 1,
ops.LOAD_NAME: 1,
ops.STORE_NAME: -1,
ops.DELETE_NAME: 0,
ops.LOAD_FAST: 1,
ops.STORE_FAST: -1,
ops.DELETE_FAST: 0,
ops.LOAD_ATTR: 0,
ops.STORE_ATTR: -2,
ops.DELETE_ATTR: -1,
ops.LOAD_GLOBAL: 1,
ops.STORE_GLOBAL: -1,
ops.DELETE_GLOBAL: 0,
ops.DELETE_DEREF: 0,
ops.LOAD_CLOSURE: 1,
ops.LOAD_DEREF: 1,
ops.STORE_DEREF: -1,
ops.DELETE_DEREF: 0,
ops.GET_AWAITABLE: 0,
ops.SETUP_ASYNC_WITH: 0,
ops.BEFORE_ASYNC_WITH: 1,
ops.GET_AITER: 0,
ops.GET_ANEXT: 1,
ops.GET_YIELD_FROM_ITER: 0,
ops.LOAD_CONST: 1,
ops.IMPORT_STAR: -1,
ops.IMPORT_NAME: -1,
ops.IMPORT_FROM: 1,
ops.JUMP_FORWARD: 0,
ops.JUMP_ABSOLUTE: 0,
ops.JUMP_IF_TRUE_OR_POP: 0,
ops.JUMP_IF_FALSE_OR_POP: 0,
ops.POP_JUMP_IF_TRUE: -1,
ops.POP_JUMP_IF_FALSE: -1,
ops.JUMP_IF_NOT_DEBUG: 0,
# TODO
ops.BUILD_LIST_FROM_ARG: 1,
ops.LOAD_REVDB_VAR: 1,
ops.LOAD_CLASSDEREF: 1,
}
def _compute_UNPACK_SEQUENCE(arg):
return arg - 1
def _compute_UNPACK_EX(arg):
return (arg & 0xFF) + (arg >> 8)
def _compute_BUILD_TUPLE(arg):
return 1 - arg
def _compute_BUILD_TUPLE_UNPACK(arg):
return 1 - arg
def _compute_BUILD_LIST(arg):
return 1 - arg
def _compute_BUILD_LIST_UNPACK(arg):
return 1 - arg
def _compute_BUILD_SET(arg):
return 1 - arg
def _compute_BUILD_SET_UNPACK(arg):
return 1 - arg
def _compute_BUILD_MAP(arg):
return 1 - 2 * arg
def _compute_BUILD_MAP_UNPACK(arg):
return 1 - arg
def _compute_BUILD_MAP_UNPACK_WITH_CALL(arg):
return 1 - (arg & 0xFF)
def _compute_MAKE_CLOSURE(arg):
return -2 - _num_args(arg) - ((arg >> 16) & 0xFFFF)
def _compute_MAKE_FUNCTION(arg):
return -1 - _num_args(arg) - ((arg >> 16) & 0xFFFF)
def _compute_BUILD_SLICE(arg):
if arg == 3:
return -2
else:
return -1
def _compute_RAISE_VARARGS(arg):
return -arg
def _num_args(oparg):
return (oparg % 256) + 2 * ((oparg // 256) % 256)
def _compute_CALL_FUNCTION(arg):
return -_num_args(arg)
def _compute_CALL_FUNCTION_VAR(arg):
return -_num_args(arg) - 1
def _compute_CALL_FUNCTION_KW(arg):
return -_num_args(arg) - 1
def _compute_CALL_FUNCTION_VAR_KW(arg):
return -_num_args(arg) - 2
def _compute_CALL_METHOD(arg):
return -_num_args(arg) - 1
def _compute_FORMAT_VALUE(arg):
if (arg & consts.FVS_MASK) == consts.FVS_HAVE_SPEC:
return -1
return 0
def _compute_BUILD_STRING(arg):
return 1 - arg
_stack_effect_computers = {}
for name, func in globals().items():
if name.startswith("_compute_"):
func._always_inline_ = True
_stack_effect_computers[getattr(ops, name[9:])] = func
for op, value in _static_opcode_stack_effects.iteritems():
def func(arg, _value=value):
return _value
func._always_inline_ = True
_stack_effect_computers[op] = func
del name, func, op, value
def _opcode_stack_effect(op, arg):
"""Return the stack effect of a opcode an its argument."""
if we_are_translated():
for possible_op in ops.unrolling_opcode_descs:
# EXTENDED_ARG should never get in here.
if possible_op.index == ops.EXTENDED_ARG:
continue
if op == possible_op.index:
return _stack_effect_computers[possible_op.index](arg)
else:
raise AssertionError("unknown opcode: %s" % (op,))
else:
try:
return _static_opcode_stack_effects[op]
except KeyError:
try:
return _stack_effect_computers[op](arg)
except KeyError:
raise KeyError("Unknown stack effect for %s (%s)" %
(ops.opname[op], op))
|