1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
"""
Makes a parser from a grammar source.
Inspired by Guido van Rossum's pgen2.
"""
import StringIO
import tokenize
import token
from pypy.interpreter.pyparser import parser
class PgenError(Exception):
def __init__(self, msg, location=None):
Exception.__init__(self, msg)
self.location = location
class NFA(object):
def __init__(self):
self.arcs = []
def arc(self, to_state, label=None):
self.arcs.append((label, to_state))
def find_unlabeled_states(self, into):
if self in into:
return
into.add(self)
for label, state in self.arcs:
if label is None:
state.find_unlabeled_states(into)
class DFA(object):
def __init__(self, nfa_set, final_state):
self.nfas = nfa_set
self.is_final = final_state in nfa_set
self.arcs = {}
def arc(self, next, label):
self.arcs[label] = next
def unify_state(self, old, new):
for label, state in self.arcs.iteritems():
if state is old:
self.arcs[label] = new
def __repr__(self):
return "<DFA arcs=%r>" % self.arcs
def __eq__(self, other):
if not isinstance(other, DFA):
# This shouldn't really happen.
return NotImplemented
if other.is_final != self.is_final:
return False
if len(self.arcs) != len(other.arcs):
return False
for label, state in self.arcs.iteritems():
try:
other_state = other.arcs[label]
except KeyError:
return False
else:
if other_state is not state:
return False
return True
def nfa_to_dfa(start, end):
"""Convert an NFA to a DFA(s)
Each DFA is initially a set of NFA states without labels. We start with the
DFA for the start NFA. Then we add labeled arcs to it pointing to another
set of NFAs (the next state). Finally, we do the same thing to every DFA
that is found and return the list of states.
"""
base_nfas = set()
start.find_unlabeled_states(base_nfas)
state_stack = [DFA(base_nfas, end)]
for state in state_stack:
arcs = {}
for nfa in state.nfas:
for label, sub_nfa in nfa.arcs:
if label is not None:
sub_nfa.find_unlabeled_states(arcs.setdefault(label, set()))
for label, nfa_set in arcs.iteritems():
for st in state_stack:
if st.nfas == nfa_set:
break
else:
st = DFA(nfa_set, end)
state_stack.append(st)
state.arc(st, label)
return state_stack
def simplify_dfa(dfa):
changed = True
while changed:
changed = False
for i, state in enumerate(dfa):
for j in xrange(i + 1, len(dfa)):
other_state = dfa[j]
if state == other_state:
del dfa[j]
for sub_state in dfa:
sub_state.unify_state(other_state, state)
changed = True
break
class ParserGenerator(object):
"""NOT_RPYTHON"""
def __init__(self, grammar_source):
self.start_symbol = None
self.dfas = {}
stream = StringIO.StringIO(grammar_source)
self.token_stream = tokenize.generate_tokens(stream.readline)
self.parse()
self.first = {}
self.add_first_sets()
def build_grammar(self, grammar_cls):
gram = grammar_cls()
gram.start = self.start_symbol
names = self.dfas.keys()
names.sort()
names.remove(self.start_symbol)
names.insert(0, self.start_symbol)
# First, build symbol and id mappings.
for name in names:
i = 256 + len(gram.symbol_ids)
gram.symbol_ids[name] = i
gram.symbol_names[i] = name
# Then, iterate through again and finalize labels.
for name in names:
dfa = self.dfas[name]
states = []
for state in dfa:
arcs = []
for label, next in state.arcs.iteritems():
arcs.append((self.make_label(gram, label), dfa.index(next)))
states.append((arcs, state.is_final))
symbol_id = gram.symbol_ids[name]
dfa = parser.DFA(symbol_id, states, self.make_first(gram, name))
gram.dfas.append(dfa)
assert len(gram.dfas) - 1 == symbol_id - 256
gram.start = gram.symbol_ids[self.start_symbol]
return gram
def make_label(self, gram, label):
label_index = len(gram.labels)
if label[0].isalpha():
# Either a symbol or a token.
if label in gram.symbol_ids:
if label in gram.symbol_to_label:
return gram.symbol_to_label[label]
else:
gram.labels.append(gram.symbol_ids[label])
gram.symbol_to_label[label] = label_index
first = self.first[label]
if len(first) == 1:
first, = first
if not first[0].isupper():
first = first.strip("\"'")
assert label_index not in gram.token_to_error_string
gram.token_to_error_string[label_index] = first
return label_index
elif label.isupper():
token_index = gram.TOKENS[label]
if token_index in gram.token_ids:
return gram.token_ids[token_index]
else:
gram.labels.append(token_index)
gram.token_ids[token_index] = label_index
return label_index
else:
# Probably a rule without a definition.
raise PgenError("no such rule: %r" % (label,))
else:
# A keyword or operator.
value = label.strip("\"'")
if value[0].isalpha():
if value in gram.keyword_ids:
return gram.keyword_ids[value]
else:
gram.labels.append(gram.KEYWORD_TOKEN)
gram.keyword_ids[value] = label_index
result = label_index
else:
try:
token_index = gram.OPERATOR_MAP[value]
except KeyError:
raise PgenError("no such operator: %r" % (value,))
if token_index in gram.token_ids:
return gram.token_ids[token_index]
else:
gram.labels.append(token_index)
gram.token_ids[token_index] = label_index
result = label_index
assert result not in gram.token_to_error_string
gram.token_to_error_string[result] = value
return result
def make_first(self, gram, name):
original_firsts = self.first[name]
firsts = dict()
for label in original_firsts:
firsts[self.make_label(gram, label)] = None
return firsts
def add_first_sets(self):
for name, dfa in self.dfas.iteritems():
if name not in self.first:
self.get_first(name, dfa)
def get_first(self, name, dfa):
self.first[name] = None
state = dfa[0]
all_labels = set()
overlap_check = {}
for label, sub_state in state.arcs.iteritems():
if label in self.dfas:
if label in self.first:
new_labels = self.first[label]
if new_labels is None:
raise PgenError("recursion in rule: %r" % (name,))
else:
new_labels = self.get_first(label, self.dfas[label])
all_labels.update(new_labels)
overlap_check[label] = new_labels
else:
all_labels.add(label)
overlap_check[label] = set((label,))
inverse = {}
for label, their_first in overlap_check.iteritems():
for sub_label in their_first:
if sub_label in inverse:
raise PgenError("ambiguous symbol with label %s"
% (label,))
inverse[sub_label] = label
self.first[name] = all_labels
return all_labels
def expect(self, token_type, value=None):
if token_type != self.type:
expected = token.tok_name[token_type]
got = token.tok_name[self.type]
raise PgenError("expected token %s but got %s" % (expected, got),
self.location)
current_value = self.value
if value is not None:
if value != current_value:
msg = "expected %r but got %r" % (value, current_value)
raise PgenError(msg,self.location)
self.advance_token()
return current_value
def test_token(self, token_type, value):
if self.type == token_type and self.value == value:
return True
return False
def advance_token(self):
data = self.token_stream.next()
# Ignore comments and non-logical newlines.
while data[0] in (tokenize.NL, tokenize.COMMENT):
data = self.token_stream.next()
self.type, self.value = data[:2]
self.location = data[2:]
def parse(self):
self.advance_token()
while self.type != token.ENDMARKER:
# Skip over whitespace.
while self.type == token.NEWLINE:
self.advance_token()
name, start_state, end_state = self.parse_rule()
dfa = nfa_to_dfa(start_state, end_state)
simplify_dfa(dfa)
self.dfas[name] = dfa
if self.start_symbol is None:
self.start_symbol = name
def parse_rule(self):
# RULE: NAME ':' ALTERNATIVES
name = self.expect(token.NAME)
self.expect(token.OP, ":")
start_state, end_state = self.parse_alternatives()
self.expect(token.NEWLINE)
return name, start_state, end_state
def parse_alternatives(self):
# ALTERNATIVES: ITEMS ('|' ITEMS)*
first_state, end_state = self.parse_items()
if self.test_token(token.OP, "|"):
# Link all alternatives into a enclosing set of states.
enclosing_start_state = NFA()
enclosing_end_state = NFA()
enclosing_start_state.arc(first_state)
end_state.arc(enclosing_end_state)
while self.test_token(token.OP, "|"):
self.advance_token()
sub_start_state, sub_end_state = self.parse_items()
enclosing_start_state.arc(sub_start_state)
sub_end_state.arc(enclosing_end_state)
first_state = enclosing_start_state
end_state = enclosing_end_state
return first_state, end_state
def parse_items(self):
# ITEMS: ITEM+
first_state, end_state = self.parse_item()
while self.type in (token.STRING, token.NAME) or \
self.test_token(token.OP, "(") or \
self.test_token(token.OP, "["):
sub_first_state, new_end_state = self.parse_item()
end_state.arc(sub_first_state)
end_state = new_end_state
return first_state, end_state
def parse_item(self):
# ITEM: '[' ALTERNATIVES ']' | ATOM ['+' | '*']
if self.test_token(token.OP, "["):
self.advance_token()
start_state, end_state = self.parse_alternatives()
self.expect(token.OP, "]")
# Bypass the rule if this is optional.
start_state.arc(end_state)
return start_state, end_state
else:
atom_state, next_state = self.parse_atom()
# Check for a repeater.
if self.type == token.OP and self.value in ("+", "*"):
next_state.arc(atom_state)
repeat = self.value
self.advance_token()
if repeat == "*":
# Optionally repeated
return atom_state, atom_state
else:
# Required
return atom_state, next_state
else:
return atom_state, next_state
def parse_atom(self):
# ATOM: '(' ALTERNATIVES ')' | NAME | STRING
if self.test_token(token.OP, "("):
self.advance_token()
rule = self.parse_alternatives()
self.expect(token.OP, ")")
return rule
elif self.type in (token.NAME, token.STRING):
atom_state = NFA()
next_state = NFA()
atom_state.arc(next_state, self.value)
self.advance_token()
return atom_state, next_state
else:
invalid = token.tok_name[self.type]
raise PgenError("unexpected token: %s" % (invalid,),
self.location)
|