File: functional.py

package info (click to toggle)
pypy3 7.0.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 111,848 kB
  • sloc: python: 1,291,746; ansic: 74,281; asm: 5,187; cpp: 3,017; sh: 2,533; makefile: 544; xml: 243; lisp: 45; csh: 21; awk: 4
file content (872 lines) | stat: -rw-r--r-- 32,131 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
"""
Interp-level definition of frequently used functionals.

"""
import sys

from pypy.interpreter.baseobjspace import W_Root
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.gateway import (
    interp2app, interpindirect2app, unwrap_spec)
from pypy.interpreter.typedef import TypeDef, interp_attrproperty_w
from rpython.rlib import jit, rarithmetic
from rpython.rlib.objectmodel import specialize
from rpython.rlib.rarithmetic import r_uint, intmask


def get_len_of_range(lo, hi, step):
    # If lo >= hi, the range is empty.
    # Else if n values are in the range, the last one is
    # lo + (n-1)*step, which must be <= hi-1.  Rearranging,
    # n <= (hi - lo - 1)/step + 1, so taking the floor of the RHS gives
    # the proper value.  Since lo < hi in this case, hi-lo-1 >= 0, so
    # the RHS is non-negative and so truncation is the same as the
    # floor.  Letting M be the largest positive long, the worst case
    # for the RHS numerator is hi=M, lo=-M-1, and then
    # hi-lo-1 = M-(-M-1)-1 = 2*M.  Therefore unsigned long has enough
    # precision to compute the RHS exactly.
    assert step != 0
    if step < 0:
        lo, hi, step = hi, lo, -step
    if lo < hi:
        uhi = r_uint(hi)
        ulo = r_uint(lo)
        diff = uhi - ulo - 1
        n = intmask(diff // r_uint(step) + 1)
    else:
        n = 0
    return n

def compute_range_length(space, w_start, w_stop, w_step):
    # Algorithm is equal to that of get_len_of_range(), but operates
    # on wrapped objects.
    if space.is_true(space.lt(w_step, space.newint(0))):
        w_start, w_stop = w_stop, w_start
        w_step = space.neg(w_step)
    if space.is_true(space.lt(w_start, w_stop)):
        w_diff = space.sub(space.sub(w_stop, w_start), space.newint(1))
        w_len = space.add(space.floordiv(w_diff, w_step), space.newint(1))
    else:
        w_len = space.newint(0)
    return w_len

def compute_slice_indices3(space, w_slice, w_length):
    "An W_Object version of W_SliceObject.indices3"
    from pypy.objspace.std.sliceobject import W_SliceObject
    assert isinstance(w_slice, W_SliceObject)
    w_0 = space.newint(0)
    w_1 = space.newint(1)
    if space.is_w(w_slice.w_step, space.w_None):
        w_step = w_1
    else:
        w_step = space.index(w_slice.w_step)
        if space.is_true(space.eq(w_step, w_0)):
            raise oefmt(space.w_ValueError, "slice step cannot be zero")
    negative_step = space.is_true(space.lt(w_step, w_0))
    if space.is_w(w_slice.w_start, space.w_None):
        if negative_step:
            w_start = space.sub(w_length, w_1)
        else:
            w_start = w_0
    else:
        w_start = space.index(w_slice.w_start)
        if space.is_true(space.lt(w_start, w_0)):
            w_start = space.add(w_start, w_length)
            if space.is_true(space.lt(w_start, w_0)):
                if negative_step:
                    w_start = space.newint(-1)
                else:
                    w_start = w_0
        elif space.is_true(space.ge(w_start, w_length)):
            if negative_step:
                w_start = space.sub(w_length, w_1)
            else:
                w_start = w_length
    if space.is_w(w_slice.w_stop, space.w_None):
        if negative_step:
            w_stop = space.newint(-1)
        else:
            w_stop = w_length
    else:
        w_stop = space.index(w_slice.w_stop)
        if space.is_true(space.lt(w_stop, w_0)):
            w_stop = space.add(w_stop, w_length)
            if space.is_true(space.lt(w_stop, w_0)):
                if negative_step:
                    w_stop = space.newint(-1)
                else:
                    w_stop = w_0
        elif space.is_true(space.ge(w_stop, w_length)):
            if negative_step:
                w_stop = space.sub(w_length, w_1)
            else:
                w_stop = w_length
    return w_start, w_stop, w_step

min_jitdriver = jit.JitDriver(name='min',
        greens=['has_key', 'has_item', 'w_type'], reds='auto')
max_jitdriver = jit.JitDriver(name='max',
        greens=['has_key', 'has_item', 'w_type'], reds='auto')

@specialize.arg(4)
def min_max_sequence(space, w_sequence, w_key, w_default, implementation_of):
    if implementation_of == "max":
        compare = space.gt
        jitdriver = max_jitdriver
    else:
        compare = space.lt
        jitdriver = min_jitdriver
    w_iter = space.iter(w_sequence)
    w_type = space.type(w_iter)
    has_key = w_key is not None
    has_item = False
    w_max_item = w_default
    w_max_val = None
    while True:
        jitdriver.jit_merge_point(has_key=has_key, has_item=has_item,
                                  w_type=w_type)
        try:
            w_item = space.next(w_iter)
        except OperationError as e:
            if not e.match(space, space.w_StopIteration):
                raise
            break
        if has_key:
            w_compare_with = space.call_function(w_key, w_item)
        else:
            w_compare_with = w_item
        if (not has_item or
                space.is_true(compare(w_compare_with, w_max_val))):
            has_item = True
            w_max_item = w_item
            w_max_val = w_compare_with
    if w_max_item is None:
        raise oefmt(space.w_ValueError, "arg is an empty sequence")
    return w_max_item

@specialize.arg(3)
@jit.look_inside_iff(lambda space, args_w, w_key, implementation_of:
        jit.loop_unrolling_heuristic(args_w, len(args_w), 3))
def min_max_multiple_args(space, args_w, w_key, implementation_of):
    # case of multiple arguments (at least two).  We unroll it if there
    # are 2 or 3 arguments.
    if implementation_of == "max":
        compare = space.gt
    else:
        compare = space.lt
    w_max_item = args_w[0]
    if w_key is not None:
        w_max_val = space.call_function(w_key, w_max_item)
    else:
        w_max_val = w_max_item
    for i in range(1, len(args_w)):
        w_item = args_w[i]
        if w_key is not None:
            w_compare_with = space.call_function(w_key, w_item)
        else:
            w_compare_with = w_item
        if space.is_true(compare(w_compare_with, w_max_val)):
            w_max_item = w_item
            w_max_val = w_compare_with
    return w_max_item

@jit.unroll_safe     # the loop over kwds
@specialize.arg(2)
def min_max(space, args, implementation_of):
    w_key = None
    w_default = None
    if bool(args.keywords):
        kwds = args.keywords
        for n in range(len(kwds)):
            if kwds[n] == "key":
                w_key = args.keywords_w[n]
            elif kwds[n] == "default":
                w_default = args.keywords_w[n]
            else:
                raise oefmt(space.w_TypeError,
                            "%s() got unexpected keyword argument",
                            implementation_of)
    #
    args_w = args.arguments_w
    if len(args_w) > 1:
        if w_default is not None:
            raise oefmt(space.w_TypeError,
                "Cannot specify a default for %s() with multiple "
                "positional arguments", implementation_of)
        return min_max_multiple_args(space, args_w, w_key, implementation_of)
    elif len(args_w):
        return min_max_sequence(space, args_w[0], w_key, w_default,
                                implementation_of)
    else:
        raise oefmt(space.w_TypeError,
                    "%s() expects at least one argument",
                    implementation_of)

def max(space, __args__):
    """max(iterable[, key=func]) -> value
    max(a, b, c, ...[, key=func]) -> value

    With a single iterable argument, return its largest item.
    With two or more arguments, return the largest argument.
    """
    return min_max(space, __args__, "max")

def min(space, __args__):
    """min(iterable[, key=func]) -> value
    min(a, b, c, ...[, key=func]) -> value

    With a single iterable argument, return its smallest item.
    With two or more arguments, return the smallest argument.
    """
    return min_max(space, __args__, "min")



class W_Enumerate(W_Root):
    def __init__(self, w_iter_or_list, start, w_start):
        # 'w_index' should never be a wrapped int here; if it would be,
        # then it is actually None and the unwrapped int is in 'index'.
        self.w_iter_or_list = w_iter_or_list
        self.index = start
        self.w_index = w_start

    @staticmethod
    def descr___new__(space, w_subtype, w_iterable, w_start=None):
        from pypy.objspace.std.listobject import W_ListObject

        if w_start is None:
            start = 0
        else:
            w_start = space.index(w_start)
            try:
                start = space.int_w(w_start)
                w_start = None
            except OperationError as e:
                if not e.match(space, space.w_OverflowError):
                    raise
                start = -1

        if start == 0 and type(w_iterable) is W_ListObject:
            w_iter = w_iterable
        else:
            w_iter = space.iter(w_iterable)

        self = space.allocate_instance(W_Enumerate, w_subtype)
        self.__init__(w_iter, start, w_start)
        return self

    def descr___iter__(self, space):
        return self

    def descr_next(self, space):
        from pypy.objspace.std.listobject import W_ListObject
        w_index = self.w_index
        w_iter_or_list = self.w_iter_or_list
        w_item = None
        if w_index is None:
            index = self.index
            if type(w_iter_or_list) is W_ListObject:
                try:
                    w_item = w_iter_or_list.getitem(index)
                except IndexError:
                    self.w_iter_or_list = None
                    raise OperationError(space.w_StopIteration, space.w_None)
                self.index = index + 1
            elif w_iter_or_list is None:
                raise OperationError(space.w_StopIteration, space.w_None)
            else:
                try:
                    newval = rarithmetic.ovfcheck(index + 1)
                except OverflowError:
                    w_index = space.newint(index)
                    self.w_index = space.add(w_index, space.newint(1))
                    self.index = -1
                else:
                    self.index = newval
            w_index = space.newint(index)
        else:
            self.w_index = space.add(w_index, space.newint(1))
        if w_item is None:
            w_item = space.next(self.w_iter_or_list)
        return space.newtuple([w_index, w_item])

    def descr___reduce__(self, space):
        w_index = self.w_index
        if w_index is None:
            w_index = space.newint(self.index)
        return space.newtuple([space.type(self),
                               space.newtuple([self.w_iter_or_list, w_index])])

# exported through _pickle_support
def _make_enumerate(space, w_iter_or_list, w_index):
    if space.is_w(space.type(w_index), space.w_int):
        index = space.int_w(w_index)
        w_index = None
    else:
        index = -1
    return W_Enumerate(w_iter_or_list, index, w_index)

W_Enumerate.typedef = TypeDef("enumerate",
    __new__=interp2app(W_Enumerate.descr___new__),
    __iter__=interp2app(W_Enumerate.descr___iter__),
    __next__=interp2app(W_Enumerate.descr_next),
    __reduce__=interp2app(W_Enumerate.descr___reduce__),
)


class W_ReversedIterator(W_Root):
    """reverse iterator over values of the sequence."""

    def __init__(self, space, w_sequence):
        self.remaining = space.len_w(w_sequence) - 1
        if not space.issequence_w(w_sequence):
            raise oefmt(space.w_TypeError,
                        "argument to reversed() must be a sequence")
        self.w_sequence = w_sequence

    @staticmethod
    def descr___new__2(space, w_subtype, w_sequence):
        w_reversed_descr = space.lookup(w_sequence, "__reversed__")
        if w_reversed_descr is not None:
            w_reversed = space.get(w_reversed_descr, w_sequence)
            return space.call_function(w_reversed)
        self = space.allocate_instance(W_ReversedIterator, w_subtype)
        self.__init__(space, w_sequence)
        return self

    def descr___iter__(self, space):
        return self

    def descr_length_hint(self, space):
        # bah, there is even a CPython test that checks that this
        # actually calls 'len_w(w_sequence)'.  Obscure.
        res = 0
        if self.remaining >= 0:
            total_length = space.len_w(self.w_sequence)
            rem_length = self.remaining + 1
            if rem_length <= total_length:
                res = rem_length
        return space.newint(res)

    def descr_next(self, space):
        if self.remaining >= 0:
            w_index = space.newint(self.remaining)
            try:
                w_item = space.getitem(self.w_sequence, w_index)
            except OperationError as e:
                # Done
                self.remaining = -1
                self.w_sequence = None
                if not (e.match(space, space.w_IndexError) or
                        e.match(space, space.w_StopIteration)):
                    raise
                raise OperationError(space.w_StopIteration, space.w_None)
            else:
                self.remaining -= 1
                return w_item

        # Done
        self.remaining = -1
        self.w_sequence = None
        raise OperationError(space.w_StopIteration, space.w_None)

    def descr___reduce__(self, space):
        if self.w_sequence:
            w_state = space.newint(self.remaining)
            return space.newtuple([
                space.type(self),
                space.newtuple([self.w_sequence]),
                w_state])
        else:
            return space.newtuple([
                space.type(self),
                space.newtuple([space.newtuple([])])])

    def descr___setstate__(self, space, w_state):
        self.remaining = space.int_w(w_state)
        n = space.len_w(self.w_sequence)
        if self.remaining < -1:
            self.remaining = -1
        elif self.remaining > n - 1:
            self.remaining = n - 1

W_ReversedIterator.typedef = TypeDef("reversed",
    __new__         = interp2app(W_ReversedIterator.descr___new__2),
    __iter__        = interp2app(W_ReversedIterator.descr___iter__),
    __length_hint__ = interp2app(W_ReversedIterator.descr_length_hint),
    __next__        = interp2app(W_ReversedIterator.descr_next),
    __reduce__      = interp2app(W_ReversedIterator.descr___reduce__),
    __setstate__      = interp2app(W_ReversedIterator.descr___setstate__),
)


class W_Range(W_Root):
    def __init__(self, w_start, w_stop, w_step, w_length, promote_step=False):
        self.w_start = w_start
        self.w_stop  = w_stop
        self.w_step  = w_step
        self.w_length = w_length
        self.promote_step = promote_step

    def descr_new(space, w_subtype, w_start, w_stop=None, w_step=None):
        w_start = space.index(w_start)
        promote_step = False
        if space.is_none(w_step):  # no step argument provided
            w_step = space.newint(1)
            promote_step = True
        if space.is_none(w_stop):  # only 1 argument provided
            w_start, w_stop = space.newint(0), w_start
        else:
            w_stop = space.index(w_stop)
            w_step = space.index(w_step)
        try:
            step = space.int_w(w_step)
        except OperationError:
            pass  # We know it's not zero
        else:
            if step == 0:
                raise oefmt(space.w_ValueError,
                            "step argument must not be zero")
        w_length = compute_range_length(space, w_start, w_stop, w_step)
        obj = space.allocate_instance(W_Range, w_subtype)
        W_Range.__init__(obj, w_start, w_stop, w_step, w_length, promote_step)
        return obj

    def descr_repr(self, space):
        if not space.is_true(space.eq(self.w_step, space.newint(1))):
            return space.mod(space.newtext("range(%d, %d, %d)"),
                             space.newtuple([self.w_start, self.w_stop,
                                             self.w_step]))
        else:
            return space.mod(space.newtext("range(%d, %d)"),
                             space.newtuple([self.w_start, self.w_stop]))

    def descr_len(self):
        return self.w_length

    def _compute_item0(self, space, w_index):
        "Get a range item, when known to be inside bounds"
        # return self.start + (i * self.step)
        return space.add(self.w_start, space.mul(w_index, self.w_step))

    def _compute_item(self, space, w_index):
        w_zero = space.newint(0)
        w_index = space.index(w_index)
        if space.is_true(space.lt(w_index, w_zero)):
            w_index = space.add(w_index, self.w_length)
        if (space.is_true(space.ge(w_index, self.w_length)) or
            space.is_true(space.lt(w_index, w_zero))):
            raise oefmt(space.w_IndexError, "range object index out of range")
        return self._compute_item0(space, w_index)

    def _compute_slice(self, space, w_slice):
        w_start, w_stop, w_step = compute_slice_indices3(
            space, w_slice, self.w_length)

        w_substep = space.mul(self.w_step, w_step)
        w_substart = self._compute_item0(space, w_start)
        if w_stop:
            w_substop = self._compute_item0(space, w_stop)
        else:
            w_substop = w_substart

        w_length = compute_range_length(space, w_substart, w_substop, w_substep)
        obj = W_Range(w_substart, w_substop, w_substep, w_length)
        return obj

    def descr_getitem(self, space, w_index):
        # Cannot use the usual space.decode_index methods, because
        # numbers might not fit in longs.
        if space.isinstance_w(w_index, space.w_slice):
            return self._compute_slice(space, w_index)
        else:
            return self._compute_item(space, w_index)

    def descr_iter(self, space):
        try:
            start = space.int_w(self.w_start)
            stop = space.int_w(self.w_stop)
            step = space.int_w(self.w_step)
            length = space.int_w(self.w_length)
        except OperationError as e:
            pass
        else:
            if self.promote_step:
                return W_IntRangeStepOneIterator(space, start, stop)
            return W_IntRangeIterator(space, start, length, step)
        return W_LongRangeIterator(space, self.w_start, self.w_step,
                                   self.w_length)

    def descr_reversed(self, space):
        # lastitem = self.start + (self.length-1) * self.step
        w_lastitem = space.add(
            self.w_start,
            space.mul(space.sub(self.w_length, space.newint(1)),
                      self.w_step))
        return W_LongRangeIterator(
                space, w_lastitem, space.neg(self.w_step), self.w_length)

    def descr_reduce(self, space):
        return space.newtuple(
            [space.type(self),
             space.newtuple([self.w_start, self.w_stop, self.w_step]),
             ])

    def _contains_long(self, space, w_item):
        # Check if the value can possibly be in the range.
        if space.is_true(space.gt(self.w_step, space.newint(0))):
            # positive steps: start <= ob < stop
            if not (space.is_true(space.le(self.w_start, w_item)) and
                    space.is_true(space.lt(w_item, self.w_stop))):
                return False
        else:
            # negative steps: stop < ob <= start
            if not (space.is_true(space.lt(self.w_stop, w_item)) and
                    space.is_true(space.le(w_item, self.w_start))):
                return False
        # Check that the stride does not invalidate ob's membership.
        if space.is_true(space.mod(space.sub(w_item, self.w_start),
                                   self.w_step)):
            return False
        return True

    def descr_contains(self, space, w_item):
        w_type = space.type(w_item)
        if space.is_w(w_type, space.w_int) or space.is_w(w_type, space.w_bool):
            return space.newbool(self._contains_long(space, w_item))
        else:
            return space.sequence_contains(self, w_item)

    def descr_count(self, space, w_item):
        w_type = space.type(w_item)
        if space.is_w(w_type, space.w_int) or space.is_w(w_type, space.w_bool):
            return space.newint(self._contains_long(space, w_item))
        else:
            return space.sequence_count(self, w_item)

    def descr_index(self, space, w_item):
        w_type = space.type(w_item)
        if not (space.is_w(w_type, space.w_int) or
                space.is_w(w_type, space.w_bool)):
            return space.sequence_index(self, w_item)

        if not self._contains_long(space, w_item):
            raise oefmt(space.w_ValueError, "%R is not in range", w_item)
        w_index = space.sub(w_item, self.w_start)
        return space.floordiv(w_index, self.w_step)

    def descr_eq(self, space, w_other):
        # Compare two range objects.
        if space.is_w(self, w_other):
            return space.w_True
        if not isinstance(w_other, W_Range):
            return space.w_NotImplemented
        if not space.eq_w(self.w_length, w_other.w_length):
            return space.w_False
        if space.eq_w(self.w_length, space.newint(0)):
            return space.w_True
        if not space.eq_w(self.w_start, w_other.w_start):
            return space.w_False
        if space.eq_w(self.w_length, space.newint(1)):
            return space.w_True
        return space.eq(self.w_step, w_other.w_step)

    def descr_hash(self, space):
        if space.eq_w(self.w_length, space.newint(0)):
            w_tup = space.newtuple([self.w_length, space.w_None, space.w_None])
        elif space.eq_w(self.w_length, space.newint(1)):
            w_tup = space.newtuple([self.w_length, self.w_start, space.w_None])
        else:
            w_tup = space.newtuple([self.w_length, self.w_start, self.w_step])
        return space.hash(w_tup)


W_Range.typedef = TypeDef("range",
    __new__          = interp2app(W_Range.descr_new.im_func),
    __repr__         = interp2app(W_Range.descr_repr),
    __getitem__      = interp2app(W_Range.descr_getitem),
    __iter__         = interp2app(W_Range.descr_iter),
    __len__          = interp2app(W_Range.descr_len),
    __reversed__     = interp2app(W_Range.descr_reversed),
    __reduce__       = interp2app(W_Range.descr_reduce),
    __contains__     = interp2app(W_Range.descr_contains),
    __eq__           = interp2app(W_Range.descr_eq),
    __hash__         = interp2app(W_Range.descr_hash),
    count            = interp2app(W_Range.descr_count),
    index            = interp2app(W_Range.descr_index),
    start            = interp_attrproperty_w('w_start', cls=W_Range),
    stop             = interp_attrproperty_w('w_stop', cls=W_Range),
    step             = interp_attrproperty_w('w_step', cls=W_Range),
)
W_Range.typedef.acceptable_as_base_class = False


class W_AbstractRangeIterator(W_Root):

    def descr_iter(self, space):
        return self

    def descr_len(self, space):
        raise NotImplementedError

    def descr_next(self, space):
        raise NotImplementedError

    def descr_reduce(self, space):
        raise NotImplementedError


class W_LongRangeIterator(W_AbstractRangeIterator):
    def __init__(self, space, w_start, w_step, w_len, w_index=None):
        self.w_start = w_start
        self.w_step = w_step
        self.w_len = w_len
        if w_index is None:
            w_index = space.newint(0)
        self.w_index = w_index

    def descr_next(self, space):
        if space.is_true(space.lt(self.w_index, self.w_len)):
            w_index = space.add(self.w_index, space.newint(1))
            w_product = space.mul(self.w_index, self.w_step)
            w_result = space.add(w_product, self.w_start)
            self.w_index = w_index
            return w_result
        raise OperationError(space.w_StopIteration, space.w_None)

    def descr_len(self, space):
        return space.sub(self.w_len, self.w_index)

    def descr_reduce(self, space):
        from pypy.interpreter.mixedmodule import MixedModule
        w_mod = space.getbuiltinmodule('_pickle_support')
        mod = space.interp_w(MixedModule, w_mod)
        w_args = space.newtuple([self.w_start, self.w_step, self.w_len,
                                 self.w_index])
        return space.newtuple([mod.get('longrangeiter_new'), w_args])


class W_IntRangeIterator(W_AbstractRangeIterator):

    def __init__(self, space, current, remaining, step):
        self.current = current
        self.remaining = remaining
        self.step = step

    def descr_next(self, space):
        return self.next(space)

    def next(self, space):
        if self.remaining > 0:
            item = self.current
            self.current = item + self.step
            self.remaining -= 1
            return space.newint(item)
        raise OperationError(space.w_StopIteration, space.w_None)

    def descr_len(self, space):
        return self.get_remaining(space)

    def descr_reduce(self, space):
        from pypy.interpreter.mixedmodule import MixedModule
        w_mod    = space.getbuiltinmodule('_pickle_support')
        mod      = space.interp_w(MixedModule, w_mod)
        new_inst = mod.get('intrangeiter_new')
        nt = space.newtuple

        tup = [space.newint(self.current), self.get_remaining(space), space.newint(self.step)]
        return nt([new_inst, nt(tup)])

    def get_remaining(self, space):
        return space.newint(self.remaining)


class W_IntRangeStepOneIterator(W_IntRangeIterator):
    _immutable_fields_ = ['stop']

    def __init__(self, space, start, stop):
        self.current = start
        self.stop = stop
        self.step = 1

    def next(self, space):
        if self.current < self.stop:
            item = self.current
            self.current = item + 1
            return space.newint(item)
        raise OperationError(space.w_StopIteration, space.w_None)

    def get_remaining(self, space):
        return space.newint(self.stop - self.current)


W_AbstractRangeIterator.typedef = TypeDef("rangeiterator",
    __iter__        = interp2app(W_AbstractRangeIterator.descr_iter),
    __length_hint__ = interpindirect2app(W_AbstractRangeIterator.descr_len),
    __next__        = interpindirect2app(W_AbstractRangeIterator.descr_next),
    __reduce__      = interpindirect2app(W_AbstractRangeIterator.descr_reduce),
)
W_AbstractRangeIterator.typedef.acceptable_as_base_class = False


class W_Map(W_Root):
    _error_name = "map"
    _immutable_fields_ = ["w_fun", "iterators_w"]

    def __init__(self, space, w_fun, args_w):
        self.space = space
        self.w_fun = w_fun

        iterators_w = []
        i = 0
        for iterable_w in args_w:
            try:
                iterator_w = space.iter(iterable_w)
            except OperationError as e:
                if e.match(self.space, self.space.w_TypeError):
                    raise oefmt(space.w_TypeError,
                                "%s argument #%d must support iteration",
                                self._error_name, i + 1)
                else:
                    raise
            else:
                iterators_w.append(iterator_w)

            i += 1

        self.iterators_w = iterators_w

    def iter_w(self):
        return self

    def next_w(self):
        # common case: 1 or 2 arguments
        iterators_w = self.iterators_w
        length = len(iterators_w)
        if length == 1:
            objects = [self.space.next(iterators_w[0])]
        elif length == 2:
            objects = [self.space.next(iterators_w[0]),
                       self.space.next(iterators_w[1])]
        else:
            objects = self._get_objects()
        w_objects = self.space.newtuple(objects)
        if self.w_fun is None:
            return w_objects
        else:
            return self.space.call(self.w_fun, w_objects)

    def _get_objects(self):
        # the loop is out of the way of the JIT
        return [self.space.next(w_elem) for w_elem in self.iterators_w]

    def descr_reduce(self, space):
        w_map = space.getattr(space.getbuiltinmodule('builtins'),
                space.newtext('map'))
        args_w = [self.w_fun] + self.iterators_w
        return space.newtuple([w_map, space.newtuple(args_w)])


def W_Map___new__(space, w_subtype, w_fun, args_w):
    if len(args_w) == 0:
        raise oefmt(space.w_TypeError,
                    "map() must have at least two arguments")
    r = space.allocate_instance(W_Map, w_subtype)
    r.__init__(space, w_fun, args_w)
    return r

W_Map.typedef = TypeDef(
        'map',
        __new__  = interp2app(W_Map___new__),
        __iter__ = interp2app(W_Map.iter_w),
        __next__ = interp2app(W_Map.next_w),
        __reduce__ = interp2app(W_Map.descr_reduce),
        __doc__ = """\
Make an iterator that computes the function using arguments from
each of the iterables.  Stops when the shortest iterable is exhausted.""")

class W_Filter(W_Root):
    reverse = False

    def __init__(self, space, w_predicate, w_iterable):
        self.space = space
        if space.is_w(w_predicate, space.w_None):
            self.no_predicate = True
        else:
            self.no_predicate = False
            self.w_predicate = w_predicate
        self.iterable = space.iter(w_iterable)

    def iter_w(self):
        return self

    def next_w(self):
        while True:
            w_obj = self.space.next(self.iterable)  # may raise w_StopIteration
            if self.no_predicate:
                pred = self.space.is_true(w_obj)
            else:
                w_pred = self.space.call_function(self.w_predicate, w_obj)
                pred = self.space.is_true(w_pred)
            if pred ^ self.reverse:
                return w_obj

    def descr_reduce(self, space):
        w_filter = space.getattr(space.getbuiltinmodule('builtins'),
                space.newtext('filter'))
        args_w = [space.w_None if self.no_predicate else self.w_predicate,
                  self.iterable]
        return space.newtuple([w_filter, space.newtuple(args_w)])


def W_Filter___new__(space, w_subtype, w_predicate, w_iterable):
    r = space.allocate_instance(W_Filter, w_subtype)
    r.__init__(space, w_predicate, w_iterable)
    return r

W_Filter.typedef = TypeDef(
        'filter',
        __new__  = interp2app(W_Filter___new__),
        __iter__ = interp2app(W_Filter.iter_w),
        __next__ = interp2app(W_Filter.next_w),
        __reduce__ = interp2app(W_Filter.descr_reduce),
        __doc__  = """\
Return an iterator yielding those items of iterable for which function(item)
is true. If function is None, return the items that are true.""")


class W_Zip(W_Map):
    _error_name = "zip"

    def next_w(self):
        # argh.  zip(*args) is almost like map(None, *args) except
        # that the former needs a special case for len(args)==0
        # while the latter just raises a TypeError in this situation.
        if len(self.iterators_w) == 0:
            raise OperationError(self.space.w_StopIteration, self.space.w_None)
        return W_Map.next_w(self)

    def descr_reduce(self, space):
        w_zip = space.getattr(space.getbuiltinmodule('builtins'),
                space.newtext('zip'))
        return space.newtuple([w_zip, space.newtuple(self.iterators_w)])


def W_Zip___new__(space, w_subtype, args_w):
    r = space.allocate_instance(W_Zip, w_subtype)
    r.__init__(space, None, args_w)
    return r

W_Zip.typedef = TypeDef(
        'zip',
        __new__  = interp2app(W_Zip___new__),
        __iter__ = interp2app(W_Zip.iter_w),
        __next__ = interp2app(W_Zip.next_w),
        __reduce__ = interp2app(W_Zip.descr_reduce),
        __doc__  = """\
Return a zip object whose .__next__() method returns a tuple where
the i-th element comes from the i-th iterable argument.  The .__next__()
method continues until the shortest iterable in the argument sequence
is exhausted and then it raises StopIteration.""")